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Abstract: Determination of metabolomic signatures of pulmonary function and chronic obstructive
pulmonary disease (COPD) in the general population could aid in identification and understanding of
early disease processes. Metabolome measurements were performed on serum from 4742 individuals
(2354 African-Americans and 1529 European-Americans from the Atherosclerosis Risk in
Communities study and 859 Europeans from the Cooperative Health Research in the Region of
Augsburg study). We examined 368 metabolites in relation to cross-sectional measures of forced
expiratory volume in 1 s (FEV1), forced vital capacity (FVC), their ratio (FEV1/FVC) and COPD using
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multivariable regression followed by meta-analysis. At a false discovery rate of 0.05, 95 metabolites
were associated with FEV1 and 100 with FVC (73 overlapping), including inverse associations
with branched-chain amino acids and positive associations with glutamine. Ten metabolites
were associated with FEV1/FVC and seventeen with COPD (393 cases). Enriched pathways of
amino acid metabolism were identified. Associations with FEV1 and FVC were not driven by
individuals with COPD. We identified novel metabolic signatures of pulmonary function and COPD
in African and European ancestry populations. These may allow development of biomarkers in the
general population of early disease pathogenesis, before pulmonary function has decreased to levels
diagnostic for COPD.

Keywords: metabolome; metabolomics; chronic obstructive pulmonary disease; respiratory function
tests; forced expiratory volume

1. Introduction

Pulmonary function, as assessed by forced expiratory volume in 1 s (FEV1), forced vital capacity
(FVC), and the ratio of FEV1 to FVC (FEV1/FVC), reflects the physiological state of the lung. These
measures are used to diagnose and monitor chronic obstructive pulmonary disease (COPD). Reduced
pulmonary function in the general population correlates with systemic inflammation biomarkers [1,2]
and has been linked to development of other pathologies including diabetes [3], kidney [4] and
cardiovascular diseases [5,6]. Pulmonary function is influenced by genetics [7,8] and environmental
factors, most notably, tobacco smoking [9]. Lower pulmonary function is a risk factor for mortality in
the general population, independently of smoking and other risk factors and even among individuals
with normal spirometry [10–13]. However, the underlying mechanisms for these diverse impacts of
reductions in pulmonary function remain unknown.

Metabolomics systematically identifies and quantifies small molecules in blood and other biologic
tissues. It has increasingly been applied to the study of chronic diseases [14–17]. Various circulating
metabolites have been reported as associated with COPD in several clinically selected studies, generally
with a modest number of cases [18–30]. Studies of COPD identified in clinical settings identify more
severe disease than population-based studies. Studies of more severe disease may tend to identify
markers of disease progression and treatment. The clinical utility of identifying circulating biomarkers
of very early stages of COPD has been highlighted [31]. Biomarkers of the earliest stages of the disease
process can enable development of new therapies and improve understanding of mechanisms by
which reduced pulmonary function contributes to risk of developing chronic diseases. Well-powered
studies of circulating metabolites in relation to spirometric measures in general population samples,
unselected for disease, can identify reproducible biomarkers of early stages of the disease process before
pulmonary function has declined to levels diagnostic of airflow obstruction and COPD. Publications
on circulating metabolites in relation to pulmonary function in population cohorts are rare. A study
of UK twins identified metabolites, including several amino acids, cofactors and vitamins, related to
both FEV1 and FVC, as well as some unique associations for each [32,33]. No study has examined the
association of metabolomic profiles with pulmonary function as well as relationships with COPD in a
multi-ethnic general population sample.

We conducted meta-analyses of metabolomic analytes in relation to pulmonary function (FEV1,
FVC and FEV1/FVC) in 2354 individuals of African ancestry and 2388 individuals of European ancestry
from the Atherosclerosis Risk in Communities (ARIC) study and Cooperative Health Research in the
Region of Augsburg (KORA). We further examined molecular pathways of specific metabolites and
associations of metabolites with COPD.
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2. Results

2.1. Study Characteristics

Characteristics of study participants are presented in Table 1. Mean ages were very similar for
the 2354 ARIC African-Americans (53.0 years, SD = 5.7), the 1,529 ARIC European-Americans (54.6,
SD = 5.8) and the 859 KORA Europeans (53.8, SD = 5.7). Current smoking prevalence were also similar,
ranging from 21 to 28%. A total of 393 individuals met our definition of COPD (358 from ARIC and 35
from KORA).

Table 1. Demographics for African and European ancestry from the Atherosclerosis Risk in Communities
(ARIC) study and Cooperative Health Research in the Region of Augsburg (KORA).

ARIC
African Ancestry

ARIC
European Ancestry KORA

N 2354 1529 859

Female, n (%) 1510 (64.1) 826 (54.0) 457 (53.2)

Age, years 53.0 (5.7) 54.6 (5.8) 53.8 (4.4)

Weight, kg 83.5 (17.0) 77.3 (16.3) 79.5 (17.0)

Height, cm 167.9 (8.9) 168.3 (9.6) 169.2 (9.2)

Smoking status: Never, n (%) 1172 (49.8) 610 (39.9) 319 (37.1)

Smoking status: Former, n (%) 523 (22.2) 527 (34.5) 360 (41.9)

Smoking status: Current, n (%) 659 (28.0) 392 (25.6) 180 (21.0)

Pack years, in ever smokers 21.9 (20.5) 29.2 (22.0) 22.8 (22.5)

Cigarettes per day, in current smokers 14.4 (9.6) 22.5 (12.6) 12.5 (9.3)

FEV1, mL 2519 (651) 2891 (777) 3268 (790)

FVC, mL 3286 (819) 3931 (991) 4220 (976)

% predicted FEV1 95.1 (17.1) 92.9 (16.6) 103.4 (16.1)

% predicted FVC 99.0 (15.7) 99.5 (14.5) 105.3 (13.7)

FEV1/FVC, % 76.8 (7.9) 73.6 (7.7) 77.5 (6.2)

eGFR, mL/min/1.73 m2 104.0 (18.3) 91.3 (14.5) 86.8 (13.4)

COPD * cases, n (%) 179 (7.6) 179 (11.7) 35 (4.1)

COPD severity classes *: Moderate 152 (6.5) 150 (9.8) 33 (3.9)

COPD severity classes *: Severe 25 (1.1) 24 (1.6) 2 (0.2)

COPD severity classes *: Very Severe 2 (0.1) 5 (0.3) 0 (0)

Diabetes, n (%) 413 (17.5) 126 (8.2) 36 (4.2)

Hypertension, n (%) 1258 (53.4) 469 (30.7) 277 (32.3)

Mean and SD provided unless otherwise noted. FEV1 represents forced expiratory volume in 1 s; FVC, forced vital
capacity; eGFR, estimated glomerular filtration rate; and COPD, chronic obstructive pulmonary disease. * Defined
based on prebronchodilator spirometry by FEV1/FVC < 0.7 and % predicted FEV1 < 80. COPD severity subclass
definitions: moderate: % predicted 50 ≤ FEV1 < 80; severe % predicted 30 ≤ FEV1 < 50; very severe: FEV1 < 30
% predicted.

