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Abstract

The constantly increasing volume and complexity of available biological data requires new methods for their management
and analysis. An important challenge is the integration of information from different sources in order to discover possible
hidden relations between already known data. In this paper we introduce a data mining approach which relates biological
ontologies by mining cross and intra-ontology pairwise generalized association rules. Its advantage is sensitivity to rare
associations, for these are important for biologists. We propose a new class of interestingness measures designed for
hierarchically organized rules. These measures allow one to select the most important rules and to take into account rare
cases. They favor rules with an actual interestingness value that exceeds the expected value. The latter is calculated taking
into account the parent rule. We demonstrate this approach by applying it to the analysis of data from Gene Ontology and
GPCR databases. Our objective is to discover interesting relations between two different ontologies or parts of a single
ontology. The association rules that are thus discovered can provide the user with new knowledge about underlying
biological processes or help improve annotation consistency. The obtained results show that produced rules represent
meaningful and quite reliable associations.
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Introduction

There has been an exponential increase in the volume and

complexity of available biological data, which needs to be

addressed with new methods of data management and analysis.

Due to the fact that ontologies or hierarchies of concepts facilitate

the exploration of information and its storage and understanding,

they have been established as a standard in biology. Many

biomedical ontologies have been developed for different domains.

In the field of genomics the most famous example is the Gene

Ontology (GO)(http://www.geneontology.org/). It provides a

hierarchy of properties and functional categories for millions of

genes and proteins, which are annotated as belonging to one or

more categories (GO terms).

An important challenge of modern data analysis is caused by the

variety of existing interrelated data sources, which all can be used

to describe the same problem. Using different data sources is

especially important in biological applications since a single data

source can often reveal only a certain perspective of the underlying

complex biological mechanism. Furthermore, many single-source-

based approaches have been criticized for their low reliability [1].

In the last years, the bioinformatics community has encountered

the need to integrate information in order to put the data in a

useful context, extracting as much knowledge as possible [2–5].

In this regard, we are interested in discovering relationships

between categories of different biological ontologies or different

parts of a single ontology as in the case of three sub-ontologies of

GO: Cellular Component (CC), Biological Process (BP) and

Molecular Function (MF). While ontologies help scientists

organize massive amounts of information, the problem of relating

them is left open due to the lack of proper methods for knowledge

integration. To solve it, data mining techniques such as association

analysis may help explore dependencies between multiple

ontologies that provide different insights into a certain problem.

The subsequent combination of information can lead to the

discovery of possibly unexpected knowledge.

Initially, association analysis was applied to the search for sets of

elements that frequently co-occur in a transaction database and

establishing relationships between them. A transaction is a set of

items, for example, items purchased together. Co-occurring items

build an Association Rule (AR) of the form X ? Y , where X and

Y are sets of items (X is called the antecedent and Y – the

consequent). The support of a rule corresponds to the frequency of

the co-occurrences of X and Y in the data; the support of an item

set to its frequency. Confidence is the so-called interestingness

measure for ARs and indicates the estimated conditional

probability of Y given X . Traditionally, AR mining consists of

pruning all items with the support below a user-defined minimum

support threshold and subsequent pruning of rules whose

confidence is below a user-defined minimum confidence threshold

[6]. The proper choice of the support and confidence thresholds

can become a challenging problem for the user because it severely

affects the size of the found rule set.

Generally, traditional AR mining algorithms such as, e.g.,

Apriori [7] with the standard support-confidence approach,

generate a huge amount of associations, which are largely

redundant. This is an essential drawback for biological applica-

tions [8,9]. One of the reasons is that support filtering eliminates

low support rules, classifying them as uninteresting. This is due to

the fact that in market basket analysis, it may not be reasonable to

pay attention to the products that are rarely bought together.

PLOS ONE | www.plosone.org 1 January 2014 | Volume 9 | Issue 1 | e84475

 



When investigating biological data, however, we are – in contrast

to the market basket analysis – interested in finding rare

associations that affect only a small set of proteins rather than

frequent ones which often correspond to well-known facts. Inside

this reduced set, the association can be strong and informative

enough for meriting our attention [10] even if it does not meet the

minimum support criterion. A concept of rare cases [11] is

therefore especially useful for those applications where support

filtering would eliminate infrequent but interesting relations. Rare

cases correspond to a meaningful but relatively small subset of the

data. Consequently, a rare AR is defined as a rule connecting

either frequent and rare items or only rare items [12].

To improve the mining of rare ARs, special properties of

interestingness measures with respect to rare items should be taken

into account. Recently, several criteria were defined for selecting

an appropriate interestingness measure for rare ARs [12]. The

most important of them is the null-transaction invariance, which

means that a measure is not affected by the number of null-

transactions, i.e. transactions that contain none of the items of

interest. Moreover, for several well-known measures [13] the lack

of suitability for rare AR mining have been shown there. It was

stated that only Cosine, All-Confidence and Jaccard measures

should be considered for mining rare ARs because they are null-

transaction invariant. However, it can be shown that q, for

example, is not a null-transaction invariant but converges to the

certain value with an increasing number of transactions (see

Supplemental Material S1 for the proof). For this reason, q was

also included in the set of analyzed measures.

Unfortunately, none of the discussed interestingness measures,

which are well-suited for mining rare ARs, can treat hierarchically

organized data in an appropriate manner. In such a case, the

redundancy of ARs is caused to a large extent by the hierarchical

structure itself because the rules in higher hierarchy levels subsume

the rules in deeper levels. Thus, the hierarchy can be naturally

used for removing redundant rules. The approach is partly

implemented in the hierarchical pruning method of [6], which we

later refer to as Generalized Rule Pruning (GRP). Srikant et al.

extended the standard support-confidence framework for hierar-

chical rules also called Generalized Association Rules (GARs) (i.e.

rules that can span different hierarchy levels). Srikant et al. also

proposed pruning more specialized rules deeper in the hierarchy

unless they differ significantly from their ancestor rules as

measured by calculating expected values for support and

confidence. This enables significant reduction of the found rule

set as compared with standard AR mining in the presence of a

hierarchy. However, GRP has been initially developed for market

basket analysis and therefore it cannot address the specificity of

bioinformatics problems where the associations of interest are

sparse and rare. In this manner, the root nodes of a hierarchy, for

example, are always considered by GRP as interesting. This is an

essential drawback in respect to GO. Additionally, it uses the

confidence measure, which is inappropriate for mining rare rules.

Our goal was therefore to overcome these limitations by

developing special interesting measures, which can rank rare rules

higher if they are interesting in terms of hierarchy. The proposed

class of Interestingness by Difference achieves this goal. It is based on

calculating expected values in a manner similar to GRP, but is

general enough to be applied also to those measures that are well-

suited for mining rare ARs as well, and not only to support or

confidence. Thus, it can be useful in mining rare and hierarchical

rules. We claim that the proposed approach can be especially

helpful for connecting biological ontologies, because here the aim

is to find interesting rules, which could not otherwise be derived

simply from the hierarchy.

