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Abstract

Background: Ciliated ependymal cells line the cerebral ventricles and aqueducts separating the infected CSF from the brain
parenchyma in meningitis.

Principal Findings: Investigation of the interaction of Listeria monocytogenes with cultured rat brain ependymal cells
showed that certain strains reduced the beat frequency of the cilia but all the strains studied significantly reduced the ciliary
beat amplitude (the linear distance travelled by the tip of each cilium per beat cycle).

Conclusion: The presence of the ependyma caused aggregation of some listeria strains and in some cases extracellular
material also was seen in association with bacterial aggregates. These observations were dependent on the expression of
genes required for invasion, intracellular survival and listerial cell to cell spread that are regulated by the transcriptional
activator, positive regulatory factor A (PrfA).
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Introduction

Listeria monocytogenes is a food-borne pathogen that, if ingested,

has the potential to enter the systemic circulation and move from

the blood to penetrate the blood-brain barrier to cause meningitis

and meningoencephalitis, especially in the unborn and newborn

infant [1,2]. The risk of listeriosis is also markedly increased in

immunocompromised patients, such as those with AIDS [3].

In meningitis, bacteria in the cerebrospinal fluid are separated

from the neuronal tissue adjacent to the ventricular system and

aqueducts, by the ependyma. The ependyma is a single,

uninterrupted, layer of ciliated cells that lines the cerebral

ventricles, cerebral aqueducts and the central canal of the spinal

cord. Each ependymal cell has approximately 40 cilia that beat

continuously at a frequency of around 40 Hz, moving the CSF

close to the ventricular wall, in the direction of CSF flow [4]. In

addition, the ependymal cilia are thought to act as a barrier to

pathogen infection of the underlying neuronal tissue [5]. Prior to

the entry of listeria into the cells of the brain the bacteria need to

overcome this mechanical beating of the cilia. Abnormal

movement of the ependymal cilia has been strongly linked to the

development of hydrocephalus [6,7,8].

During meningitis caused by L. monocytogenes, bacteria have been

shown to be present inside ependymal [9] and neuronal [10] cells,

as well as in the cerebrospinal fluid [9,11,12]. However, the details

of L. monocytogenes attachment to ciliated ependymal cells and

subsequent invasion are poorly understood.

The expression of genes required for invasion, intracellular

survival and listerial cell to cell spread is dependent upon a

transcriptional activator known as PrfA (positive regulatory factor

A) [13,14,15]. PrfA was first identified as a regulatory factor

required for listeriolysin-O transcription and has since been shown

to regulate the expression of a large number of bacterial gene

products directly associated with virulence [16]. To date, only 10

of the 2,853 coding sequences of the L. monocytogenes EGDe genome

[17] have been confirmed to be directly regulated by PrfA [18,19].

It is thought that PrfA serves as a switch enabling L. monocytogenes

transition from the outside environment into an animal host [20].

The absolute requirement of PrfA for L. monocytogenes virulence has

been demonstrated, as has the requirement for several genes within

the PrfA regulon [21,22]. Strains with mutations within the PrfA

gene failed to replicate within the cytosol of host cells or failed to

spread into adjacent cells [15,21]. These mutants also were severely

attenuated for virulence in murine models of listeriosis [21].

Materials and Methods

Preparation of bacterial suspensions
Listeria monocytogenes strains used in this study are listed in Table 1.

Listeria were grown in 200 ml tryptose soya broth overnight at
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37uC with shaking at 200 rpm. The bacteria were then

sedimented (4,0006g for 10 min) and re-suspended in 10 ml

medium 199 (Invitrogen, UK) containing 10% v/v glycerol and

stored at 270uC until required. Before use, frozen stocks were

thawed at room temperature. Numbers of viable bacteria were

determined by colony counting on tryptose soya broth agar plates.

For growth of EGDe DprfA and 10403S DprfA, 5 mg/ml

erythromycin was added to the medium. For use, listeria were

diluted to 26108 cfu/ml in tissue culture medium 199.

Ependymal cell culture
The research using new born rat brains was conducted

according to national guidelines under the UK, Animals (Scientific

Procedures) Act 1986 and all animals were born in the University

of Leicester Biomedical Sciences Unit. The research on the ex-vivo

tissue was approved by the University of Leicester ethics

committee.