2.2. Metabolic Associations with Pulmonary Function Measures

Manhattan plots for the three pulmonary function parameters are shown in Figure 1. At FDR < 0.05,
95 metabolites were associated with FEV1 (30 at Bonferroni correction) and 100 (37 at Bonferroni
correction) with FVC. Given the large number of findings, in the main text tables, we show only
the top 20 associations (based on meta-analysis p value) that meet Bonferroni correction where the
metabolite was measured in all three datasets (Table 2 for FEV1 and Table 3 for FVC); all metabolites
associated at FDR < 0.05 are in Table S1 for FEV1 and Table S2 for FVC. For metabolites associated
at FDR < 0.05, the average effect size per SD difference in metabolite for FEV1 was a 25.8 mL
difference (range 17.3 mL–50.7 mL) and for FVC, a 29.9 mL difference (range 19.7 mL–56.9 mL).
There were 23 metabolites associated, at Bonferroni significance, with both FEV1 and FVC, all with
matching directions of effect. These include eight amino acids and derivatives (glycine, asparagine,
tryptophan betaine, 3-(4-hydroxyphenyl)lactate, 3-phenylpropionate (hydrocinnamate), isoleucine,
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2-methylbutyrylcarnitine (C5) and glutamine), three carbohydrates (fructose, lactate and mannose),
the lipid glycerol, the nucleotide N2,N2-dimethylguanosine, and several gamma-glutamyl amino
acids. At FDR < 0.05, 73 metabolites associated with both FEV1 and FVC, all with matching directions
(Table S3).

For FEV1/FVC we identified fewer associations (Table 4): 10 at FDR < 0.05, including 5 at
Bonferroni significance. On average, per SD change of those 10 FDR significant metabolites is
correlated with 0.48% difference (range 0.33% to 0.93%) in the FEV1/FVC, expressed as a percentage.
Among the findings are two xenobiotics with inverse associations that reflect behaviors of individuals
with low FEV1/FVC. These include the respiratory medication theophylline and its metabolite,
1,3-dimethylurate. Beside theophylline treatment in asthma and COPD patients, caffeine intake
has to be considered as a common source for circulating theophylline. In sensitivity analyses of the
association between metabolites and pulmonary function after deleting COPD cases, associations
between FEV1/FVC and theophylline and its metabolites disappeared. These sensitivity analyses
further showed that results for FEV1 and FVC were not driven by individuals with COPD: correlations
between beta coefficients from fixed effect meta-analyses before and after exclusion of COPD were 0.96
for FEV1 and 0.99 for FVC.
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Table 2. Top 20 metabolites associated with FEV1 at Bonferroni significance (p < 1.4 × 10−4) in meta-analysis *.

Meta-Analysis ARIC African Ancestry
(n = 2354)

ARIC European Ancestry
(n = 1529)

KORA
(n = 859)

Metabolite Super Pathway Beta + SE P Direction ** Beta SE P Beta SE P Beta SE P

glycine Amino Acid 38.8 7.0 3.6 × 10−8 +++ 39.1 9.4 3.7 × 10−5 39.0 13.1 3.0 × 10−3 37.8 18.0 3.6 × 10−2

3-(4-hydroxyphenyl)lactate Amino Acid −37.2 7.7 1.4 × 10−6 −−− −32.9 10.0 9.9 × 10−4 −26.9 15.2 7.6 × 10−2 −73.5 20.3 3.1 × 10−4

3-phenylpropionate (hydrocinnamate) Amino Acid 32.7 6.8 1.5 × 10−6 +++ 20.9 9.5 2.8 × 10−2 42.0 11.9 4.2 × 10−4 51.2 16.9 2.5 × 10−3

2-methylbutyrylcarnitine (C5) Amino Acid −36.2 7.5 1.6 × 10−6 −−− −41.2 9.8 2.8 × 10−5 −38.0 15.0 1.2 × 10−2 −14.7 18.9 4.4 × 10−1

asparagine Amino Acid 31.1 6.8 5.2 × 10−6 ++− 29.8 9.2 1.2 × 10−3 54.0 12.7 2.2 × 10−5 −5.4 16.9 7.5 × 10−1

alpha-hydroxyisovalerate Amino Acid −30.9 7.0 8.9 × 10−6 −−− −24.4 9.0 6.8 × 10−3 −32.2 13.9 2.1 × 10−2 −53.7 17.7 2.5 × 10−3

glutamine Amino Acid 29.0 7.0 3.6 × 10−5 +++ 32.5 9.6 7.3 × 10−4 35.2 12.9 6.7 × 10−3 7.4 17.0 6.6 × 10−1

isoleucine Amino Acid −28.9 7.4 1.0 × 10−4 −−− −28.9 9.4 2.2 × 10−3 −34.8 14.5 1.7 × 10−2 −15.3 21.8 4.8 × 10−1

serotonin (5HT) Amino Acid 26.2 6.9 1.4 × 10−4 +++ 33.2 9.0 2.4 × 10−4 14.0 13.4 3.0 × 10−1 20.5 17.2 2.3 × 10−1

glycerate Carbohydrate 31.7 7.0 5.8 × 10−6 ++− 39.2 9.3 2.8 × 10−5 43.8 13.5 1.2 × 10−3 −11.0 16.7 5.1 × 10−1

lactate Carbohydrate −30.4 6.9 1.1 × 10−5 −−− −27.7 9.3 2.9 × 10−3 −36.4 12.7 4.1 × 10−3 −28.4 17.7 1.1 × 10−1

fructose Carbohydrate −27.6 6.7 3.8 × 10−5 −−− −28.6 8.5 8.2 × 10−4 −39.2 14.3 6.3 × 10−3 −8.2 16.7 6.2 × 10−1

mannose Carbohydrate −27.4 7.0 9.9 × 10−5 −−− −33.1 8.9 2.0 × 10−4 −21.2 14.9 1.5 × 10−1 −12.5 18.1 4.9 × 10−1

glycerol Lipid −36.4 7.2 4.7 × 10−7 −−− −36.5 9.5 1.3 × 10−4 −43.0 14.0 2.1 × 10−3 −24.8 18.2 1.7 × 10−1