This study was in part presented in our conference paper [14] in

which we published some preliminary results as well as a short

analysis of two datasets, also used here: DBpedia-Yago and

GPCR-GO (the latter with different preprocessing than here). In

this paper, however, we focus on the problem of mining rare rules

and examine the results in more detail. Moreover, we apply our

method to an additional dataset [15], compare our approach with

two alternative AR mining methods GRP and GRL, and provide

a more comprehensive performance evaluation.

Related work
Despite its popularity in the data mining community, associa-

tion analysis has not yet become an established data analysis tool

in bioinformatics. And yet, rising interest in AR mining has been

noted over the last decade, for example in the analysis of micro-

array data. Several studies have been recently conducted to find

groups of co-expressed genes by means of association analysis as

an alternative to widely used clustering methods [3,8,16–20]. In

this context, ARs can describe relations between expression levels

of genes and certain cellular conditions – which genes are

overexpressed or underexpressed in diseased cells as compared to

healthy ones, for example. The most promising studies integrate a

priori biological knowledge (e.g. metabolic pathways or GO

categories) into the rule mining process with the aim of utilizing as

much available information as possible [3,8].

Association analysis was applied to the problem of finding errors

in electronically assigned functional annotations in large sequence

annotation databases [21,22]. Another interesting application is

the search for predictive combinations of genes in the genotype-

phenotype relationships [23,24]. One of the most recent applica-

tions of association analysis is presented in [9] where classical AR

mining is combined with a novel approach to identify indirect

associations and hidden biological regularities by using semantic-

preserving vocabulary and association networks.

Two tasks that come close to ours are presented in [25] and

[15]. The former applied the standard Apriori algorithm to

connect 238 GO terms (i.e. only a small part of the data) of three

GO branches: Molecular Function (GO-MF), Cellular Compo-

nent (GO-CC) and Biological Process (GO-BP) by cross-ontology

rules. The same task was previously addressed in [26] by three

different approaches: the first one based on similarity in the vector

space, the second one based on the statistical analysis of co-

occurrences of GO terms, while the third also dealt with AR

mining in the standard setting. To the best of our knowledge, the

most recent work in the area of cross-ontology rule mining was

reported in [27,28]. Both approaches were developed explicitly for

mining cross-ontology multi-level association rules between three

GO branches. The first approach uses the bottom-up generaliza-

tion of rules level-by-level and a Monte Carlo simulation for its

termination. It applies the Apriori algorithm at each iteration. The

second one generalizes GO terms to all their ancestors and

requires only a single pass through the Apriori algorithm. A

standard Apriori implementation with support, confidence and

Chi-square thresholds was used in both cases. Additionally, several

pruning criteria, e.g. for cross-ontology or ancestor rules, were

employed for removing closely related, irrelevant or known rules.

More general rules were also pruned unless their confidence

difference as compared to a child rule was greater than 10%.

There was neither reason for the choice of the certain value nor

recommendations for the parameter setting given.

In the study of Faria et al. [15] the GO Relationship Learning

(GRL) algorithm was presented recently in order to find

inconsistent GO annotations. GO-MF annotations were mined

for pairwise ARs connecting single GO terms. GRL differs from

Rare Associations between Biological Ontologies
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the standard AR mining algorithm by a so-called agreement

parameter, which is utilized along with the confidence and is

essentially the same but takes only unique combinations of GO-

terms (so-called MF classes) into account instead of all proteins. It

also applies an additional rule filtering (referred here to as Specific

Structure Pruning (SSP)) to the found rule set. It prunes all rules

where the antecedent and the consequent are connected by four or

less edges, all rules whose items have more than 10 descendants

and all ancestor rules (i.e. it prunes a rule if an ancestor of the

antecedent or the consequent of another rule appears in it). The

drawbacks of this method are the somewhat arbitrary SSP

parameter setting adapted for the special dataset and an additional

user-defined threshold. The choice of parameters can become a

great challenge for the user if GRL is to be applied to another

dataset, even if this is at some future point in time, as GO changes

its structure constantly. This method is especially interesting for

comparison with the proposed approach because it also uses

pairwise ARs, hierarchical pruning and a large dataset. For this

reason it was chosen along with GRP for the experimental

comparison.

To the best of the authors’ knowledge, all of the studies

considered so far are based on the standard AR mining within the

support-confidence framework. None of them search for rare

associations, nor do they exploit alternative interestingness

measures. We fill this gap by using the proposed approach.

Materials and Methods

In this study we propose a novel approach to rare AR mining,

which takes the specificity of bioinformatics problems into

account, in order to cope with the biological ontologies. The

proposed approach is able to solve the following task. We are given

a set of objects oi[O, which are classified into a set of classes given

by multiple ontologies ck
i [CK : O?CK . If an object belongs to a

certain category, it should also belong to all of its ancestors. The

task is to derive pairwise associations between the categories of

different ontologies, i.e. to find out how two categories a[C1 and

b[C2, C1\C2~ 6 0, C1,C25CK are related. A transaction in this

case is represented by an object that belongs to a and b

simultaneously. This task is a frequently found setup in multi-

label classification, when an object can belong to several class

taxonomies [29] at the same time.

In GO, the most specific categories are relatively infrequent in

comparison with their ancestors, however the associations between

the most specific categories could be of significance as the

categories of high levels tend to produce trivial rules. Another

Table 1. Measure List.

Number Measure name Abbreviation Formula Range Ref.

1. Support Sup pab [0,1] [7]

2. Confidence Cnf pab

pa
[0,1] [7]

3. Cosine Cos pabffiffiffiffiffiffiffiffiffi
pa�pb
p [0,1] [12]

4. All-Confidence ACnf min(Cnf (a,b),Cnf (b,a)) [0,1] [12]

5. Kulczynski Kulc pab

2
� ( 1

pa
z 1

pb
) [0,1] [38]

6. Lift Lif pab

pa�pb
[0,?) [43]

7. Bayes Factor BF pab�p�bb

pa�bb�pb
[0,?) [13]

8. Centered
Confidence

CCnf Cnf {pb [21,1) [13]

9. q-coefficient q pab{pa�pbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pa�pb�(p�aa)�(p�bb )
p [0,1] [44]

10. Jaccard Jac pab

pazpb{pab
[0,1] [44]

11. JacDif JacDif Jac � (Jac{JacExp) (21,1] our

12. CosDif CosDif Cos � (Cos{CosExp) (21,1] our

The list of the used interestingness measures and abbreviations. Term pab refers to the fraction of transactions from the whole transaction set where a and b co-
occurred, analogically for pa and pb .
doi:10.1371/journal.pone.0084475.t001

Figure 1. Example hierarchy.
doi:10.1371/journal.pone.0084475.g001
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supporting argument is that the assignment of GO categories is

generally a well-considered process as opposed to the stochastic

process of filling transactions in the market basket analysis. As we

intend to find the most interesting connections between ontologies

and not merely the most frequent and perhaps most obvious, we

investigated all those associations with at least one occurrence. For

a similar reason, multiple-level AR mining [30] cannot be used to

solve our task, because it assumes the manual selection of the

support threshold at each hierarchy level separately. This would

be difficult for the user, on the one hand, and could hide rare but

interesting rules, on the other.

