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ABSTRACT
The selectivity for a specific human Carbonic Anhydrase (hCA) isoform is an important property a hCA
inhibitor (CAI) should be endowed with, in order to constitute a valuable therapeutic tool for the treat-
ment of a desired pathology. In this context, we developed a chemoinformatic platform that allows the
analysis of the structure and selectivity profile of known CAIs reported in literature, with the aim of identi-
fying structural motifs connected to ligand selectivity, thus providing useful guidelines for the design of
novel ligands selective for the desired hCA isoform. The platform is able to perform ultrafast structure and
selectivity analyses through ligand fingerprint similarity, with no need of structural information about the
target receptor and ligands’ binding mode. It is easily accessible to the non-expert user through the
implementation of a KNIME Analytic Platform workflow and could be extended to analyze the selectivity
profile of known ligands of different target proteins.
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Introduction

Human Carbonic Anhydrases (CAs) constitute a superfamily of
metalloenzymes characterized by the presence of a zinc (Zn2þ)
ion as prosthetic group, which is necessary for their catalytic activ-
ity. At present, seven different genetic families of CAs have been
widely acknowledged: a-, b-, c-, d-, f-, g- and h-CAs. All these
enzymes catalyze the zinc-mediated reversible hydration of CO2 in
HCO3

– and Hþ, although some secondary catalytic reactions have
been discovered and reported for at least some classes of CAs1.
Among the six genetic CA families, a-CAs are certainly the most
studies enzymes, since they are expressed in humans as in other
mammalians and vertebrates; in particular, 16 different human CA
isoforms have been identified to date: hCA I–IV, hCA Va, hCA Vb
and hCA VI–XV1. These isoforms are characterized by different tis-
sue and subcellular localization and are therefore implied in the
plethora of physiological processes in which the synthesis, trans-
port and homeostasis of carbon dioxide play an important role.
For instance, hCAs are involved in intracellular pH regulation, elec-
trolytes secretion, gluconeogenesis, lipogenesis and bone resorp-
tion. It is thus easy to believe that hCAs are also connected to the
development and progression of numerous pathologies, such as
obesity, epilepsy, glaucoma, osteoporosis and cancer2. Therefore,
small-molecules endowed with inhibitory activity towards specific
hCA isoforms can be used as therapeutic tools for the treatment
of these diseases. In this context, the selectivity of CA inhibitors
(CAIs) for specific hCA isoform is crucial for obtaining the desired
therapeutic effect. hCA II is the most studied hCA isoform due to
its localization in most tissues and organs. Together with other CA
isoforms, hCA II is targeted by clinically used drugs such as aceta-
zolamide, methazolamide and dichlorophenamide, for the

systemic treatment of glaucoma3. However, the widespread distri-
bution of hCA II makes this isoform a common off-target of CAIs
designed to interact with different hCA isoforms. As an example
of the potential therapeutic role of the other CAs, the mitochon-
drial isoform hCA Va is considered a potential target for the treat-
ment of obesity, diabetes and related disease, and various CAIs
with selectivity for this isoform have been designed4. hCA VII is
predominantly present in the central nervous system and thus
selective hCA VII inhibitors can be used for the modulation and
treatment of neuropathic pain5,6. hCA IX was found to be overex-
pressed in many different solid tumors and to be involved in the
development of metastasis, thus selective hCA IX inhibitors repre-
sent promising anticancer agents7,8. Due to the many different
pathological implications they are involved with and their thera-
peutic importance, hCAs constitute a well-studied family of drug
targets within the medicinal chemistry field. This is proved by the
remarkable volume of scientific literature focused on hCAs, count-
ing almost fifteen thousand of research and review articles.
Nevertheless, the interest on hCAs does not appear to be in
decline. On the contrary, the recent studies confirming the poten-
tial of hCA IX and hCA XII as valuable targets for the treatment of
hypoxic tumors spread a renewed interest in the identification of
new and selective CAIs9–13. From one side, the availability of a
large amount of literature data can surely facilitate the design of
novel compounds with both high activity and selectivity for the
desired hCA isoforms. On the other hand, an efficient way to
explore such a wide ensemble of data appears to be necessary to
avoid being overwhelmed by facts and figures, eventually losing
the key information we are actually looking for. For this purpose,
we aimed at developing a chemoinformatic platform that could
allow a rapid and systematic analysis of the publicly available
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structural and biological data relative to CAIs, able to analyze
information about ligand selectivity toward different hCA isoforms
and to derive useful structure-activity relationships for the design
of novel CAIs with selectivity for the desired target hCAs.