7-alpha-hydroxy-3-oxo-4-cholestenoate (7-Hoca) Lipid −30.4 6.9 9.5 × 10−6 −−− −18.6 9.4 4.8 × 10−2 −33.0 12.5 8.2 × 10−1 −63.7 16.9 1.8 × 10−4

N2,N2-dimethylguanosine Nucleotide −32.3 7.2 6.4 × 10−6 −−− −22.6 9.7 2.0 × 10−2 −58.5 13.6 1.9 × 10−5 −21.6 16.9 2.0 × 10−1

pseudouridine Nucleotide −33.8 7.6 8.9 × 10−6 −−− −29.9 10.1 3.1 × 10−3 −21.8 14.9 1.4 × 10−1 −65.3 18.4 4.1 × 10−4

gamma-glutamylthreonine Peptide 36.3 6.8 1.0 × 10−7 +++ 34.2 8.8 1.1 × 10−4 52.6 13.9 1.6 × 10−4 20.0 16.8 2.4 × 10−1

gamma-glutamylleucine Peptide 34.8 7.0 5.6 × 10−7 +++ 34.4 8.8 9.6 × 10−5 40.6 13.6 2.9 × 10−3 23.7 20.5 2.5 × 10−1

gamma-glutamylvaline Peptide 31.8 6.9 4.1 × 10−6 +++ 30.9 8.8 4.8 × 10−4 43.2 13.4 1.3 × 10−3 11.6 19.9 5.6 × 10−1

* Top 20 metabolites, based on meta-analysis p value, measured in all three populations are shown in this table; a total of 30 met Bonferroni correction. All 95 metabolites associated with
FEV1 at FDR < 0.05 are shown in Supplementary Table S1. + Regression coefficient: mL difference in FEV1 per SD change of the metabolite levels. ** Direction of effect: the first, second
and third +, or − refers to the direction of effect in ARIC African ancestry, ARIC European ancestry and KORA.
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Table 3. Top 20 metabolites associated with FVC at Bonferroni significance (p < 1.4 × 10−4) in meta-analysis *.

Meta-Analysis ARIC African-Ancestry
(n = 2354)

ARIC European Ancestry
(n = 1529)

KORA
(n = 859)

Metabolite Super Pathway Beta + SE P Direction ** Beta SE P Beta SE P Beta SE P

glycine Amino Acid 56.9 8.0 9.6 × 10−13 +++ 58.4 10.9 8.9 × 10−8 61.2 14.7 3.4 × 10−5 44.6 19.3 2.1 × 10−2

isoleucine Amino Acid −53.8 8.4 1.7 × 10−10 −−− −47.0 10.9 1.6 × 10−5 −69.7 16.3 2.0 × 10−5 −52.0 23.2 2.5 × 10−2

N-acetylglycine Amino Acid 44.3 7.9 2.4 × 10−8 +++ 43.8 11.1 8.5 × 10−5 49.8 14.3 5.0 × 10−4 36.4 18.8 5.3 × 10−2

asparagine Amino Acid 41.6 7.7 7.0 × 10−8 +++ 42.7 10.6 6.0 × 10−5 62.6 14.3 1.3 × 10−5 4.4 18.1 8.1 × 10−1

2-methylbutyrylcarnitine (C5) Amino Acid −44.9 8.5 1.5 × 10−7 −−− −44.5 11.3 9.0 × 10−5 −55.9 16.9 9.7 × 10−4 −30.2 20.2 1.4 × 10−1

glutamine Amino Acid 39.0 7.9 9.2 × 10−7 +++ 37.2 11.1 8.0 × 10−4 56.3 14.6 1.1 × 10−4 16.5 18.2 3.7 × 10−1

3-(4-hydroxyphenyl)lactate Amino Acid −42.6 8.7 1.1 × 10−6 −−− −35.2 11.5 2.3 × 10−3 −32.9 17.1 5.4 × 10−2 −84.3 21.7 1.1 × 10−4

3-phenylpropionate (hydrocinnamate) Amino Acid 36.3 7.7 2.3 × 10−6 +++ 24.1 11.0 2.8 × 10−2 42.0 13.4 1.8 × 10−3 59.2 18.1 1.1 × 10−3

tyrosine Amino Acid −35.2 8.0 1.2 × 10−5 −−− −24.5 10.5 2.0 × 10−2 −42.8 16.2 8.2 × 10−3 −61.6 19.6 1.8 × 10−3

valine Amino Acid −33.9 8.1 3.1 × 10−5 −−− −36.4 10.5 5.3 × 10−4 −33.7 16.3 3.9 × 10−2 −24.2 21.2 2.5 × 10−1

phenylalanine Amino Acid −33.2 8.0 3.3 × 10−5 −−− −26.2 10.4 1.2 × 10−2 −37.3 16.2 2.2 × 10−2 −52.3 19.7 8.2 × 10−3

5-oxoproline Amino Acid 31.4 7.8 5.9 × 10−5 ++− 42.8 10.6 5.7 × 10−5 44.7 14.9 2.7 × 10−3 −22.4 18.2 2.2 × 10−1

mannose Carbohydrate −41.1 8.0 2.5 × 10−7 −−− −52.1 10.2 3.8 × 10−7 −39.4 16.8 1.9 × 10−2 −3.6 19.4 8.5 × 10−1

lactate Carbohydrate −38.4 7.8 8.9 × 10−7 −−− −33.6 10.7 1.8 × 10−3 −45.8 14.3 1.4 × 10−3 −40.3 18.9 3.3 × 10−2

fructose Carbohydrate −32.3 7.6 2.2 × 10−5 −−− −39.5 9.8 6.2 × 10−5 −31.9 16.2 4.9 × 10−2 −9.0 17.9 6.2 × 10−1

glucose Carbohydrate −30.7 7.7 6.3 × 10−5 −−− −37.1 9.5 9.7 × 10−5 −21.0 18.0 2.4 × 10−1 −16.1 18.7 3.9 × 10−1

biliverdin Cofactors and
Vitamins 31.0 7.9 8.6 × 10−5 +++ 31.0 11.5 7.1 × 10−3 28.0 13.5 3.8 × 10−2 36.2 18.1 4.6 × 10−2

glycerol Lipid −33.4 8.2 4.6 × 10−5 −−− −39.1 11.0 4.0 × 10−4 −36.1 15.7 2.2 × 10−2 −11.4 19.5 5.6 × 10−1

pseudouridine Nucleotide −38.5 8.6 7.8 × 10−6 −−− −35.4 11.7 2.4 × 10−3 −29.6 16.7 7.7 × 10−2 −59.8 19.8 2.6 × 10−3

urate Nucleotide −35.3 8.3 2.1× 10−5 −−− −38.2 11.1 5.9 × 10−4 −26.2 14.8 7.7 × 10−2 −45.3 23.5 5.4 × 10−2