An adaptation of a previously described method [23] was used to

grow the ependymal cells. Eight-well rectangular (25635 mm)

tissue culture trays (Fisher, UK) were coated with bovine fibronectin

(35 mg/cm2) and were incubated at 37uC in 5% CO2 for 2 hours

before use. Following cervical dislocation, the brains of newborn (1

to 2 day old) Wistar rats were removed. The cerebellum was

removed, as were small (3 mm) edge regions of the frontal cortex

and the left and right cortical hemispheres. The remaining brain

regions (containing ependymal cells and ventricles) were mechan-

ically dissociated in 2 ml of tissue culture medium 199 [24].

Dissociated tissue from each brain was seeded (500 ml/well) into the

wells of 25635 mm tissue culture trays; each well contained 2 ml of

medium. The medium was serum-free minimum essential medium

(Gibco Life Technologies, Paisley, UK) containing penicillin

(100 IU/ml), streptomycin (100 mg/ml), fungizone (2.5 mg/ml),

bovine serum albumin (5 mg/ml), insulin (5 mg/ml), transferrin

(10 mg/ml), selenium (5 mg/ml) (Invitrogen, UK) and from day 3

onward, thrombin (0.5 IU/ml) (Sigma-Aldrich, UK) [24]. The

medium was replaced on day 3 after seeding. Thereafter, the

adherent ependymal cells were fed by the replacement of 2 ml of

medium, three times a week [24]. The ependymal cells grew as

colonies within the wells and the beating cilia were used to identify

them at day 5. The ciliated cells were used for experiments when

cells were around two weeks old [23]. The number of cells in each

well varied between 1000–10000 cells. The experiments were done

in 8.58 cm2 wells in 2 ml of media containing 18 cfu/ml, and if we

correct for volume above the cells for an average cell colony surface

area (4800 cells, each 10 mm in diameter, ,0.48 mm262.3 mm

height of media above the colony = 1.1 mm3). The total volume

added was 12.6 mm3, therefore, the cells will be in contact with

28 cfu/(12.6/1.1)/4800 approximately equal to 3654 bacteria per

cell. Before use the MEM medium was completely removed from

each well and the cells were washed 5 times with PBS and 1 ml of

medium 199 was added to each well. For infection, 1 ml of L.

monocytogenes suspension was added, to give a final concentration of

16108 cfu/ml.

Measurement of ciliary beat frequency
Ciliary beat frequency was measured as previously described

[24,25]. Briefly, trays of ependymal cells were placed in a

humidified (80 to 90% humidity) thermostatically controlled

(37uC) incubation chamber on a light microscope stage (Diphot;

Nikon). All measurements were taken with the solution temper-

ature between 36.5 and 37.5uC and the pH between 7.35 and

7.45. Beating cilia were recorded (32x objective) using a

troubleshooter 1000 high speed video camera (Lake Image

Systems Ltd, UK) at 500 frames per second. All video files were

created using the AVI video format. For viewing the AVI

files MiDAS 4.0 player software (http://www.xcitex.com/html/

downloads.php) was used. Video sequences were played back

either at reduced frame rates or frame by frame and ciliary beat

frequency was determined by timing a pre-selected number of

individual ciliary beat cycles. At each time point, measurements of

twenty individual cilia from the same colony of cells were made

and averaged. This was repeated in 5–11 independent experi-

ments (i.e. A total of 100–220 CBF readings were made).

Measurement of ciliary beat amplitude
Cilia were viewed using an inverted microscope (Diphot; Nikon,

UK). High-speed video recordings were made, as described above,

to measure ciliary beat frequency. Slow motion playback of the

high-speed video recordings enabled us to visualise the cilia tips.

We were then able to determine the maximum forwards

movement of the cilia and the maximum backwards movement

of the cilia tips. The distance travelled between these two points

was measured on the display screen and defined as the ciliary beat

amplitude.

For each experiment, five different regions (62.5 mm6140 mm)

of ciliated ependyma were chosen at random and from each area

five measurements of ciliary beat amplitude were made. If listeria

aggregates were seen, five readings were taken from cilia covered

by these aggregates and five readings from cilia outside these areas.

The amplitude of the ciliary beat in the control that was not

exposed to listeria was defined as 100%.

Measurement of bacterial aggregation
Still photographs were obtained from various stages of the

experiment. Each photograph was equivalent to 62.5 mm6
140 mm of the ciliated ependyma. From these photographs, the

perimeter of L. monocytogenes aggregates was determined by image

analysis. The percentage of ciliated tissue covered by listerial

aggregate was determined for each sample.