Materials and methods

Data collection and preparation

All data related to known hCA inhibitors were retrieved from
PubChem database14; data download and processing were per-
formed using in-house python scripts. Thirteen different hCA iso-
forms were taken into account in this study, namely hCA I–IV, Va,
Vb, VI, VII, IX and XI–XIV. For each hCA isoform, PubChem website
was used to download the list of compounds for which biological
activity data for the corresponding enzyme were stored in the data-
base, thus obtaining thirteen different lists of ligand records. No
bioactivity data relative to small-molecules tested for hCA VIII, X
and XV inhibition were instead found. In each downloaded list,
each ligand record included the corresponding PubChem com-
pound identification code (CID) and assay identification code (AID),
the type of biological assay performed on the ligand and the corre-
sponding experimental activity value expressed as either Ki, IC50, Kd,
Km or EC50, depending on the assay type. For our analyses, only the
ligands associated to a Ki value for the corresponding hCA isoform
were taken into account, while the other ones were filtered out.
Moreover, the compounds were further filtered by retrieving the
PubChem ID code (PMID) associated with their AID and selecting
only ligands whose Ki values were determined in the laboratory of
Prof. Claudiu T. Supuran in order to minimize the biases associated
to the application of different experimental procedures.
Subsequently, for those ligands presenting more than one Ki value
(derived from different experimental assays) for the corresponding
hCA, the different activity values were averaged prior removal of all
potential outliers, thus obtaining a reliable mean Ki value. Finally,
the structures of all ligands in SMILES notation were automatically
downloaded from PubChem database. The thirteen refined datasets
of ligands were then merged into a single spreadsheet containing
the records of all compounds presenting a Ki value for at least one
out of the 13 hCA isoforms considered in this study. Each ligand
record included the CID code and the SMILES string of the com-
pound, together with at least a Ki value. The full list of CAIs was
then imported into Instant JChem15 software and subjected to a
substructure filter in order to select only compounds bearing a sul-
fonamide fragment as zinc binding group (ZBG). With the applica-
tion of this last filter, the final Instant JChem database of hCA
inhibitors, including a total of 2837 ligands, was eventually obtained
to be used for selectivity profile analyses.

Preliminary data analysis

For the hCA IX/hCA II selectivity profile analysis, Instant JChem was
used to select a subset of ligands showing Ki values for both hCA II
and IX, corresponding to 1756 compounds. The software was also
used to calculate the selectivity index (SI) of each ligand, defined as
the ratio between hCA II and hCA IX Ki values. Based on this defin-
ition, a ligand with a 10-fold selectivity for hCA IX over hCA II
would show a SI ¼ 10. Analogously, Instant JChem was used to
select the 1388 ligands with Ki values for both hCA II and XII and to
calculate their SI values (ratio between hCA II and hCA XII Ki values)
to be used for the hCA XII/hCA II selectivity profile analysis, as well
as to select the 1322 compounds with Ki values for hCA II, IX and
XII employed in the double selectivity analysis.

Fingerprint analyses

The generation of ligand fingerprints and the calculation of the
Tanimoto similarity index were performed using the pybel module
of OpenBabel software16. All fingerprints were generated starting
from the SMILES strings of the analyzed ligands. Four different fin-
gerprint types available in OpenBabel were used: FP2, FP3, FP4 and
MACCS fingerprints. FP2 is a path-based fingerprint that indexes lig-
and fragments based on linear segments of 1–7 atoms, while FP3,
FP4 and MACCS fingerprints are based on different sets of SMARTS
patterns, which are used to index ligand fragments. The Tanimoto
similarity index (Ti) was calculated between pairs of ligand finger-
prints as previously reported17, based on the following equation:

Ti ¼ jA \ Bj
jA [ Bj

where A\B is the number of switched-on bits common to the fin-
gerprint strings A and B, while A[B is the sum of them. For each
of the three previously selected subsets of ligands (with the SI val-
ues for hCA II/IX, hCA II/XII and hCA II/IX/XII), in-house python
scripts were used to generate two different N�N matrices con-
taining two different parameters calculated for all possible couples
of elements included in the dataset: (a) the Ti of all possible pairs
of ligand fingerprints and (b) the corresponding Tanimoto dis-
tance (Td, defined as 1 – Ti) of each fingerprint pair. When analyz-
ing the subset of ligands with SI for hCA II/IX, the selectivity ratio
(SR), defined as the ratio between the SI of two ligands expressed
in logarithmic scale, was also calculated for all the corresponding
pairs of compounds.

Hierarchical clustering and cluster analysis

The clustering analysis was performed using the software orange-
canvas18 based on FP2 and MACCS ligand fingerprints. For each
of the three selected subsets of ligands, the compounds were
clustered based on their reciprocal structural similarity, described
by the previously calculated matrix of Td values. The single-link-
age method was used as clustering algorithm. This method is an
agglomerative type of hierarchical clustering that starts consider-
ing each element in a cluster of its own19–21. The clusters are then
sequentially combined into larger ones, until all elements are in
the same cluster. At each step, the two clusters separated by the
shortest distance, corresponding to the distance of the most simi-
lar members of the clusters, are combined. For this analysis, the
clusters were generated using a balanced distance cut-off, setting
a 30% height ratio in the full clustering dendrogram; in this way,
the generated clusters included groups of ligands with maximum
reciprocal Td around 0.2 (and thus maximum reciprocal Ti around
0.8) when FP2 fingerprints were used, while a Td cut-off around
0.1 (Ti around 0.9) was employed with MACCS fingerprints. All
clusters containing at least five compounds were considered for
selectivity analyses. For each retained cluster, the ligands therein
included were classified into three different categories on the
basis of their selectivity index: (a) Lon, ligands with SI > 5 and
thus selective for the on-target (hCA IX or hCA XII); (b) Loff, ligands
with SI < 0.2 and thus selective for the off-target (hCA II); (c) Lns,
ligands with 0.2 < SI < 5 and thus non-selective. Based on this
classification, the selectivity score (Sscore) of each cluster was calcu-
lated as follows:

Sscore ¼ 100
Lon � Loff

Lon þ Loff þ Lns

Therefore, clusters with positive Sscore values would predomin-
antly include ligands with selectivity for the on-target, while
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negative Sscore values indicate clusters mainly populated by com-
pounds with selectivity for the off-target. In the double selectivity
analysis, two different Sscore values relative to hCA II/IX and hCA II/
XII selectivity were calculated for each cluster of ligands.

KNIME workflow implementation

A KNIME workflow22 allowing to perform the whole selectivity
profile analysis in few clicks was implemented. The workflow com-
prised three input nodes, a central meta node performing all cal-
culations required for the analysis and three output nodes for
visualizing the results. A File Reader node was used to import the
full list of hCA ligands previously generated, while two String
Input nodes were employed to select the on-target and the off-
target to be considered in the analysis. Within the meta node,
two initial Row Filter nodes were used to select from the full list
of hCA ligands only those showing Ki values for the desired hCA
isoforms, thus obtaining the proper dataset of compounds to be
analyzed. An RDKit Fingerprint node was used to generate MACCS
fingerprints for the dataset ligands, which were employed for the
calculation of the ligand similarity matrices. Ti and Td values for
all possible fingerprint pairs were calculated using a Distance
Matrix node applying the same formula reported above, while the
hierarchical clustering analysis was performed through two differ-
ent KNIME nodes: a first one generating the clusters and a second
one assigning the cluster labels to the different dataset ligands.
The same clustering algorithm and parameters employed in
orange-canvas were also used in KNIME. The Sscore values relative
to the generated clusters were obtained through a KNIME node
encoding our in-house python scripts that calculate the SI value
associated to each ligand and the Score associated to each cluster,
based on the above reported equation. A further Row Filter node
was then used to select the clusters with Sscore > 70. The final
nodes added at the end of the workflow produced two different
visual outputs: (a) a Render to Image node and an Excel Writer
node were used to generate a spreadsheet including 2D struc-
tures, CID codes and SI values of the ligands included in clusters
with selectivity for the on-target (Sscore > 70), together with the
number of their corresponding cluster; (b) a Marvin View node
was also employed to produce a compound table showing the
ligands grouped within the selective clusters as visualized in
Instant JChem software, which included the 2D structures of the
ligands and the same properties reported in the spreadsheet.