The disadvantage of the methods discussed above is the use of the

confidence measure. It was heavily criticized as being unable to

extract truly interesting rules [31] because of its major drawback -

the inability to detect statistical independence or negative depen-

dence between items [32]. Additionally, the confidence measure

was shown to fail the important criteria for mining rare ARs [12]. As

rare associations are more difficult to detect and use to generalize

from, due to less data, appropriate methods are needed, e.g., special

interestingness measures. For these reasons, we developed a special

class of hierarchical interestingness measures Interestingness by

Difference shown at the bottom of Table 1. In contrast to GRP,

where only expected values (as calculated with respect to a parent

rule in the hierarchy) of support and confidence are used,

hierarchical measures can be based on the expected value of any

interestingness measure with the range of [0,1]. In GRP, the

expectations are defined as a fraction of the Sup (Cnf) of the parent

rule proportional to the child-parent Sup ratio. Although in this

study we adopted this definition of the expectations, Interestingness by

Difference metrics can in principle conform to alternative definitions.

Srikant et al. proposed for GRP to retain only those rules, whose

actual values of Sup (or Cnf) significantly exceed their corresponding

expectations. To achieve this, a user defined threshold was

introduced, bounding GRP to its appropriate setting.

In our method, no threshold is needed when comparing the real

value RM of an interestingness measure M for a rule a?b with the

expected value ExpM . Interestingness by Difference is then defined as:

Dif (a,b)~RM (a,b)(RM (a,b){ExpM (a,b))

If expected values become greater than the real ones, Dif

converts to negative. This happens, for example, when a sibling or

even the parent of a node has a stronger relation to the consequent

of the rule. The Dif approach can be applied to different

interestingness measures, but here we will use only JacDif and

CosDif. The main motivation for this decision is that we are

interested in finding rare association rules, on the one hand, and

the terms which are equally important to each other, on the other

hand. Both aspects are well covered by these both measures.

We calculate the expectations substituting pab with the support

expectation SupExp, as implied by Srikant et al. in their

calculation of confidence expectation. Taking into account a

generalization of a rule on both antecedent and consequent sides,

SupExp can be defined as follows:

SupExp~

1)pa � pb, if a,b[roots

2) pâab � pa
pâa

, if a[roots and b[roots

3) pab̂b � pb
p

, if a[roots and b[roots

4) p
âab̂b
� pa

pâa
� pb

pâa
, otherwise

0
BBBBB@

ð1Þ

where roots is the set of the root nodes of both ontologies and âa
() is the parent of a (b) within the respective hierarchy. Note that

the handling of root nodes is different to by Srikant et al. as we use

the independence assumption here. In contrast, GRP always

defines rules involving the root nodes as interesting. If there are

multiple parents (e.g. the hierarchy is a Directed Acyclic Graph

(DAG)), only the smallest expectation value over all parents is kept.

If only the left side hierarchy is taken into account for simplicity,

Equation 1 reduces to the cases one and two. So, for example, the

expectation of Jac will be, for non-root nodes:

JacExp(a,b)~

pâab�pa
pâa

pazpb{
pâab�pa

pâa

,

In this case, the expectation expresses the Jac value of the child’s

rule a?b which is expected on the basis of the Jac value of the

parent rule âa?b and the distribution of instances between the

parent and the child. The generalization on both sides and its

comparison with the generalization only on the antecedent side we

leave for future work.

To better explain the role of expectations, we can involve the

example presented by Tables 2 and 3, and Figure 1. As one can

see from Rule 3, the SupExp value is higher than the actual Sup

Table 2. Hierarchical Measures Example.

Nr. Rule Support Item Support

1 Clothes [ Hiking Boots 30 Clothes 150

2 Outerwear [ Hiking Boots 20 Outerwear 100

3 Jackets [ Hiking Boots 15 Jackets 90

4 Travel Pants [ Hiking Boots 10 Travel Pants 15

Hiking Boots 30

doi:10.1371/journal.pone.0084475.t002

Table 3. Hierarchical Measures JacDif and SupExp Example.

Nr. Rule Sup SupExp Jac~ pab

pazpb{pab
JacExp~

pâab�pa
pâa

pazpb{pâab�pa
pâa

JacDif

3 Jackets [ Hiking Boots 15
150

20
150
� 90

100
~ 18

150
15

90z30{15
~ 1

7
20� 90

100

90z30{20� 90
100

~ 3
17

{ 4
833

= 20.005

4 Travel Pants [ Hiking
Boots

10
150

20
150
� 15

100
~ 3

150
10

15z30{10
~ 2

7
20� 15

100

15z30{20� 15
100

~ 1
14

3
49

= 0.06

doi:10.1371/journal.pone.0084475.t003
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value and JacExp is greater than Jac. This causes the JacDif
value to be negative. Rule 4 has a higher Jac value than Rule 3

but its JacExp is much lower. Thus, its JacDif achieves a higher

value. Since the expectation is calculated based on the original

assumption that the distribution of transactions between children

and their parent holds with respect to the items of a rule, a higher

actual value points to a stronger correlation than expected. Such

rules are unexpected from the point of view of the hierarchy and

should be ranked higher than the rules like Rule 3.

Data
We first used the dataset DBpedia-Yago from [33] with two

similar ontologies and a set of manually created rules connecting

them (the so-called ground truth set). It is based on the entries of

DBpedia, which were also tagged by Yago’s labels. DBpedia and

Yago are both based on Wikipedia data, but Yago is extended with

other data sources like WordNet and GeoNames and uses the data

differently to construct its ontology. Both ontologies are DAGs. As

a ground truth set was used a partial gold standard mapping

between DBpedia and Yago with 151 links. (http://www.

netestate.de/De/Loesungen/DBpedia-YAGO-Ontology-

Matching, there was 169 rules but only 151 appeared in the data.)

Unfortunately, it covers only a small part of possible true relations

between the ontologies. Our dataset had 271 and 97,680 labels of

DBpedia and Yago, respectively. The total number of instances

(Wikipedia websites) was 159,889. Each instance had the mean

number of labels of 4.4 for DBpedia and of 9.3 for Yago.