Scanning electron microscopy
Ependymal cells were fixed with 4% v/v glutaraldehyde in

Sorensen’s buffer (pH 7.4) [24] for 48 hours and then rinsed 3

times in Sorensen’s buffer. The cells were post-fixed in 1% w/v

osmium tetroxide for 1 hour and rinsed in Sorensen’s buffer. The

samples were then dehydrated through a graded ethanol series and

immersed in hexamethyldisilazane (HMDS). The HMDS was

allowed to evaporate, leaving the cells fixed to aluminium scanning

electron microscope stubs. These were then sputter-coated with

gold prior to examination [24].

Statistical analysis
All data are expressed as the mean 6 standard deviation of 5 to

11 independent experiments. Data were analysed by one way

Table 1. Listeria monocytogenes strains.

Strain Description Reference

10403S L. monocytogenes wild-type strain [22]

C52 L. monocytogenes wild-type strain [40]

EGDe L. monocytogenes wild-type strain [41]

10403SDprfA prfA gene disrupted by integration of Tn 917 [42]

EGDeDprfA prfA gene disrupted by integration of pAUL51-10 [22]

doi:10.1371/journal.pone.0010450.t001
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analysis of variance (ANOVA), and if significant (p,0.05),

individual comparisons were made using an unpaired Students t-

test. The Bonferroni correction test was used for repeated

measurements.

Results

Interaction of wild type L. monocytogenes and ciliated
ependymal cells

Ependymal cells from newborn Wistar rats were grown in

culture until ciliated (Fig. 1A, 1B and S1) and then were incubated

with wild-type strains of L. monocytogenes for three hours at 37uC.

The behaviour of both the ependymal cilia and the listeria were

altered in these co-cultures but the alterations were dependent on

the strain of L. monocytogenes.

The first strain studied was L. monocytogenes 10403S. In the

presence of ependymal cells the bacteria aggregated and by three

hours about 10% of the surface area of the ependymal cell culture

was covered by listerial aggregates that were attached to the

underlying cilia (Table 2). Scanning electron microscopy revealed

that the vast majority of the 10403S aggregates consisted of

bacteria within an extracellular material (Fig. 1C). However,

occasional aggregates of bacteria associated with cilia but without

extracellular material were also revealed (Fig. 1D).

At three hours post-infection there was no significant difference

(P.0.05) in the ciliary beat frequency of cells incubated with

10403S and the control (incubated in medium alone; Table 2,

Video S2). However, the amplitude of the beating cilia covered by

bacterial aggregates was markedly reduced (36% of the control

value, P,0.001, Table 3). The ciliary beat amplitude of cilia not

covered by bacterial aggregates was also reduced compared to

control but to a much lesser extent (88% of the control value,

P,0.001, Table 3). To determine if listerial cell free extract effects

the cilia, lysates of 10403S (108 cfu) were prepared by the addition

of antibiotic (penicillin, ampicillin or gentamicin), these were

added to the ependymal cilia, and over 3 hours had no effect on

CBF and beat pattern (data not shown).

To investigate if the findings with L. monocytogenes strain 10403S

were strain specific; the study was repeated with two other wild-

type strains of L. monocytogenes, C52 and EGDe. After three hours

incubation with C52, in contrast to 10403S there was a significant

reduction in ciliary beat frequency (P,0.001, Table 2). The

bacteria were seen to be attached to and moving in time with the

beat of the cilia but no extracellular material or bacterial

aggregates were seen. The amplitude of the cilia after incubation

with C52 was reduced significantly compared to the control (67%

of the control value, P,0.001, Table 3).

After three hours incubation with EGDe, there was no decrease

in ciliary beat frequency compared to the control (Table 2, Video

S1). Incubation with the EGDe strain initially resulted in long

chains of bacteria attaching to the cilia, moving at the same beat

frequency as the cilia (Video S3). After three hours there were

large areas of bacterial aggregates in an extracellular material

(Video S4). Approximately 61% of the surface area of the

ependymal cell culture was covered by listerial aggregates in

association with extracellular material (Table 2, Fig. 1E and 1F).