* Top 20 metabolites (based on meta-analysis p value) measured in all three populations are shown in this table: a total of 37 met Bonferroni correction. All 100 metabolites associated with
FVC at FDR < 0.05 were shown in Supplementary Table S2. + Regression coefficient: mL difference in FVC per SD change of the metabolite levels. ** Direction of effect: the first, second
and third + or − refers to the direction of effect in ARIC African ancestry, ARIC European ancestry and KORA.
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Table 4. Metabolites associated with FEV1/FVC at FDR < 0.05 in meta-analysis *.

Meta-Analysis ARIC African Ancestry
(n = 2354)

ARIC European Ancestry
(n = 1529)

KORA
(n = 859)

Metabolite Super Pathway Beta + SE P Direction ** Beta SE P Beta SE P Beta SE P

3-methoxytyrosine Amino Acid −0.42 0.10 5.0 × 10−5 −−− −0.37 0.13 4.1 × 10−3 −0.45 0.35 2.0 × 10−1 −0.53 0.20 8.1 × 10−3

androsterone sulfate Lipid 0.37 0.10 2.5 × 10−4 +++ 0.29 0.16 7.9 × 10−2 0.31 0.17 7.0 × 10−2 0.57 0.20 5.6 × 10−3

glycerol Lipid −0.36 0.11 8.6 × 10−4 −−− −0.27 0.16 9.1 × 10−2 −0.52 0.20 7.4 × 10−3 −0.32 0.22 1.4 × 10−1

dehydroisoandrosterone sulfate (DHEA-S) Lipid 0.35 0.11 1.2 × 10−3 +++ 0.39 0.17 2.1 × 10−2 0.37 0.19 5.1 × 10−2 0.27 0.22 2.2 × 10−1

lathosterol Lipid 0.34 0.10 7.4 × 10−4 +++ 0.38 0.15 1.3 × 10−2 0.37 0.18 4.1 × 10−2 0.24 0.20 2.5 × 10−1

oleoylcarnitine Lipid −0.42 0.10 2.9 × 10−5 −−− −0.46 0.15 2.1 × 10−3 −0.50 0.18 4.8 × 10−3 −0.23 0.20 2.7 × 10−1

7-alpha-hydroxy-3-oxo-4-cholestenoate (7-Hoca) Lipid −0.33 0.10 9.6 × 10−4 −−− −0.32 0.16 3.8 × 10−2 −0.28 0.17 1.1 × 10−1 −0.42 0.21 4.0 × 10−2

theophylline Xenobiotics −0.62 0.10 4.0 × 10−10 −−− −0.72 0.14 4.8 × 10−7 −0.73 0.18 7.5 × 10−5 −0.26 0.21 2.1 × 10−1

* Metabolites measured in all three populations were shown in this table. All metabolites associations with FEV1/FVC were shown in Supplementary Table S6. + Regression coefficient:
difference in FEV1/FVC (scaled as a percentage) per SD change in the metabolite levels. ** Direction of effect: the first, second and third +, or − refers to the direction of effect in ARIC
African ancestry, ARIC European ancestry and KORA.
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2.3. Pathway Analyses

In pathway analyses, 83 out of 95 metabolites related to FEV1 and 84 of 100 related to
FVC (FDR < 0.05) were matched to the pathway database and mapped to 49 and 42 pathways,
respectively, for testing of enrichment. Among the four enriched pathways identified for either FEV1
or FVC, “aminoacyl-tRNA biosynthesis” and “phenylalanine metabolism” were implicated for both
phenotypes (Table 5). We did not perform pathway analysis for FEV1/FVC given the small number of
significant associations.

Table 5. Pathway enriched for FEV1 and FVC related metabolites.

Trait Pathway Analytes in the
Pathway, N

Analytes with
FDR < 0.05, N Analytes with FDR < 0.05 P FDR

FEV1 Aminoacyl-tRNA
biosynthesis 75 8

asparagine, phenylalanine, glutamine,
cysteine, glycine, isoleucine,
threonine, tyrosine

3.3 × 10−4 0.02

FEV1 Phenylalanine
metabolism 45 6

phenylalanine, hydrocinnamic acid,
hippuric acid, succinic acid,
n-acetyl-phenylalanine, tyrosine

5.9 × 10−4 0.02

FEV1 Nitrogen
metabolism 39 5 phenylalanine, tyrosine, asparagine,

glutamine, glycine 2.1× 10−3 0.05

FEV1

Alanine,
aspartate and
glutamate
metabolism

24 4 asparagine, oxoglutaric acid,
glutamine, succinic acid 2.3 × 10−3 0.05

FVC Aminoacyl-tRNA
biosynthesis 75 9

asparagine, phenylalanine, glutamine,
glycine, valine, isoleucine, leucine,
threonine, tyrosine.

7.0 × 10−5 0.006

FVC Phenylalanine
metabolism 45 6

phenylalanine, hydrocinnamic acid,
hippuric acid, succinic acid,
n-acetyl-phenylalanine, tyrosine

7.1 × 10−4 0.03

2.4. Metabolic Associations with COPD

For COPD, 17 metabolites were associated at FDR < 0.05, including five at Bonferroni significance
(Table 6). On average, per SD difference of those 17 FDR significant metabolites, the odds of COPD
changed by 22% (range 17% to 39%). Of the 17 metabolites associated with COPD at FDR < 0.05, only
three (ornithine, homocitrulline, and 5-dodecenoate (12:1n7)) were not also identified at FDR < 0.05 for
either FEV1, FVC or FEV1/FVC. For the 73 metabolites related to both FEV1 and FVC at FDR < 0.05
(Table S3); 23 were at least nominally associated with COPD (P < 0.05), including 8 at FDR < 0.05.
Aside from theophylline and its metabolite, the other 6 metabolites were 3-(4-hydroxyphenyl)lactate
(OR = 1.28, 95% CI: 1.14–1.44), glycerate, glycerol, 7-alpha-hydroxy-3-oxo-4-cholestenoate (7-Hoca),
pseudouridine and serotonin (5HT).
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Table 6. Metabolites associated with COPD at FDR < 0.05 in meta-analysis *.