Results and discussion

As a first step in the development of our selectivity analysis plat-
form, we focused on gathering a large amount of bioactivity data
related to hCAs inhibition and the corresponding structures of
small-molecule ligands experimentally tested for hCAs inhibitory
activity. For this purpose, we searched the PubChem database
and retrieved the SMILES strings of all compounds for which the
result of a biological assay on at least a single hCA isoform was
stored. In this way, we created 13 initial targeted datasets of
ligands, each including their structure and bioactivity information
related to a specific enzyme out of the 13 hCA isoforms that were
considered in our analysis: hCA I–IV, Va, Vb, VI, VII, IX and XI–XIV.
These preliminary data sets were then refined in order to obtain
ensembles of compounds with bioactivity data that could be
safely compared to each other, thus limiting the biases associated
to experimental procedures. For this reason, only compounds
whose inhibitory activity for the corresponding hCA isoform was
expressed by a Ki value were retained in the refined datasets,

while ligands associated with activity values expressed through
different metrics were filtered out (see Materials and Methods for
details). The 13 final datasets of CAIs were eventually merged into
a single database to be used for selectivity profile analyses, includ-
ing all compounds presenting a Ki value for at least one out of
the 13 hCA isoforms considered in this study. However, since the
majority of CAIs are characterized by the presence of a sulfona-
mide or sulfonamide-like moiety acting as zinc-binding group
(ZBG), and the most potent CAIs belong to this class of com-
pounds23, we decided to develop and test our platform for select-
ivity analyses considering only ligands presenting a sulfonamide
fragment, which were selected through a substructure search by
Instant JChem software. In this way, we obtained a final database
of 2837 ligands bearing sulfonamide fragments and Ki values for
one or more hCA isoforms. Table 1 shows the number of bioactiv-
ity data available for each of the 13 hCA isoforms considered in
this study, relative to the ligands included in the final database
employed for selectivity analyses.

As a second step in our study, we wanted to assess the possi-
bility of identifying a correlation between the structural similarities
of CAIs and their selectivity for a specific hCA isoform over others
in an automated way, allowing the development of a protocol
exclusively based on ligands’ structures, without taking into
account any kind of information concerning the structure of the
target proteins. Due to the recently emerged interest in hCA IX as
a new potential target for the treatment of hypoxic tumors, we
decided to use hCA IX as a test target for this analysis, while con-
sidering the ubiquitously expressed hCA II as the corresponding
off-target over which the selectivity of compounds would have
been desirable. Therefore, we selected the 1756 ligands showing
Ki values for both hCA IX and hCA II, and we calculated their
selectivity index (SI), defined as the ratio between their Ki values
for hCA II and hCA IX. Subsequently, the structures of these
ligands were translated into fingerprints, which were then com-
pared to one another by calculating the Tanimoto similarity index
(Ti). In this way, it was possible to perform a rapid evaluation of
the reciprocal structural similarity among all 1756 ligands belong-
ing to this subset (see Materials and Methods for details). Such
analysis was performed four times, using four different fingerprint
types: FP2, FP3, FP4 and MACCS. Each of these fingerprints
encoded the structures of the dataset ligands in a different way
and thus different similarities and corresponding Ti values were
obtained for the same ligand pairs. For all possible pairs of ligands
included in the dataset, the Ti values of the corresponding finger-
prints were calculated, together with the selectivity ratio (SR),
defined as the ratio between the SI of two ligands expressed in
logarithmic scale. In this way, we could evaluate the correlation
between ligand similarity in terms of structure (described by the

Table 1. Bioactivities for the different hCA isoforms
relative to the final database ligands.