The SEM image in Figure 2 shows strands of material between the

wild type EGDe strain. Where aggregates were present, there was

a 64% reduction in ciliary amplitude (P,0.001, Table 3). Where

cilia were not covered by listerial aggregates, the ciliary beat

amplitude was also decreased by 19% (P,0.001, Table 3). The

reduction in ciliary amplitude appeared to be dependent on the

size of the bacterial aggregates. The ciliary amplitude at 3 hours

co-culture was markedly reduced compared to the 2 hour

amplitude, at which time the bacterial aggregates were smaller

(data not shown). From confocal images we occasionally saw

bacteria inside the cells, but the majority of cells were not seen to

be infected (data not shown). With each strain, bacterial aggregates

and extracellular material formed only during contact between the

ependymal cells and the bacteria. No aggregates or extracellular

material were visible after incubation of the bacteria and medium

taken from the ependymal cell cultures.

A role for PrfA
Ciliated ependymal cells were incubated with DprfA mutants of

EGDe and 10403S for three hours at 37uC. The C52 DprfA

mutant was not available. In contrast to the wild-types, no

aggregates or extracellular material were observed with the DprfA

mutants (Table 2). As with the wild-types, the mutants had no

effect on ciliary beat frequency (Table 2). Although there was

significant reduction in ciliary beat amplitude of the cells

incubated with EGDDprfA and 10403SDprfA (P,0.001, Table 3),

the reduction was not significantly different (P.0.05) from the

wild-types (Table 3).

Discussion

In this study we investigated the effect of L. monocytogenes on

ependymal cilia to improve our understanding of the pathophys-

iology of listerial meningitis. Three aspects of the results are

noteworthy: the strain-specific effect of listeria on the ependyma,

the presence of aggregates of listeria on the cilia and the

dissociation of ciliary beat frequency from beat amplitude.

The introduction of high speed digital video imaging has

allowed us to measure the amplitude of beating cilia in an

ependymal culture system and to simultaneously determine their

ciliary beat frequency [26,27]. At a concentration seen in the rat

brain during listerial meningitis [9,11,12], three of the wild-type L.

monocytogenes strains studied were capable of decreasing the ciliary

amplitude. However only strain C52 significantly reduced ciliary

beat frequency. A different strain-specific pattern was seen with

aggregation around cilia, with EGDe showing the greatest

aggregation but no aggregation of C52. Aggregates were most

often seen in the presence of extracellular matrix. The reasons for

these strain differences are not clear. Inter-strain variation in

listeria has been previously reported, for example, in adhesion to

abiotic surfaces [28] and in response to sodium chloride and low

pH [29]. Those results and the data from this study indicate that

caution must be observed when extrapolating from results with a

single strain of L. monocytogenes.

Adherence of pathogens to host cells is pre-requisite for cell

invasion [30,31]. In this study we showed that listeria attached to

ependymal cells but an unexpected observation was the extensive

aggregation of the listeria attached to cilia, but no attachment to

other parts of the ependymal cells. The rapid adhesion of listeria to

ependymal cilia and the marked aggregation of listeria with the

formation of extracellular material may help to explain why CSF

samples taken clinically from patients with listerial meningitis

contain relatively small numbers of listeria. Interaction between

the listeria and cilia is necessary for aggregate formation but direct

interactions between individual bacteria cells also is occurring.

Significantly, aggregates were only found physically attached to

the cilia with no aggregates in the culture medium or in spent

culture medium. Incubation of each bacterial strain and spent

supernatant (supernatant from a previous experiment) did not

result in bacterial aggregate formation, indicating that bacterial

aggregates and extracellular material formed as a result of contact

between the ependymal cells and the bacteria. Although it remains

Listeria Infects Brain Cilia
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to be determined if this material is secreted by the ependymal cells