The second dataset – G Protein-Coupled Receptor - Gene

Ontology (GPCR-GO) – contained proteins from the GPCRDB

database (http://www.gpcr.org/7tm/) with a tree-like hierarchy.

Each of the proteins was downloaded from the UniProtKB

(http://www.uniprot.org/uniprot/) on October 4th 2013 to check

which GO terms were assigned to it (excluding annotated

electronically, which are denoted as IEA). The IEA terms were

not included in the analysis since we wanted to extract confirmed

GO terms. We separated the GO branches: Biological Process

(GO-BP), Cellular Component (GO-CC), and Molecular Function

(GO-MF) by creating different subsets called GPCR-GO-BP,

GPCR-GO-CC, and GPCR-GO-MF for each of them. Here, only

the results of the latter subset are reported. Note that they deviate

from the previously published results [14] because of different

preprocessing. Only the nodes of the GO hierarchy, which were

actually assigned to the proteins, and their respective ancestor

nodes were analyzed. The maximal depth of GO-MF hierarchy

was ten levels, of GPCR it was only 6. In this dataset, there were

2442 proteins and 407 GO-MF as well as 729 GPCR terms

involved.

The third dataset GO-GO was constructed similarly to that of

[15] in order to compare obtained ARs. However, there were

some small deviations, as we could obtain not exactly the same

support values but only very close ones for the rules listed. We

could reproduce the extraction of rules and their ranking to a large

extent. In this dataset, the GO-MF annotations were gathered

from the UniProtKB for every protein of the database in October

2010. Additionally, we constructed a recent dataset in May 2013

in order to analyze the differences in annotations occurred during

this period, for example, corrected errors. We also gathered the

respective GO structure for the corresponding time frame. Each

annotation was expanded by its ancestors from the GO ontology.

In October 2010, about 6 million proteins had a GO-MF

annotation corresponding to 8892 different GO-MF terms. In

May 2013, there were already more than 19 million proteins with

9568 different GO-MF terms. In this dataset, the proteins with the

IEA assignments were also allowed to be able to compare to and

reproduce the results of [15].

To convert each one of the DAG hierarchies of DBpedia-Yago

into a tree, for every node with multiple parents we created a new

node for each parent, copying the descendants and assuring that

each node had only one parent. In the GO-MF-GPCR and GO-

GO dataset the created tree would be too large, therefore we used

the DAG structure there.

All data were downloaded from the online sources, parsed and

preprocessed with customized python scripts and imported into

Matlab where our own implementation of the Apriori algorithm

with all discussed interesting measures and pruning methods was

applied to the data.

Results and Discussion

The proposed method was experimentally compared with

standard AR mining by several popular interestingness measures

shown in Table 1 as well as with the methods GRP and GRL

(assuming that obtained rules are ranked by Cnf). The measures

sensitive to rare associations were the focus of the comparison. The

ground truth set of the dataset DBpedia-Yago was first exploited

for the performance comparison of the interestingness measures.

Such an approach is often used to validate results [34,35] because

it is typically not known how many and what type of relations

should be discovered. The number of discovered true associations

was employed as an indicator of the measure’s quality. Next, the

proposed hierarchical measures along with GRP and GRL as well

as with four measures well-suited for mining rare ARs were

applied to two bioinformatics datasets.

Table 4. DBpedia-Yago performance results.

Method Cnf Jac Cos ACnf Kulc Lift BF CCnf q GRP GRL JacDif CosDif

Best 151

T-Rules 7 74 73 74 72 5 7 29 73 7 54 73 68

F -1 4.64 49.01 48.34 49.04 47.68 3.31 4.63 19.21 48.34 4.64 35.76 48.34 45.03

Best possible

Rules 609 225 201 208 187 265 447 384 199 591 107 195 221

T-Rules 105 96 89 92 85 10 33 91 89 105 54 90 94

F -1 27.63 51.06 50.57 51.25 50.30 4.81 11.04 34.02 50.85 28.30 41.86 52.02 50.54

DBpedia-Yago: The number of found rules and the number of true rules among them (T-rules), for the first 151 and for the best possible rule set. F -1 is in %. Three best
values are shown in bold.
doi:10.1371/journal.pone.0084475.t004
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Finding the True Connections: DBpedia-Yago
In the first experiment, the performance of the proposed

approach in comparison with different interestingness measures as

well as with GRP and GRL was assessed by the F -1 measure

which is the harmonic mean of precision and recall. Table 4

presents the number of extracted rules, the number of the true

rules among the extracted rules, and also the corresponding F-1

value. In the upper part of the table, only K top ranked rules are

retained, and K is chosen to be equal to the number of the true

rules. The bottom area of the table shows the results of the ‘‘best

possible’’ setting. In this case, the best possible size of a found rule

set with respect to the obtained F -1 value is searched for

iteratively. To this end, all rules are first sorted by their measure

values in descending order, whereupon F -1 is calculated and the

last rule (with the lowest value) is removed from the set. The next

iteration starts with recalculating the F -1 value. Finally, the rule

set with the highest F -1 score is selected.

ACnf, Jac, Cos, q and JacDif had the best three F -1 values in the

first setting. All these interestingness measures are well-suited for

mining rare ARs. Among the others Kulc was the best. In the ‘‘best

possible’’ setting, JacDif, ACnf, and Jac had even better results.

CosDif had slightly lower performance values, but they were higher

than those of the conventional measures Cnf, CCnf, and BF. Lift

had the worst F -1 values in both experiments.

GRP could not improve the result of Cnf for the first 151 rules

(since they have basically the same rule ranking), but it had a

slightly better result in the ‘‘best possible’’ setting. Overall it had

relatively low F -1 values. For the GRL pruning method, we used

its standard setting with the minimum absolute support (the

number of instances is referred in this paper as absolute support,

also called as support count) of 10 co-occurrences, minimum

confidence (min Cnf) of 0.8 and agreement (min Agr) of 0.8.

Additionally, the ancestor rules were removed, leaving only 107

rules. Notice that SSP cannot be entirely applied when connecting

two different ontologies, only the limitation to nodes with less or

equal 10 descendants. The result of GRL was much better than

that produced by Cnf or even GRP, but it was still worse than the

results of other measures.

Figure 2. Sorted true rules by absolute support. The color indicates if it was in the first 151 rules of each metric.
doi:10.1371/journal.pone.0084475.g002

Table 5. Median absolute support of ‘‘best 151 rules’’ the DBpedia-Yago dataset.