Meta-analysis ARIC African Ancestry
(n = 2354)

ARIC European Ancestry
(n = 1529)

KORA
(n = 859)

Metabolite Super Pathway OR +

(95% CI) P Direction ** OR
(95% CI) P OR

(95% CI) P OR
(95% CI) P

3-(4-hydroxyphenyl)lactate Amino Acid 1.28
(1.14, 1.44) 3.6 × 10−5 +++ 1.28

(1.09, 1.51) 3.2 × 10−3 1.13
(0.93, 1.38) 2.3 × 10−1 1.76

(1.28, 2.42) 4.6 × 10−4

3-methoxytyrosine Amino Acid 1.19
(1.1, 1.3) 4.1 × 10−5 +++ 1.19

(1.08, 1.3) 2.5 × 10−4 1.11
(0.79, 1.55) 5.4 × 10−1 1.36

(1, 1.85) 4.6 × 10−2

homocitrulline Amino Acid 1.21
(1.08, 1.36) 8.5 × 10−4 ++− 1.26

(1.09, 1.47) 2.5 × 10−3 1.21
(1, 1.47) 5.3 × 10−2 0.95

(0.66, 1.39) 8.1 × 10−1

serotonin (5HT) Amino Acid 0.83
(0.74, 0.93) 1.7 × 10−3 −−− 0.8

(0.67, 0.94) 7.7 × 10−3 0.87
(0.72, 1.05) 1.4 × 10−1 0.82

(0.57, 1.19) 3.0 × 10−1

ornithine Amino Acid 1.2
(1.07, 1.34) 1.9 × 10−3 +++ 1.06

(0.9, 1.24) 5.0 × 10−1 1.4
(1.17, 1.68) 2.7 × 10−4 1.21

(0.85, 1.73) 2.8 × 10−1

glycerate Carbohydrate 0.8
(0.71, 0.91) 3.3 × 10−4 −−+ 0.77

(0.65, 0.92) 3.9 × 10−3 0.77
(0.64, 0.92) 5.2 × 10−3 1.12

(0.78, 1.61) 5.4 × 10−1

succinylcarnitine Energy 1.21
(1.08, 1.36) 1.4 × 10−3 +++ 1.17

(1, 1.37) 5.3 × 10−2 1.32
(1.08, 1.6) 6.3 × 10−3 1.09

(0.74, 1.61) 6.7 × 10−1

oleoylcarnitine Lipid 1.22
(1.1, 1.35) 1.6 × 10−4 +++ 1.28

(1.11, 1.48) 6.1 × 10−4 1.14
(0.96, 1.35) 1.3 × 10−1 1.2

(0.89, 1.62) 2.3 × 10−1

5-dodecenoate (12:1n7) Lipid 1.23
(1.1, 1.37) 1.9 × 10−4 +++ 1.27

(1.09, 1.48) 1.7 × 10−3 1.14
(0.96, 1.36) 1.5 × 10−1 1.33

(0.97, 1.81) 7.7 × 10−2

docosahexaenoate (DHA, 22:6n3) Lipid 0.79
(0.7, 0.9) 2.6 × 10−4 −−+ 0.85

(0.72, 1) 4.6 × 10−2 0.63
(0.51, 0.78) 3.3 × 10−5 1.11

(0.78, 1.6) 5.5 × 10−1

androsterone sulfate Lipid 0.81
(0.71, 0.91) 8.2 × 10−4 −−− 0.9

(0.75, 1.08) 2.4 × 10−1 0.79
(0.66, 0.95) 1.4 × 10−2 0.36

(0.21, 0.63) 2.8 × 10−4

7-alpha-hydroxy-3-oxo-4-cholestenoate (7-Hoca) Lipid 1.19
(1.07, 1.33) 1.0 × 10−3 +++ 1.15

(0.98, 1.35) 9.3 × 10−2 1.22
(1.04, 1.43) 1.3 × 10−2 1.29

(0.94, 1.76) 1.2 × 10−1

glycerol Lipid 1.21
(1.08, 1.36) 1.0 × 10−3 +++ 1.21

(1.02, 1.42) 2.4 × 10−2 1.2
(0.99, 1.45) 6.4 × 10−2 1.28

(0.94, 1.75) 1.2 × 10−1

pseudouridine Nucleotide 1.23
(1.08, 1.39) 1.2 × 10−3 +++ 1.23

(1.04, 1.44) 1.5 × 10−2 1.22
(0.98, 1.53) 7.7 × 10−2 1.27

(0.86, 1.86) 2.3 × 10−1

theophylline Xenobiotics 1.26
(1.17, 1.36) 1.3 × 10−9 +++ 1.25

(1.14, 1.37) 3.1 × 10−6 1.25
(1.09, 1.45) 2.0 × 10−3 1.39

(1.07, 1.81) 1.4 × 10−2

1-methylurate Xenobiotics 1.21
(1.1, 1.33) 1.3 × 10−4 +++ 1.22

(1.07, 1.4) 3.7 × 10−3 1.23
(1.06, 1.44) 7.6 × 10−3 1.04

(0.75, 1.43) 8.3 × 10−1

* Metabolites measured in all three populations were shown in this table. All metabolites associations with COPD were shown in Supplementary Table S7. + Odds ratio: difference in
COPD odds per SD change in the metabolite levels. ** Direction of effect: the first, second and third +, or − refers to the direction of effect in ARIC African ancestry, ARIC European
ancestry and KORA.
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2.5. Consistency of Associations

Directions of effect were extremely consistent across the three datasets for metabolites that were
statistically significant in the meta-analysis. Across all associations at FDR < 0.05 for FEV1, FVC or
FEV1/FVC, only a very small proportion of associations have directions of effect that do not match
for all three datasets with the meta-analysis result (14 for FEV1, 10 for FVC and 0 for FEV1/FVC);
the majority of the apparently discordant results are in the smallest dataset, KORA (Table S8). For
COPD all 3 discordant results are again from KORA which contributed only 9% of COPD cases
(Table S8). As expected, for all instances where the direction is flipped, the estimate is very imprecise
with P-values ranging between 0.16 and 0.99 and a mean of 0.66 (Table S8). Significant results in the
meta-analysis reflect that the fact that larger, more precisely estimated effects in a consistent direction
in the other studies are not negated by a low precision estimate in the other direction. Results were also
consistent between African and European ancestry populations. We did not identify any metabolites
significantly related in the meta-analysis to any of the four traits (FDR < 0.05) where there was even a
nominally significant association (uncorrected P < 0.05) in African-Americans where the effect estimate
was in the opposite direction.