or the bacteria. It seems that signalling events are occurring,

presumably after initial cilium/listeria attachment, resulting in a

change in the surface phenotype of the bound listeria, which leads

to more bacteria binding. In some instances extracellular material

was visible and where present it may contribute to the formation of

the aggregate but this material is not a prerequisite for aggregation

because aggregates are found in the absence of this material. The

formation of these bacterial aggregates may benefit the listeria by

stabilising contact with the ependyma and by slowing CSF

Figure 1. Scanning electron microscope images of Listeria on ciliated ependymal cells. (A) low magnification of rat ciliated ependymal
cells in vitro. Scale bar represents 70 mm, (B) high magnification of a rat ciliated ependymal cell in vitro. Scale bar represents 5 mm, (C) L.
monocytogenes strain 10403S on ciliated ependymal cell. The arrow shows areas of extracellular material. Scale bar represents 4 mm, (D) L.
monocytogenes strain 10403S aggregate (arrow) on ciliated ependymal cells. No extracellular material is visible. Scale bar represents 2 mm, (E)
presence of a thick layer of extracellular material on ciliated ependymal cells after incubation with L. monocytogenes strain EGDe. The arrow is
pointing to an area with extracellular material. Scale bar represents 5 mm, (F) L. monocytogenes EGDe aggregate in the presence of extracellular
material. The arrow is pointing to an area of extracellular material. Scale bar represents 5 mm.
doi:10.1371/journal.pone.0010450.g001
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movement through interference with ciliary functioning, thereby

facilitating invasion and decreasing clearance by CSF movement.

Interestingly, we observed a dissociation of ciliary beat

frequency from beat amplitude, in that amplitude could be

reduced without an effect on frequency. To our knowledge such

dissociation has not been reported before. Therefore, in order to

determine effects on overall ciliary function, measurement of

ciliary beat frequency and pattern should be used. For cilia

associated with listerial aggregates, a ‘drag’ effect due to the

attached aggregates is likely to contribute to decreased amplitude.

However, in the case of C52 no aggregates were formed thus a

‘non-mechanical’ mechanism is possible. It is also possible that the

viscosity of the medium surrounding the cilia is increased.

However, these points do not explain the maintenance of beat

frequency. Indeed, one may expect an increase in frequency if

amplitude was reduced. An unchanged frequency of the beat

stroke, even when the distance travelled (amplitude) decreases,

suggests there is a fixed timing of intra-cilium events between

ciliary strokes. Future investigations are required to decipher these

mechanisms. However, before we can deduce any pneumococcal

mechanism of interference, what can be said is that the successful

invasion of ependymal cells by listeria does not appear to play a

role in this, because the majority of cells were not infected during

the 3 hour time course of this study.

We recently studied the effect of viscosity on ependymal cells

[32] and found an increase in viscous loading was followed by a

rapid decrease in the frequency of ependymal cilia to a level that

was maintained while the increased viscous load was present. The

ciliary beat amplitude was not affected with low viscous loads (1–

40 cP) but was reduced at higher viscosities (60 cP). These results

are similar to the effects of increasing viscosity respiratory and

oviductal ciliary beat frequency [33]. Johnson and colleagues [33]

found no significant reduction in beat amplitude over a viscosity

range of 1–150 cP. Of interest they found that at levels above

180 cP ciliary activity became very unpredictable. Cilia either

stopped beating, just slowed down or seemed to beat more quickly

with a short amplitude. Insight into the mechanism of autoreg-

ulation of ciliary beat frequency following exposure to changes in

viscosity was provided by Andrade and colleagues [34]. They

found that changes in mucous viscosity activate vanilloid 4-like

(TRPV4) channels that elevate intracellular Ca+2. They also found

channel opening requires the activity of phospholipase A2. This

occurs at high viscous loads allowing cilia to adapt to a wide range

of viscosities.

Bacterial pathogens, including L. monocytogenes, are known to

form structured populations of microorganisms, adhered and

embedded in an extracellular matrix consisting mainly of

exopolysaccharides (biofilms) [35]. It is thought that these biofilm

structures protect the bacteria from host immune responses, as

well as antimicrobials [36]. Bacterial biofilms have been shown to

occur in a sequential process generally involving, 1) initial

attachment of individual cells to the surface 2) formation of

aggregates 3) further cell proliferation and biofilm maturation with

polysaccharide formation [37]. It is possible that the aggregates

seen in this study are due to the same processes that are important

Table 2. Ependymal ciliary beat frequency and percentage of
tissue covered with bacterial aggregates in the presence of
extracellular material.

L. monocytogenes
strain

ciliary beat
frequency (Hz)

% of tissue covered by bacterial
aggregates in the presence of
extracellular material

Control 4162 060

10403S 4465 1163b

C52 1662a 060

EGDe 4665 62610c

10403SDprfA 4264 060

EGDeDprfA 4365 060

Rat ciliated ependymal cells incubated with L. monocytogenes strains in vitro. At
3 hours post-infection ciliary beat frequency was measured. Data are the mean
6 standard deviation of 5 to 11 experiments (taken from a total of 100–220 CBF
readings).
aSignificantly different from the control (non-infected ependymal cells) p,0.05.
bSignificant difference from the C52 (p,0.05) or wild type EGDe (p,0.001) and
cindicates significant difference from 10403S and C52 (P,0.001).
doi:10.1371/journal.pone.0010450.t002

Table 3. Ependymal ciliary beat amplitude inside and outside
the listerial aggregates.