Method Cnf Jac Cos ACnf Kulc Lift BF CCnf q JacDif CosDif GRP GRL

found true
rules

53 1202 1204 1193 1202 3 53 1150 1200 942 696.5 53 1030

not found true
rules

635.5 378 359 435 378 635.5 635.5 579 406.5 496 551 635.5 480

all found rules 4 1222 1222 1082 1204 1 4 3 1204 779 547 4 591

Median absolute support of the rules in the setting ‘‘best 151 rules’’.
doi:10.1371/journal.pone.0084475.t005
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To analyze rare rule mining more precisely, we focused on the

support distribution of the true rules found in the first experiment.

Figure 2 shows the true rules found by CosDif and Cos, ranked by

their support values. The main advantage of CosDif over Cos is that

although CosDif found five true rules fewer; it found four more

rules than Cos with an absolute support value below 55 – a strong

evidence for rare rules. Notice that GRL with its default setting

would be unable to find the rules with the absolute support value

below 10. In fact, the lowest absolute support among the true rules

it found was equal to 53. We tried to set the absolute minimum

support in GRL to the unity what led to the discovery of four true

rules (out of 13) with the absolute support values below 10. In this

case the total number of the found true rules increased to 56.

Table 5 shows median absolute support values for all methods in

the first experiment. The median was chosen over the mean

because there was a single true rule with very large absolute

support. In contrast, the relation between the corresponding

median values of JacDif and CosDif was much more balanced. It is

also important to note that the absence of minimum support

filtering was critical for some measures like Cnf and Lift. They

ranked high many uninteresting low-support rules that were

absent in the true rule set, mostly describing a hierarchical

relationship like DB:BadmintonPlayer?YG:player110439851

(rank 4, with 1 instance). Such hierarchical relationships can be

described by pab~pavvpb.

Table 6 shows the number of common rules among the best 500

rules as found by the pairwise comparison of studied methods. The

best 500 rules were taken since lower values had too few samples,

meaning that some of the methods did not intersect at all.

Furthermore, a higher number of rules did not cause any

remarkable change in the relations described. This is valid for

all datasets. One can see from the Table 6 that the maximum

intersection between the rule sets of Cnf and GRP. A large number

of rules was also shared by the pairs from Jac, Cos, ACnf, Kulc, and

q. JacDif and CosDif had 462 common rules, which is even more

than they shared with their conventional counterparts. The fewest

number of intersections with other methods had GRL because of

its SSP resulting in pruning many rules.

The more detailed comparison of the true rules found by JacDif

and Jac among the best 151 can explain the difference in their rule

Table 6. The number of intersections for DBpedia-Yago.

Jac Cos ACnf Kulc Lift BF CCnf q JacDif CosDif GRP GRL

Cnf 211 211 209 207 43 218 451 210 203 188 490 107

Jac 479 472 441 82 144 244 470 459 427 215 71

Cos 451 461 83 145 244 488 453 430 215 71

ACnf 416 83 145 242 445 444 406 213 71

Kulc 97 156 236 465 431 428 211 69

Lift 317 48 94 97 103 42 2

BF 224 156 158 161 217 30

CCnf 244 230 212 456 00

q 458 437 214 71

JacDif 462 206 70

CosDif 191 67

GRP 103

The number of intersections among the best 500 rules extracted by different methods from the DBpedia-Yago dataset.
doi:10.1371/journal.pone.0084475.t006

Table 7. Difference in the true rules sets of Jac and JacDif for the DBpedia-Yago dataset.

Nr. Sup(a,b) Sup(a) Sup(b) DBpedia Yago rank Jac rank JacDif

The true rules found by Jac but not JacDif

1 1847 2521 1847 Planet planet109394007 134 w400,000

2 1974 1997 1984 RadioStation radiostation104044119 27 569

3 1864 1884 1879 River river109411430 30 359

4 1396 1552 1657 Saint saint110546850 126 152

5 2553 3065 3045 School school108276720 145 188

The true rules found by JacDif but not Jac

1 93 149 93 Archaea Archaeagenera 176 151

2 5 8 5 Continent Continents 173 149

3 15 23 15 SpaceStation Spacestations 163 142

4 51 64 60 Valley valley109468604 153 117

The difference in the found true rules of Jac and JacDif among the best 151. Support refers in this table to the absolute support (number of instances: sup*N).
doi:10.1371/journal.pone.0084475.t007
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sets. Table 7 shows the different rules, their support and their

ranking by both metrics. JacDif extracted more rare association

rules since the rules found by it and not by Jac had lower support.

As can be seen, although JacDif found one true rule fewer than Jac,

there were 9 different true rules in total. The rules not discovered

by JacDif typically had a high expectation and were therefore

penalized by the metric. For example, Rule 5 was expected

from the hierarchy due to the parent DB:EducationalInstitution?
YG:educationalinstitution108276342. Indeed, some of the true

rules that can be derived from the hierarchy e. g. DB:Game ?
YG:game100456199 (Jac rank 177, JacDif rank 506) with the

parent DB:Activity ? YG:contest107456188 were ranked by

JacDif lower as uninteresting. In principle, such rules can be

ignored by an expert when reviewing the extracted rules because

they do not deviate from their parents. An important characteristic

of the true rules found by Jac was their high support, which was in

complete contrast to the rules found by JacDif and those not found

by Jac. Thus, JacDif was able to discover more specific rules as

compared with Jac. An example was the rule DB:SpaceSta-

tion?YG:Spacestations ranked 142 by JacDif. This choice seems

to be quite reasonable because the parent of DB:SpaceStation was

DB:MeanOfTransportation and the rule DB:MeanOfTransporta-

tion ? YG:Spacestations would be too general (rank 45,429).

GPCR-GO
In this experiment, there is no ground truth rule set to be

discovered, as the method of connecting the ontologies is not

obvious. The number of rules extracted by each method is depicted

in Table 8. In our analysis we focused mostly on the top 200 rules.

Only the associations between GPCR and GO-MF were examined

in the experiment. The MF branch was chosen in order to narrow

the analysis and because the molecular function is closer to GPCR

hierarchy, which is based on the pharmacological classification of

GPCRs [36]. Nevertheless, connecting both ontologies was a

challenging task because of their different points of view. For

example, GPCR and GO have several entries related to hormones,

but whereas GPCR always connect the term to a protein (group),

like ‘‘hormone protein’’ or ‘‘gonadotropin-releasing hormone’’, the

branch GO-MF has more abstract terms and links them to the

function, not to a certain protein type or group, like: ‘‘regulation of

hormone levels’’, ‘‘juvenile hormone secretion’’, ‘‘hormone trans-

port’’, etc. Moreover, the complete structure of GO-MF (with 10

levels) is more dense connected and deeper than that of GPCR.