3. Discussion

By combining data from over 4700 individuals across two population-based studies, encompassing
both African-American and European ancestry, we identified numerous metabolites related to
quantitative pulmonary function measures. Individual metabolites related to FEV1 or FVC
highlighted four enriched pathways that collectively reflect associations with amino acids and their
gamma-glutamyl derivatives.

There have been various studies of circulating metabolomic profiles in relation to pulmonary
function or COPD, predominantly in individuals selected in clinical setting for COPD phenotypes,
including exacerbations [18,28,34–36]. Most included fewer than 100 individuals with COPD and
several included less than 20. In clinically selected samples, it can be difficult to enroll a suitable
control group truly representative of the population that gave rise to those cases. Given the large
number of metabolites examined and the limited sample size of most studies, correction for multiple
testing for individual metabolites was often not possible, making replication difficult. Circulating
biomarkers of early COPD have been lacking and could be useful in development of interventions to
limit disease progression. Examination of variations in circulating metabolites related to pulmonary
function in the general population hold the potential to develop circulating markers of early stages
of COPD pathogenesis that predate diagnostic reductions in pulmonary function [31]. However,
studies of metabolomics profiles and quantitative pulmonary function traits across the general
population are scarce. Our findings generally reflect associations across the normal range of these
parameters, as they were largely similar when deleting individuals with COPD, despite the resulting
smaller sample size and attenuation of the range of pulmonary function. A previous study by
Menni et al. [32] with wide coverage (280 metabolites) in a population-based cohort of twins in
the UK, identified at Bonferroni significance, 18 metabolites related to FEV1 and 10 related to
FVC. From the combined list of 21 metabolites identified for either trait, we replicate 11 in our
meta-analysis at FDR < 0.05 (3-phenylpropionate, asparagine, gamma-glutamylvaline, glycerate,
glycine, indolepropionate, N-acetylglycine, pseudouridine, scyllo-inositol, succinylcarnitine, and
threonate) and an additional three at nominal significance (serine, proline and glutamate). Four of
their 21 metabolites were not included in our meta-analysis (butylcarnitine, C-glycosyltryptophan,
CMPF-3-carboxy-4-methyl-5-propyl-2-furanpropanoate and pyroxidate). Three metabolites identified
by Menni et al. did not replicate in our data (alpha-tocopherol, benzoate and bilirubin(ZZ)). However,
gamma-tocopherol, which is tightly inversely correlated with alpha-tocopherol [37] and also strongly
influenced by supplement use, was associated with FVC at FDR < 0.05 in the corresponding opposite
direction from their alpha-tocopherol association. In addition, biliverdin, which, like bilirubin, is a
product of heme breakdown, was related to both FEV1 and FVC at FDR < 0.05 in the same direction as
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their bilirubin association. Thus, our data provide very substantial replication of the population-based
cohort findings of Menni et al. [32]. In addition to replication of previous findings, our meta-analysis
identified many novel associations not reported by Menni et al. [32]. We identified at Bonferroni
significance, 30 novel associations for FEV1 and 37 for FVC, including 22 that overlap (Table S3).
At FDR < 0.05, we identified 111 novel metabolites related to either FEV1 or FVC (included in Tables S2
and S3). The effect sizes we observed for metabolites are not trivial in the context of the natural history
of pulmonary function traits. Once maximum lung growth has been achieved, between 20–30 years of
age, FEV1 and FVC inexorably decline with age. The mean effect size across significant associations,
per SD difference in metabolite, of 25.8 mL, is greater than the estimated average decline in lung
function among health nonsmoking adults of 18–20 mL per year [38]. It is also larger than the 10 year
impact on FEV1 of exposure to secondhand tobacco smoke, estimated at 15 mL [39]. Modest differences
can be meaningful because lower FEV1 and FVC at a given age increases the risk of declining below
threshold levels diagnostic of COPD and lower lung function, even within the normal range is related
to increased mortality, independently of other risk factors.

For FEV1/FVC, we identified far fewer associations than for either FEV1 or FVC. Identification
of many more metabolites associated with FEV1 or FVC than FEV1/FVC suggests that our findings
reflect coordinate effects on either preservation or deterioration in lung size as opposed to airflow
obstruction. Metabolites significantly associated with FEV1 substantially overlapped with those for
FVC with matching direction and similar magnitudes of effects. Accordingly, for the ratio of FEV1 to
FVC, these associations generally canceled out. Although we identified many metabolites associated
with FEV1 and FVC, speculation regarding mechanisms for most of these associations is difficult
because the determinants of variation between individuals in the general population are not known
for most metabolites. Experimental studies with manipulation of diet, physical activity, and other
lifestyle factors in humans and animal models will be needed to gain a full understanding of normal
inter-individual variation.