Target isoform Bioactivity data (Ki)

hCA I 1958
hCA II 2597
hCA III 32
hCA IV 204
hCA Va 171
hCA Vb 130
hCA VI 106
hCA VII 306
hCA IX 1941
hCA XI 7
hCA XII 1531
hCA XII 42
hCA XIV 348
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Ti) and isoform selectivity (described by the SR). A pair of ligands
with a similar selectivity profile (and thus similar SI values) will
show an SR close to zero, while pairs of ligands with different
selectivity profiles (and thus different SI values) will show an SR
far from zero. The results of each similarity analysis were eval-
uated by plotting Ti versus SR values calculated for each ligand
pair within the dataset.

As shown in Figure 1(A), when FP2 fingerprints were used to
describe ligand structures, a considerable correlation between
structural similarity and selectivity profile emerged. In fact, ligands
with low structural similarity (0 < Ti < 0.4) displayed very differ-
ent selectivity profiles for hCA IX and II, showing SR values rang-
ing from �8 to þ8 (corresponding to differences in SI values up
to eight logarithmic units). On the contrary, along with the
increase of structural similarity we observed a corresponding
reduction of the SR range. In particular, most of ligand pairs with
high structural similarity (0.8 < Ti < 1) showed SR values close to
zero, which ranged from �2 to þ2, thus suggesting that similar
ligands (measured with the FP2 fingerprints) show similar selectiv-
ity. A comparable although less marked correlation between lig-
and structural and selectivity similarity was obtained when MACCS
fingerprints were used (Figure 1(B)). Differently, a poor and com-
pletely absent correlation between Ti and SR values for the data-
set ligand pairs were obtained when compound structures
where described by FP4 and FP3 fingerprints, respectively
(Supplementary Figure S1).

This analysis highlighted a correlation between the selectivity
profile of hCA ligands and their structural features, suggesting the
possibility to identify common structural motifs in hCA ligands
that could be associated with their selectivity for a desired hCA
isoform, thus providing useful guidelines for the design of select-
ive CAIs. For this purpose, we clustered the dataset ligands using
orange-canvas software, which performs various methods of hier-
archical clustering based on distance metrics. In this case, we per-
formed a single-linkage clustering of the dataset ligands based on
their structural similarity described as Tanimoto distances. This
analysis was performed considering the Ti values calculated using
both FP2 and MACCS fingerprints; for this reason, we generated
all possible clusters of ligands with high reciprocal Ti values
according to both fingerprint types (see Materials and Methods
for details). The generated clusters were then analyzed based on
the selectivity of the ligands included therein. Initially, the com-
pounds were divided into three different classes based on their SI:
ligands selective for the on-target hCA IX (SI > 5) were defined as

Lon, ligands selective for the off-target hCA II (SI < 0.2) were
defined as Loff, while non-selective ligands (0.2 < SI < 5) were
defined as Lns. Subsequently, a selectivity score (Sscore) ranging
from þ100 to �100 was calculated for each cluster based on the
distribution of Lon, Loff, and Lns compounds therein included (see
Materials and Methods for details). An Sscore value of þ100 would
be obtained for a cluster populated only by Lon ligands, while
clusters including only Loff ligands would show an Sscore value of
�100. Clusters containing Lon and Loff ligands in similar number
and/or including a high number of Lns compounds would show
Sscore values close to zero. Figure 2 shows the distribution of the
Score values calculated for all the different clusters generated for
the dataset ligands using FP2 and MACCS fingerprints.

Both procedures allowed the classification of the dataset
ligands into many different clusters with rather homogenously dis-
tributed values of Sscore. Notably, in both cases a considerable
number of selective clusters, counting up to 41 compounds and
predominantly including either Lon or Loff ligands, were generated.
By visually inspecting the compounds populating these clusters it
was possible to identify structural elements associated with hCA
IX selectivity. Figure 3 shows the common core structure identified
in the most populated highly selective cluster (Sscore ¼ þ100) of
hCA IX ligands identified using MACCS fingerprints. All 41 ligands
included in this cluster share a sulfamate moiety as ZBG and pre-
sent a ureidic fragment connected to it through a phenyl ring. All
these compounds are endowed with high inhibitory activity
against hCA IX, with Ki values ranging from 5 to 100 nM, and an
8 to 80-fold selectivity for hCA IX over hCA II. Compound 1
(Figure 3) represents one of the most potent and selective ligands
of this cluster (Ki for hCA IX ¼ 7 nM, SI ¼ 78). Therefore, it appears
that this particular structural motif would be able to confer the
desired selectivity profile to new potential CAIs designed based
on the same scaffold. Our selectivity profile analysis was also suit-
able for identifying structural motifs shared by promiscuous
ligands, which should be thus avoided in the design of selective
CAIs and taken into account only for the design of ligands target-
ing multiple hCA isoforms (in this case hCA IX and II). A remark-
able example of a completely non-selective cluster (Sscore ¼ 0) is
represented by a small set of ligands with a well-defined structure,
bearing a phenylsulfonamide head and an N-tert-butoxycarbonyl
tail connected by an alkoxy linker. The compounds belonging to
this cluster show double-digit nanomolar Ki values for both hCA
IX and II and completely lack of any selectivity. For instance,