Another relevant difficulty with this dataset is that although the

GPCR-families are well annotated – despite the absence of

secondary functions of the sequences – there are several missing,

inconsistent GO-term assignments or the assigned terms are too

broad. This inconsistency is caused primarily by varying GO

knowledge of experts and by the fact that not all proteins were tested

for each possible GO-term.

All discussed issues led to a considerable number of trivial rules

ranked high by all methods. One example of an evident rule was

GPCR: ‘‘Serotonin’’?GO-MF:‘‘serotonin receptor activity’’,

which was not extracted by GRL because of its ancestor removal

(GRL extracted the more specific rule GPCR:‘‘Serotonin

1’’?GO-MF:‘‘serotonin receptor activity’’). JacDif ranked this

rule higher than the other methods. GRP ranked it low (2037th).

The rankings for this and other discussed rules are depicted in

Table 9.

This rule did not cover all proteins that were tagged as

GPCR:‘‘Serotonin’’. There were three proteins not connected to

the GO-MF:‘‘serotonin receptor activity’’: 5HT6R_HUMAN,

Q9W3V5_DROME and Q9VEG1_DROME. We would like to

suggest that this was probably a missing annotation in GO-MF. It

is clear for 5HT6R_HUMAN since this protein is also known as

Serotonin receptor 6 and obtained the corresponding annotation

in April 2013 from IEA:Compara method. This example shows

that it would be useful to examine such strong rules in the context

of why they do not cover all proteins with the antecedent

annotation since this often points to an annotation inconsistency

[15,21]. Thus, our approach could assist GO curators in the

inconsistency detection and the assignment of missing GO terms

to the GPCR proteins.

Our approach could predict several correct GO annotations.

For example, the rule GPCR:‘‘Chemokine receptor-like’’?GO-

MF:‘‘steroid hormone receptor activity’’ was ranked much higher

by CosDif (rank 60) and JacDif (rank 76) than by the others. The

pruning methods ranked it very low: GRP ranked this rule 1230th

and it was not found at all by GRL. There were two proteins that

supported this rule: GPER_RAT and B3G515_DANRE. How-

ever, in total there were three items assigned to GPCR:‘‘Chemo-

kine receptor-like’’. The one missing protein was GPER_HU-

MAN (also known as Q99527). It was not annotated by the GO

term ‘‘steroid hormone receptor activity’’ at the time the data were

gathered nor did it have any other manually curated term. The

only GO-MF term assigned to it at this time was ‘‘G-protein

coupled receptor activity’’ and it was an IEA term. In the version

of October 16th 2013 it obtained the term GO-MF:‘‘estrogen

receptor activity’’, a child of ‘‘steroid hormone receptor activity’’,

by inference from direct assay [37].

Table 8. Median absolute support and the number of intersections for GPCR-GO-MF dataset.

Nr. of Rules Median Sup. Cos ACnf q JacDif CosDif GRP GRL

Jac 8781 5 459 444 450 414 371 11 31

Cos 8781 5 420 487 412 375 13 31

ACnf 8781 6 409 393 342 8 31

q 8781 4 417 379 13 33

JacDif 7879 5 443 12 21

CosDif 7077 4 12 17

GRP 5419 3 49

GRL 511 15

Median absolute support and the number of intersections among the best 500 rules extracted by different methods from the GPCR-GO-MF dataset (for GRL only 32
rules).
doi:10.1371/journal.pone.0084475.t008
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Three measures well-suited for mining rare ARs: Jac, Cos, and

ACnf extracted similar sets of rules as can be seen on the example

of 500 top ranked rules in Table 8. This similarity appears because

in the context of rare items, ACnf and Jac formulas tend to produce

similar results, since if pab~paƒpb[Jac(a,b)~ pab

pazpb{pab
~

pab

pb
~min( pab

pa
, pab

pb
)~ACnf (a,b) where a and b can be exchanged.

This is given in this dataset because of the relatively low number of

proteins involved (with manually curated GO annotations). Cos

and q also had similar sets since Cos(a,b)~ pabffiffiffiffiffiffiffi
papb
p ~

ffiffiffiffi
pa
pffiffiffiffi

pb
p has similar

ordering as q(a,b)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pa�(1{pb)
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pb�(1{pa)
p under the given conditions. The

rule set of q differed a little more from Jac and ACnf mainly

because there is a difference in weighting due to the square root in

the formulas of Cos and q. Also the sets of JacDif and CosDif had

more similarity with each other than with any of the other

methods.

The rule sets extracted by GRP and GRL did not have any

substantial overlap with the other sets. While GRP extracted

mostly rules where the absolute support was equal to 1 (because of

the lack of the minimum support threshold), the other methods

had rules with a higher support as can be seen from the slightly

higher median absolute support (Table 8). GRL could only extract

511 rules that matched its requirements mostly because of

minimum support filtering (only 960 rules in this dataset had

absolute support that was over 10) and because of the agreement

threshold. This can be explained by the inappropriate use of the

parameter values chosen initially for the GO-GO dataset. Thus,

the need for a trial-and-error approach to choosing the parameters

is a clear disadvantage of GRL. Another limitation is its inability to

find rare rules. The median absolute support of GRL was the

highest, indicating that more general rules were extracted. Indeed,

many high ranked rules were connected to the GO term ‘‘receptor

activity’’, which is trivial in this experiment and provides no useful

information. Another group of extracted rules involved the GO

terms with the suffix ‘‘signal transducer activity’’, which was also

high placed in the hierarchy. These rules were extracted even

though the ancestor removal step of GRL was supposed to prune

them, as the lower level rules did not achieve the minimum

agreement or support and were therefore discarded even before

this step could take place.

In contrast, JacDif generally ranked rules higher if they could be

seen as more surprising from the hierarchy. This is illustrated by

the rule GPCR:‘‘Anaphylatoxin’’?GO-MF:‘‘anaphylatoxin re-

ceptor activity’’ ranked 23th as compared with the rule

GPCR:Serotonin?GO-MF:‘‘serotonin receptor activity’’, which

was ranked only 36th. The former rule was ranked higher because

its expectation was equal to 0.03 whereas the actual Jac value was

0.94. The serotonin rule, in turn, had the same Jac value, but its

expectation was much higher (0.14).

In the top 20 rules extracted by JacDif about half of the rules

were also in the top 20 from Jac, Cos, ACnf and q. From these

about half were predicted from the hierarchy and the other half

was high ranked by JacDif. CosDif found four other rules in

comparison to JacDif, but they were high ranked by JacDif. So,

both measures had similar rule sets. GRP had only two rules in

common with JacDif in its 20 top rules. This is rather a coincidence

since there were 1994 rules with Cnf equal unity in the rule set

extracted by GRP, thus all these were ranked as most interesting.