Among the interesting novel associations with FEV1 and/or FVC in our study is a
cluster of metabolites previously associated with metabolic health. This cluster—containing the
branched-chain amino acids (BCAA: isoleucine, leucine and valine), BCAA metabolic byproducts
(2-methylbutyrylcarnitine, 3-hydroxyisobutyrate), aromatic amino acids (tyrosine, phenylalanine),
glycine and glutamate/glutamine—was initially described as a metabolic signature in obese
individuals that correlates with insulin resistance [40]. Subsequent studies demonstrated that this
metabolic signature is prognostic for incident type 2 diabetes and predicts response to weight loss
interventions [41–44]. Notably, the overrepresented pathways associated with FEV1 and FVC are
enriched with these metabolites, as well. In general, higher BCAA/metabolic byproduct and aromatic
amino acid concentrations, and lower glycine concentrations, reflect worse metabolic health. Thus,
the inverse associations of BCAA/metabolic byproducts and aromatic amino acids, and positive
association of glycine, with FEV1 and FVC, suggest that these metabolites might be reporting on the
metabolic health status of individuals which, in turn, may impact pulmonary function. The glutamyl
amino acids gamma-glutamylglutamine, gamma-glutamylglutamate, gamma-glutamylleucine and
gamma-glutamylvaline were also associated with FEV1 and/or FVC, which likely reflects abundance
of their cognate amino acids. Interestingly, a prior study of serum metabolomics in the ECLIPSE COPD
cohort showed a decrease, rather than increase, in BCAA/metabolic byproducts in individuals with
GOLD stage IV COPD compared with control individuals [36]. No association was seen with less
severe COPD and similar findings have been seen in smaller clinically selected COPD studies [30,45].
In ECLIPSE, circulating glutamine, which largely reflects muscle turnover, was higher in COPD patients
than controls [36], whereas in our general population study glutamine was positively associated with
pulmonary function. Glutamine, the most abundant amino acid in the circulation, is a precursor for
synthesis of glutathione, a major endogenous antioxidant, and plays important roles in response to
injury and immune function [46,47]. Because patients with advanced COPD often exhibit reduced
caloric intake, some degree of muscle wasting or frank cachexia, findings for BCAA and glutamine in
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these studies can be ascribed to the generalized state of protein deficiency and/or increased protein
turnover [36].

A recent paper that examined urinary metabolites identified associations with histidine in relation
to FEV1 and FEV1/FVC [48]. Although histidine was measured in our serum samples, we did not
find associations with any of our phenotypes. Low lung function is associated with asthma and forms
the basis for diagnosis of COPD. Thus, one may speculate, that biomarkers associated with low lung
function may also be associated with lung disease. Three of the four major pathways enriched for
both FEV1 and FVC in our analysis, “aminoacyl-tRNA biosynthesis” and “nitrogen metabolism” and
“alanine-aspartate-glutamate metabolism”, were found to be associated with asthma phenotypes in
6–14 year old children [49]. Different carnitine compounds and amino acids, e.g., tyrosine, glutamine,
glycine, asparagine, phenylalanine, leucine, and valine, as well as succinate have been associated with
COPD in clinical studies [25,36] and were also detected in our analysis.

A recent study of 136 individuals from the COPDGene study also found differences in amino acids
and to be related to exacerbations severity and frequency [50]. We are not able to examine exacerbations.
However, the fact that we identified many of these associations in relation to quantitative traits of
FEV1 and FVC, and these associations were not driven by individuals with COPD in our study, and
that COPD in our study was skewed toward less severe disease than COPDGene, suggests that our
findings are not impacted by failure to account for exacerbations.

Identifying subtle metabolic differences related to spirometry in the general population may
shed light on why variation in pulmonary function, even within the normal range, is related to
development of metabolic and cardiovascular disease outcomes [3–6]. Of interest, a recent study
identified alterations in metabolic activity in cardiac tissue related to FEV1/FVC [51]. With respect
to early metabolic changes that may presage COPD, in an experimental model of emphysema in
the mouse, circulating isoleucine and valine were increased very early in the disease process [52]
consistent with the inverse associations we observed for these branched chain amino acids and
pulmonary function parameters in our general population study. Some recent studies have suggested
the importance of sphingolipids and sphinomyelins in subphenotypes of COPD [18,29,45]. As noted,
to be included in the meta-analysis, metabolites had to have measured in at least two of the three
datasets. Because the three datasets were not measured at the same calendar time, the number of
metabolites reported is greater in the newer datasets. No sphingolipids or sphingomyelins were
reported for the KORA, thus our meta-analysis included only two sphingomyelins, both measured in
ARIC: stearoyl sphingomyelin which was inversely associated with FVC in our data (FDR < 0.05) and
palmitoyl sphingomyelin which was not associated with any phenotypes. In a previous study [29],
sphingomyelins were related to emphysema but not to the same phenotypes that we examined in
our study.

Some previous metabolomics studies used data reduction methods such as Principal Component
Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA) to summarize results. These
are generally smaller studies with limited power to reliably estimate associations with individual
metabolites. These methods can be used when reporting results from single studies, but are not suitable
for meta-analysis results. Because these methods are dataset driven, results are not transportable from
one dataset to another. For example, the first principle component (PC1) from a given study is not
necessarily similar to PC1 from another. These methods must be run within a single dataset and do
not accommodate meta-analyzed results and thus could not be used here.

Our study has limitations and strengths. The many metabolites analyzed represent only a
fraction of the whole metabolome. Further, as is commonly done in these analyses, we only included
metabolites with values reported for at least 25% of each population. Measurements were not done
in the three datasets at the same time points. The number of metabolites reported by the laboratory
increased over time. Thus, there are some metabolites that are not available (denoted as NA in tables)
in one dataset or another. Further, it is possible that a given metabolite might meet threshold for
inclusion in one dataset (nonmissing in <25%) but in another dataset perhaps 26% are missing, so it is
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coded as NA in the table. Our meta-analyses further excluded those with measurements only in one
population. Thus, we may have missed many additional metabolites related to our phenotypes. We
are limited in our ability to comprehensively assess how associations compared by ethnicity because
analyses were mostly done in different analytic batches. The cross-sectional measures of lung function
we analyzed reflect both the maximal growth by early adulthood and the rate of decline with age; we
cannot disentangle these two processes. The three population-based samples had, as expected, small
proportions of COPD cases and thus we have much more limited power to find associations with this
disease phenotype compared to the quantitative spirometry traits. However, the number of individuals
with COPD is larger than in most previous studies. We acknowledge that because our studies, like most
general population cohorts, did not have post-bronchodilator measures of pulmonary function, our
COPD definition does not meet GOLD criteria. However, bronchodilator testing for COPD diagnosis,
has been shown to be poorly reproducible, especially in milder disease [53], the majority of COPD
in our population. We also note that major recent studies of trajectories of lung function in COPD
development used pre-bronchodilator measures [54] and large scale genetic studies of COPD have also
defined disease based on pre-bronchodilator measures [55]. COPD in this general population study
was less severe than in previous clinically-selected metabolomic studies. This enhances our ability
to identify potential biomarkers of early disease processes, as opposed to effects of severe disease,
including reduced protein and caloric intake, increased muscle turnover, and cachexia. Our relatively
large population-based cohort samples enabled us to examine associations with metabolomic profiles
across the range seen in the general population, unselected for any diseases. Further, classifying
disease status within larger population-based studies enables comparison to the optimal representative
control population that gave rise to the cases. We also studied populations from two different ancestral
populations: European and African ancestries. Few data are available in non-European populations,
and are able to find some common metabolic signatures for lung function.