L. monocytogenes
strain

ciliary beat amplitude a

outside the listerial
aggregates

ciliary beat amplitude a

inside the listerial
aggregates

Control 10060 NLA

10403S 8866b 3664b

C52 6764b NLA

EGDe 8166b 3663b

10403SDprfA 8066b NLA

EGDeDprfA 7762b NLA

Data are the mean 6 standard deviation of 4 to 5 experiments.
aCiliary beat amplitude is the percentage of the amplitude in the absence of
bacteria.

bSignificantly different from the control ciliary beat amplitude outside the
listerial aggregates. There were no significant differences in the ciliary beat
amplitude outside the listerial aggregates in the presence of all listeria strains.
NLA: no listerial aggregates.

doi:10.1371/journal.pone.0010450.t003

Figure 2. Scanning electron microscope image of listeria and
extracellular material. L. monocytogenes strain 10403S was embed-
ded within the extracellular material. The arrow is pointing to a strand
of extracellular material between the bacteria. Scale bar represents
1 mm.
doi:10.1371/journal.pone.0010450.g002
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for biofilm formation. The observation that the formation of

aggregates and extracellular material was abolished in DprfA

mutant indicates that genes within the regulon of the central

virulence regulator, PrfA, are involved. To our knowledge there

are no PrfA regulatory genes that have been shown to be involved

in aggregate formation. The inhibition of ciliary beat frequency by

C52, a strain in which PrfA is in a constitutively activated state

[38,39], also indicates that expression of the PrfA regulon prior to

exposure to the ependymal cells affects ciliary functioning. The

absolute requirement of PrfA for L. monocytogenes virulence has been

demonstrated before, as has the requirement for several genes

within the PrfA regulon [21,22], but the explanation of how the

regulon determines the effects reported here remains to be

determined.

Our future studies will focus on elucidation of the molecular

determinants of the events reported.

Supporting Information

Video S1 Rat brain ciliated ependymal cells after incubation in

tissue culture medium 199 for three hours (negative control). A

slow motion video of beating cilia on ependymal cells. Note the

distance travelled by the tip of each cilium; this is the ciliary

amplitude. For all videos the beating cilia were recorded (32x

objective) using a troubleshooter 1000 high speed video camera

(Lake Image Systems Ltd, UK) at 500 frames per second. Video

sequences were played back at a reduced frame rate. For viewing

the AVI files, MiDAS 4.0 player software should be used (http://

www.xcitex.com/html/downloads.php).

Found at: doi:10.1371/journal.pone.0010450.s001 (4.92 MB AVI)

Video S2 Rat brain ciliated ependymal cells after incubation

with wild type L. monocytogenes strain 10403S for three hours. This

slow motion video shows the listerial aggregates attached to and

moving at the same frequency as the cilia. Compared to the

control, the ciliary amplitude is markedly reduced where

associated with the bacterial aggregates.

Found at: doi:10.1371/journal.pone.0010450.s002 (8.76 MB AVI)

Video S3 Rat brain ciliated ependymal cells after incubation

with wild type L. monocytogenes strain EGDe for two hours. This

slow motion video shows long chains of the EGDe bacterial strain

attached to and moving at the same frequency as the cilia. The

bacteria appear to form a network over the underlying cilia. The

ciliary beat frequency is normal, however the amplitude of the

ciliary beat is reduced compared to the control.

Found at: doi:10.1371/journal.pone.0010450.s003 (10.07 MB

AVI)

Video S4 Rat brain ciliated ependymal cells after incubation

with wild type L. monocytogenes strain EGDe for 3 hours. This slow

motion video shows large areas of bacteria aggregated to

extracellular material and covering the cilia on ependymal cells.

The bacteria are moving at the same frequency as the cilia. The

ciliary beat frequency is normal but the ciliary beat amplitude is

dramatically reduced compared to the control.

Found at: doi:10.1371/journal.pone.0010450.s004 (9.07 MB AVI)
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