Figure 1. Graphical correlation between the Ti and SR of the possible dataset ligand pairs, using FP2 fingerprints (A) and MACCS fingerprints (B).
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compound 2 (Figure 3) shows Ki values of 58 and 51 nM for hCA
IX and hCA II, respectively.

As a further evaluation of our selectivity profiling platform, we
repeated the whole analysis considering hCA XII as the on-target
and maintaining hCA II as the off-target. For this purpose, we
selected a dataset of 1388 ligands showing Ki values for both hCA
XII and hCA II, we calculated the SI for each compound and

proceeded performing the structural similarity analysis. In this
case, only FP2 and MACCS fingerprints were used to describe the
structures of the dataset ligands and calculate their reciprocal
similarity. The compounds were then partitioned into different
clusters based on the Ti values calculated for all possible ligand
pairs within the dataset, as previously performed, and the so
obtained clusters were again analyzed calculating the correspond-
ing Sscore. The analysis revealed again the presence of highly
selective clusters with an Sscore of þ100 (Supplementary
Figure S2), thus completely populated by Lon ligands (selective for
hCA XII over hCA II). Interestingly, the sulfamate inhibitors
included in the above mentioned cluster of hCA IX selective com-
pounds (Figure 3) were also found to be particularly selective for
hCA XII with respect to hCA II. In fact, most of these ligands
showed single-digit Ki values for hCA XII and a range of SI reach-
ing values above 100. For instance, compound 1 was found to be
the most selective ligand of the cluster, with SI ¼ 273 and a Ki
value for hCA XII inhibition of 2 nM. Another cluster of single-digit
nanomolar inhibitors with good selectivity for hCA XII is shown in
Figure 4. Despite their low molecular weight, these ligands pre-
sent Ki values for hCA XII inhibition around 6 nM and SI values
around 13.5, as observed for compound 3 (Ki ¼ 6.3 nM, SI ¼ 15).

Based on these results, we thought about the possibility of
applying the same procedure to identify ligands selective for
more than one hCA isoform at the same time. For this reason, we
selected the 1322 compounds showing Ki values for both hCA II,
IX and XII, and repeated the whole analysis. In this case, only
MACCS fingerprints were used, since they demonstrated to per-
form better than FP2 for clustering purposes in the previous anal-
yses, generating clusters of ligands with a more defined central
scaffold shared by all compounds. Moreover, for each generated
cluster of compounds, we separately calculated two different
Sscore values relative to hCA II/IX and hCA II/XII selectivity. The
cluster evaluation was then performed based on the analysis of
the two Sscore values. The most interesting clusters were visually
inspected in order to identify common structural motifs already
highlighted in the previous analysis. As expected, the sulfamate
ligands represented by compound 1 (Figure 3) were correctly
identified as double-selective hCA IX/XII compounds and grouped
in a single cluster that showed a double Sscore (the sum of the
two different Sscore values) of þ200. Moreover, the analysis identi-
fied another small cluster of compounds with high double Sscore,
endowed with remarkable activity and selectivity for both hCA IX
and XII; these compounds are characterized by the presence of a
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Figure 3. Representative clusters of selective hCA IX and unselective hCA IX/II ligands. The common scaffolds identified in these clusters are shown, together with a
reference compound.