GRL did not have any common rules with JacDif. GRL had also a

high number of highest ranked rules, 412 with Cnf equal one, thus

every comparison using the first 20 top ranked rules would be not

appropriate. Most of these 412 rules found by GRL obeyed the

hierarchical relationship (more than 350 rules sufficed the relation
pb

pa
w50) which is typical for a child-parent relation of ontologies.

Such associations will usually not lead to discovering any new

knowledge since they present obvious facts. This confirms the

merit of using an alternative to Cnf in order to extract rare and

interesting rules.

Table 9. Rule Rankings for GPCR-GO-MF dataset.

Rule Jac Cos ACnf q JacDif CosDif GRP GRL

GPCR:Serotonin?GO-MF:‘‘serotonin receptor activity’’ 42 43 43 43 36 45 2037

GPCR:‘‘Chemokine receptor-like’’?GO-MF:‘‘steroid
hormone receptor activity’’

129 130 142 114 76 60 2421

GPCR:‘‘Anaphylatoxin’’?GO-MF:‘‘anaphylatoxin
receptor activity’’

43 42 42 42 23 19 2035

GPCR:P2RY1? GO-MF:‘‘nucleotide binding’’ 989 1159 970 1128 1329 1780 2553

GPCR:‘‘Trace amine’’? GO-MF:‘‘G-protein coupled
receptor activity’’

3055 2276 3175 2714 7466 6671 485

doi:10.1371/journal.pone.0084475.t009

Figure 3. Number of inconsistent rules. The number of inconsis-
tent rules found in the best x rules extracted by the given metric. The
best x rules were gathered from 20,000 and then ancestors rules were
removed.
doi:10.1371/journal.pone.0084475.g003
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GO-GO
In this experiment we first investigated the AR mining methods’

ability to discover inconsistent rules, i.e. rules that correspond

directly to inconsistent annotations. The second step involved

comparing the quality of the top ranked rules extracted by our

method with the rules from [15]. Further, the annotation data

were gathered in May 2013 and compared with the data from

October 2010.

Inconsistent rules
First of all we were interested in examining how sensitive to

inconsistent annotations is our method as compared with GRL,

GRP, and traditional interestingness measures. Specially because

the goal of GRL was to find inconsistent GO annotations.

However, it should be noted that the aim of our method was

different and we therefore did not expect very good results. To this

end, the table of manually specified inconsistent ‘‘MF classes’’

(Supplemental Material S2) provided by Faria et al. was analyzed

and those containing only two MF terms were converted into the

AR form. We naturally excluded 13 MF classes of the table

denoted by the statement ‘‘no inconsistencies found’’. As a result, a

set of 63 inconsistent rules with pairwise relations was produced.

Next we applied different AR mining methods to search for rules

in the dataset. We compared the rules extracted by Jac, Cos, ACnf,

q, JacDif, CosDif, GRL and GRP. In Fig. 3 the number of

inconsistent rules found among X top ranked rules is depicted. To

select the best rules, the best 10,000 were taken for each method.

Each of these rules was supposed to have occurred at least once;

only one direction was allowed (from two directions a rule can

have, when exchanging antecedent and consequent, only the

higher ranked one was chosen) and SSP was applied. One can see

that until 500 all metrics had almost the same number of

discovered rules (around 8). Afterwards Cos and q discovered more

inconsistent rules than the rest and achieved 26 rules by 1300 total

rules. The Dif based measures did not find as many inconsistent

rules mainly because many of them (18) were expected by the

hierarchy.

The GRL method with the following parameters: min Cnf = 0.8,

min Agr = 0.7, min Sup = 10/N, and SSP, pruned all but 513 rules

from 408,662. There were 25 inconsistent rules among them. This

result is better than the result obtained by the compared

interestingness measures and well as by GRP. This is largely due

to the complex preprocessing, which compensated for the

limitations of Cnf. Indeed, there were about 1,300 rules with the

unity Cnf value and no inconsistent rules among them. So, Cnf

needed many more rules than the other methods to discover its

first inconsistent rule. GRP took almost the same number of rules

to discover its first inconsistent rule as Cnf. The poor discriminancy

of Cnf confirms the argument that it is not an appropriate metric

for solving this task. However, GRL can significantly improve it as

our experiment showed.

Top ranked rules
The analysis of the Table S3 from [15] with the ARs found by

GRL in this dataset demonstrates another problem with Cnf. All of

the 100 top-ranked rules reported there (extracted by Cnf and

sorted by the decreasing Sup) are highly asymmetrical: only eleven

of them show a Cnf in the opposite direction of more than 0.1. This

means that an antecedent is often connected to a very frequent

term – ‘‘ATP binding’’, for example. This behavior is similar to

that of GRL on the previous dataset and may be useful for the

search for inconsistent annotations when a missing term is

supposed. However, in general, there is no clear evidence whether

such asymmetrical rules may be reliably considered as confident

[38]. Furthermore, in such relations the antecedent is connected

only with a part of the consequent that is the feature of a specific-

to-general relationship of an ontology as discussed above.

Although GRL could not detect any rare associations in the first

100 rules, one should note that they were sorted by Sup and are

therefore not directly comparable with the rules of other methods,

which are sorted by their interestingness measures.

To overcome this problem, we analyzed the best 500 rules of

GRL sorted by Cnf in the descending order (Table 10). One can

see that GRL found the rules with a much higher support as

compared with the other methods. Its median absolute support

was 146 (compare with the value of 5 of most of the other

methods). In its 500 rules, only 101 had the absolute support below

20, whereas for JacDif there were 342 such rules. The small

number of intersections between the sets of found rules also shows

that GRL detected different rules as compared with the other

methods. One of the reasons for this is the agreement parameter,

which is designed to identify item sets that often relate to each

other. One of its properties is that it favors more general terms

higher in the hierarchy as they occur frequently. Many small

inconsistencies of the protein annotation can have a considerable

impact on the number of assigned unique GO-term sets to which a

GO-term belongs. This results in the decrease of the agreement

down in the hierarchy. The most common rules were extracted by

Cos and q: their rule sets were almost identical. The rule set of Jac

was also very similar to them, while the rule sets of JacDif and

Table 10. Median absolute support and the number of intersections for GO-MF-GO-MF.

Metric Nr. of rules Median Sup. Cos ACnf q JacDif CosDif GRP GRL

Jac 5445 5 433 436 433 227 206 47 11

Cos 5485 6 379 498 203 230 53 16

ACnf 5518 5 379 197 176 39 10

q 5495 5.5 203 231 53 16

JacDif 5678 5 431 33 14

CosDif 5717 5 38 14

GRP 5688 2 67

GRL 513 146

Median absolute support and the number of intersections between the best 500 rules extracted by different methods from the GO-MF-GO-MF dataset. Nr. of rules refers
to the total number of rules after preprocessing.
doi:10.1371/journal.pone.0084475.t010
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CosDif were very similar to each other, even more similar than to

each of their counterparts.