In summary, in these two population-based cohorts, that span two continents and two ancestral
populations, we both confirmed a number of previously reported associations with quantitative lung
function traits and identified many novel ones. Many of these are also related to COPD. Patterns
of the identified metabolites overlap with some previously reported for metabolic disorders, traits
that are also associated with reduced lung function. These findings may shed light on mechanisms
of reduction in lung function and its links to metabolic and cardiovascular disease. In addition,
identifying subtle variation in circulating metabolites related to pulmonary function in the general
population may identify circulating biomarkers of the early stages of COPD pathogenesis before
spirometry has reduced to levels diagnostic of disease. Such biomarkers can help discover potential
therapeutic interventions.

4. Material and Methods

4.1. Study Populations

The Atherosclerosis Risk in Communities (ARIC) study is an epidemiological study designed to
investigate the etiology of cardiovascular disease in European and African Americans. ARIC enrolled
15,792 individuals aged 45–64 years from four U.S. communities (Forsyth County, NC; Jackson, MS;
suburbs of Minneapolis, MN; and Washington County, MD) at baseline (1987–1989) [56]. Metabolite
levels were measured in fasting serum samples collected at the baseline examination among a random
sample of African and European Americans. Pulmonary function was measured at this same visit.

The KORA F4 study is a population-based cohort from Augsburg city and the two adjacent
counties in southern Germany (KORA—Cooperative Health Research in the Region of Augsburg).
Between 2006 and 2008, 3080 individuals aged 32 to 81 years participated in KORA F4, the seven-year
follow-up of the KORA S4 survey. Details of the KORA platform and the study design have been
described previously [57,58]. Pulmonary function was measured on a random sample of 1321 subjects
aged 41 to 62 years and metabolite levels were measured in fasting blood samples collected at this visit.
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4.2. Metabolome Measurements

In both studies, metabolites were assayed in serum by Metabolon Inc. (Durham, NC, USA) using
a gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry (GC-MS
and LC-MS)-based metabolomic quantification protocol [59–61] in three different analytic waves, one
wave per cohort (KORA (2009–2010), ARIC African-Americans (2010) and ARIC European-Americans
(2014)). See Methods in Supplementary Materials for additional details.

4.3. Assessment of Pulmonary Function and Covariates

In ARIC, spirometry was conducted with a Collins Survey II water-seal spirometer (Collins
Medical, Inc., Braintree, MA, USA) [62]. In KORA F4, spirometry was measured using a
pneumotachograph-type spirometer (Masterscope PC, CareFusion/VIASYS Healthcare/Erich Jaeger,
Höchberg, Germany). Height and weight were measured at the time of spirometry. Information on
smoking was assessed by questionnaires. For both ARIC and KORA, predicted values were calculated
using reference equations from the Global Lung Function Initiative [63]. COPD was defined using
prebronchodilator spirometry applied to the Global Initiative for Chronic Obstructive Lung Disease
(GOLD) criteria for diagnosis of COPD of at least moderate severity (FEV1 < 80% predicted and
FEV1/FVC < 0.7) [55]. Estimated glomerular filtration rate (eGFRCKD-EPI) was calculated based on
measured creatinine levels [64].

4.4. Human Subjects

ARIC was approved by the Institutional Review Board at the University of Minnesota, Johns
Hopkins University, Wake Forest University, University of North Carolina, University of Texas Health
Sciences Center at Houston, and University of Mississippi Medical Center. KORA was approved
by the Ethics Committee of the Bavarian Medical Association (Bayerische Landesärztekammer) and
the Bavarian commissioner for data protection and privacy (Bayerischer Datenschutzbeauftragter).
Written consent was obtained from all ARIC and KORA study participants.

4.5. Statistical Analyses

In ARIC and KORA, metabolites with values reported for at least 25% of the study participants
were analyzed. Metabolite missing values were imputed with half of the lowest value of the
corresponding metabolite in each study by wave, and were standardized with mean at 0 and standard
deviation at one (Methods in Supplementary Materials). The total number of metabolites included
in the analyses was 721 for ARIC European Americans (measured in 2014), 355 for ARIC African
Americans (measured in 2010) and 266 for KORA (measured 2009–2010). The reason for the differing
number of metabolites in the three datasets is improvement in both instrumentation and the size of the
authentic standard library over time.

We analyzed data from each of the 4742 study participants (1529 ARIC EA, 2354 ARIC AA
and 859 KORA) with metabolite measurements and complete data on lung function and covariates.
Linear regression models were fitted for each standardized metabolite and lung function parameter
separately in each cohort, adjusting for the factors traditionally included in pulmonary function
prediction equations (age, age2, sex, height, height2) [65], weight, smoking status (never, former,
current as two categorical variables), lifetime cigarette pack years, cigarettes currently smoked per day,
and the eGFRCKD-EPI [64]. For the 368 metabolites detected in at least two of the three populations,
study-specific associations with pulmonary outcomes were meta-analyzed using fixed effect inverse
variance weighting [66]. Consequently, metabolites only available in one of the cohorts were excluded
from the analyses. For correction for multiple testing we applied false discovery rate (FDR) of 0.05
using the Benjamini–Hochberg procedure and the stricter Bonferroni corrected p < 1.4 × 10−4 based on
368 tests, which assumes tests are independent. All analyses were performed using R, version 3.4.1 [67].
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For metabolites associated with pulmonary function parameters at FDR < 0.05, we performed
metabolic pathway analysis using MetaboAnalyst 3.0 [68] to examine if a particular pathway was
represented more than expected compared to metabolic pathways based on the Human Metabolome
Database 3.0 [69]. Statistical significance of enriched pathways was assessed by FDR < 0.05 using the
hypergeometric test.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/4/61/s1,
Table S1. Metabolites associated with FEV1 at FDR < 0.05 in fixed effect meta-analysis; Table S2. Metabolites
associated with FVC at FDR < 0.05 in fixed effect meta-analysis; Table S3. Metabolites associated with FEV1
and/or FVC at FDR < 0.05 and their association with COPD; Table S4. Associations between metabolites and
FEV1; Table S5. Associations between metabolites and FVC; Table S6. Associations between metabolites and
FEV1/FVC; Table S7. Associations between metabolites and COPD; Table S8. Metabolites where the direction of
effect differed between the meta-analysis result and the result in a component study.
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