Figure 2. Classification analysis of the different clusters of dataset ligands gener-
ated using FP2 (A) and MACCS (B) fingerprints.
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trifluoroacetyl group and a Y-shaped structure (Figure 4), as
observed in compound 4 (Ki for hCA IX and XII of 18 nM and
28 nM, respectively; SI for hCA IX and XII of 22.7 and 14.6, respect-
ively). Conversely, the cluster of ligands represented by compound
2 (Figure 2), was found to be totally unselective also for hCA XII
(double Sscore ¼ 0); therefore, these molecules were confirmed to
be promiscuous CAIs. The results of these double selectivity ana-
lysis demonstrated the reliability of our protocol in identifying
ligands with selectivity for multiple hCA isoforms at the
same time.

With the aim of automatizing our protocol for selectivity profile
analyses and make it accessible even to the non-expert user, we
developed a KNIME Analytic Platform workflow combining all the
different steps included in the protocol. The developed workflow,
shown in Figure 5, allows to perform in just few clicks a complete
selectivity analysis such as those herein reported as test cases for
the identification of selective hCA IX or hCA XII ligands. The only
input data that need to be provided by the user is the full list of

CAIs containing the ligands’ identification codes (CIDs), SMILES
strings and Ki values for the different hCA isoforms, as previously
employed, which should be selected from the File Reader node.
Subsequently, it is enough to set the two String Input nodes, spec-
ifying the on-target and off-target that should be considered for
the selectivity profile analysis, and to execute the workflow. All
operations required for the analysis, including fingerprint gener-
ation, hierarchical clustering and calculation of Sscore for the
obtained clusters, are sequentially performed through multiple
KNIME nodes, grouped into a central meta node, as soon as the
workflow is started (see Materials and Methods for details). The
results of the analysis can be checked through two different out-
put tables that are automatically produced at the end of all calcu-
lations: a Microsoft Excel spreadsheet and a MarvinView table that
allows to visualize the results as in Instant JChem software, both
including 2D structures, identification codes and bioactivity infor-
mation for the ligands belonging to clusters with Sscore >70, thus
selective for the on-target.

Conclusions

The selectivity for a desired hCA isoform is a pivotal feature that
must be taken into account when developing novel hCA ligands
with the aim of obtaining valuable therapeutic tools for the treat-
ment of a desired pathology, with low probability of showing
adverse effects due to residual activity against off-target CAs. In
the present study, we developed an efficient protocol that allows
to analyze the selectivity profile of the different CAIs reported in
literature. By using in-house python scripts, we were able to
obtain a comprehensive dataset of CAIs including ligand struc-
tures and bioactivity data for the different hCA isoforms, which
were retrieved from the publicly accessible PubChem database.
The dataset was then used to develop and validate a chemoinfor-
matic platform for selectivity profile analyses exclusively based on
the comparison of ligand fingerprints and bioactivity data, thus
requiring neither information about the structure of the target
proteins nor about the binding mode of the analyzed ligands. Our
platform allows an ultrafast ligand-based analysis that highlights
the presence of structure-selectivity relationships, i.e. the identifi-
cation of common structural motifs shared by ligands endowed
with a similar selectivity profile. In the context of the case studies

Figure 4. Representative clusters of selective hCA XII and double-selective hCA
IX-XII ligands. The common scaffolds identified in these clusters are shown,
together with a reference compound.

Figure 5. KNIME workflow for automatic selectivity profile analyses.
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herein reported, the platform was able to identify specific clusters
of ligands with high activity and selectivity for either hCA IX or
hCA XII over hCA II, as well as compounds with double selectivity
for hCA IX and XII over hCA II, thus providing useful guidelines for
the design of selective inhibitors of the tumor-related hCA iso-
forms. At the same time, the platform highlighted the presence of
completely non-selective clusters of compounds with similar activ-
ities against the three hCA isoforms, thus also demonstrating its
efficacy in identifying useful structural motifs for the potential
design of pan-selective compounds. The developed platform was
implemented as a KNIME workflow, thus allowing an ultrafast
selectivity profile analysis that can be performed in just few clicks
and be even accessible to non-expert users. The platform is
applicable for selectivity profile analyses focused on all types of
ligands and all kinds of protein targets for which a considerable
number of bioactive compounds is available in PubChem data-
base. The platform will be made available to all users as a toolbox
on our research group website: http://www.mmvsl.it.
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