To analyze the quality of the rules obtained by JacDif more

precisely, we focused on the first 20 of them (Table 11,

Supplemental Material S2). We were able to prove that all 20

rules were true. One can see that our approach did not extract

asymmetrical rules, however it was able to detect rare associations:

all 20 rules have a relatively symmetrical nature and eleven rules

show an absolute support below 10. It seems that they connect

very specific terms and thus are not used frequently. For instance,

the GO terms of Rule 3 are consecutive reactions and therefore

the combination of both activities is reasonable. Furthermore, the

GO terms of Rule 4 ‘‘transport arabinose’’ and ‘‘fucose’’ are both

monosaccharides. Even though the transporter specificity is

normally quite high (one or a few), it is reasonable to assume

that more proteins can transport arabinose and fucose inter-

changeably than annotated so far. Especially since the reference

publication [39] for the co-occurrence of both reports that L-

galactose and D-arabinose can also be transported. Furthermore,

according to a BLAST (blastp) search [40], the gene for L-fucose

transporter is present in many species of bacteria.

Rule 5 was explained in [41]: mGluR4, -7, and -8 are negatively

coupled to adenylate cyclase when expressed in hamster ovary

cells. These mGluRs are also selectively activated by l-serine-O-

phosphate [42]. These studies form the basis for assigning the

items of Rule 5 to GRM7_HUMAN. The glutamate receptor,

metabotropic 7 marker, also appears in 19 other proteins found in

the dataset of 2013. This confirms the high evidence of the rule.

Rules 7 and 8 are trivial, GO:0017045 describes a hormone and

GO:0051430 or GO:0051431 the corresponding receptors (adre-

nocorticotropin is also known as corticotropin). Rule 9 describes

again the consecutive reactions.

The rules in the lower part of the table have much higher

support, since they are mostly IEA based on InterPro rules. For a

detailed analysis see Supplemental Material S3.

We also analyzed the annotation data from May 2013 in order

to examine whether the rules extracted from the data of 2010

could be confirmed by future annotations. Indeed, for most of the

rules the support increased considerably (Table 11). The

differences in the table should not sum up since the numbers

may contain doubles. We used the protein name and not the

accession number, this is relevant in only a few cases. Most of the

first eleven rules have more co-occurrences in 2013 than in 2010

what confirms their biological merit. The support decreased only

for Rules 1, 9 and 16. The antecedent of Rule 1 was declared

obsolete and the new replacement (GO:0071972) also has five co-

occurrences with the consequent of that rule in the data of 2013.

Rule 9 was based on the gene RPE65 of several species. The

antecedent and the consequent of the rule were replaced by their

siblings (GO:0042574[GO:0052884, 5 co-occurrences). Rule 16

had GO:0004486 in the antecedent since this GO term was the

parent of GO:0004488 in 2010 and was assigned to many proteins

supporting the rule. In 2013, the former GO term became just the

sibling of the latter, thus the concerned proteins covered by

GO:0004488 do not support the rule anymore.

The consequent of Rule 12 was removed from IPR003203,

which explains the drop of many proteins from this rule (since the

IEA rule does not apply anymore as before). On the other hand,

the consequent was assigned to many proteins with this antecedent

based on the EC 2.7.7.62 (EC2GO with the base protein

P0AE76), i.e. from another IEA source. The base protein

(Q05599) of IPR003203 also has this consequent (stand of 19th

of August 2013), and is cross-referenced in EC 2.7.7.62. This

explains the total increase of proteins covered by that rule.

Rules 13–15 and 17–20 probably follow the same pattern: some

proteins were removed (deleted from the database) and many new

ones obey the rules. So, one can see that only a few rules

discovered from the data of 2010 do not hold anymore mainly

because of ontology changes. Such ontology changes are common

and provide an additional reason why inconsistency analysis

should be conducted in large datasets.

Comparing the sets of the first 20 best rules of the other

methods to those of JacDif, the sets extracted by the metrics were

relatively similar. ACnf differed by only three rules, Jac, Cos and q
by four. As before JacDif favors rules that are unexpected in terms

of the hierarchy, therefore this is where the difference tends to lie

between the sets of the metrics. The sets extracted by the methods

GRP and GRL were totally different in comparison with what was

extracted by JacDif. Again, the best rules extracted by the methods

GRL and GRP had a specific to general character, but there were

many rules with Cnf that equaled the unity value (for GRP 1214

and for GRL 177). The metrics tried to find rules where

pab&pa&pb therefore they were better at discriminating, i.e.

there were not many rules with the highest score.

Conclusion

In this paper we examined relating multiple biological

ontologies by association analysis. Associations found between

classes of different ontologies can be used to support existing

knowledge or to extract new knowledge with the aim of better

understanding biological mechanisms. We focused on mining rare

associations which are very important for the biological under-

standing of the data as they describe relations that are not obvious

and difficult to find. To this end, a new class of interestingness

measures – Interestingness by Difference – was especially developed for

hierarchically organized rules. These measures favor rules with a

large difference between their actual and expected interestingness

values. The expectation is calculated taking into account the

parent rule. So, the rules that are unexpected from the hierarchy

can be ranked higher even if they are rare.

The proposed approach was applied to three real-world

datasets, two of which are from the bioinformatics domain. The

approach was first compared with several conventional interest-

ingness measures, with measures well-suited for mining rare rules

as well as with two hierarchical pruning methods GRP and GRL

on the dataset with the underlying ground truth rule set. The

results showed that the proposed approach was able to extract

more true rules than the other methods.

The analysis of rules obtained for the GPCR-GO and GO-GO

datasets showed that redundant hierarchical rules were pruned

and interesting rare rules were ranked higher. Conventional AR

mining methods would miss them in the huge amount of rules that

can be extracted. Our analysis also revealed that the rules higher

ranked by the proposed method are meaningful associations

connecting certain proteins which make sense biologically. Some

other rules are very promising, but will need further investigation.

Even a prediction of a future annotation’s assignment was possible

by the proposed method. Such GPCRDB family prediction leads

to the assumption that this additional information source would

enrich the InterPro predictions. Additionally, discovered ARs

enable a database curator to find inconsistencies in the actual data

and methods.

Supporting Information

Supplemental Material S1 Concise proof that if the
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fixed the q value for that rule will converge to nabffiffiffiffiffiffiffi
nanb
p . This

term is null-invariant.
(PDF)

Supplemental Material S2 Spreadsheet with rules from
GO-GO section. They also include the evidence discussed in the

text and in S3.

(ODS)

Supplemental Material S3 Detailed discussion of rules
extracted in the GO-GO section.
(PDF)
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