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Abstract

Prediction of compounds that are active against a desired biological target is a common

step in drug discovery efforts. Virtual screening methods seek some active-enriched

fraction of a library for experimental testing. Where data are too scarce to train supervised

learning models for compound prioritization, initial screening must provide the necessary

data. Commonly, such an initial library is selected on the basis of chemical diversity by

some pseudo-random process (for example, the first few plates of a larger library) or by

selecting an entire smaller library. These approaches may not produce a sufficient number

or diversity of actives. An alternative approach is to select an informer set of screening com-

pounds on the basis of chemogenomic information from previous testing of compounds

against a large number of targets. We compare different ways of using chemogenomic data

to choose a small informer set of compounds based on previously measured bioactivity

data. We develop this Informer-Based-Ranking (IBR) approach using the Published Kinase

Inhibitor Sets (PKIS) as the chemogenomic data to select the informer sets. We test the

informer compounds on a target that is not part of the chemogenomic data, then predict

the activity of the remaining compounds based on the experimental informer data and the

chemogenomic data. Through new chemical screening experiments, we demonstrate

the utility of IBR strategies in a prospective test on three kinase targets not included in the

PKIS.
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Author summary

In the early stages of drug discovery efforts, computational models are used to predict

activity and prioritize compounds for experimental testing. New targets commonly lack

the data necessary to build effective models, and the screening needed to generate that

experimental data can be costly. We seek to improve the efficiency of the initial screening

phase, and of the process of prioritizing compounds for subsequent screening.

We choose a small informer set of compounds based on publicly available prior screen-

ing data on distinct targets. We then collect experimental data on these informer com-

pounds and use that data to predict the activity of other compounds in the set for the

target of interest. Computational and statistical tools are needed to identify informer com-

pounds and to prioritize other compounds for subsequent phases of screening. We find

that selection of informer compounds on the basis of bioactivity data from previous

screening efforts is superior to the traditional approach of selection of a chemically diverse

subset of compounds. We demonstrate the success of this approach in retrospective tests

on the Published Kinase Inhibitor Sets (PKIS) chemogenomic data and in prospective

experimental screens against three additional non-human kinase targets.

Introduction

Early-stage drug discovery involves a search for pharmacologically active compounds (hits)

that produce a desired response in an assay of protein function or disease-related phenotype.

The active compounds serve as starting points for further structural optimization, with the

ultimate goal of developing therapeutic agents. Virtual screening (VS) can be an effective strat-

egy for prioritizing compounds that can lower high-throughput screening costs by reducing

the experimental search to smaller, active-enriched compound subsets. This process can be

cheaper and more effective than exhaustive, unguided testing of entire compound libraries [1].

VS may also allow us to evaluate much larger physical or virtual compound libraries. As on-

demand synthetic capabilities expand, a VS-guided approach might obviate costs associated

with purchasing and on-site storage/maintenance of large general libraries in favor of growing

smaller, project-focused compound sets [2].

The choice of which VS methodology to deploy depends on the types of information avail-

able at the start of this effort [3]. Structure-based VS methods (such as docking) require spe-

cific, structurally-characterized biomolecular targets, but these target structures might only be

approximated by homology models [4], or might not be available at all. Phenotypic endpoints

like cell death or tumor shrinkage are not amenable to structure-based approaches because

specific target structures and sites of action may not be known. Furthermore, structure-based

VS performance varies substantially across targets, where failures are difficult to predict [4, 5].

Ligand-based VS approaches can provide more consistent levels of enrichment and are inde-

pendent from any target structure, but they depend strongly on the quality and abundance of

training data in the form of measured compound activities on the target of interest [6]. Such

approaches, especially those using topological features for compound representations (such as

graph-based fingerprints), may also suffer from high prediction uncertainty when presented

with compounds whose chemotypes/scaffolds are outside the scope of the training set [6, 7].

The key issue, however, is that training data are usually scarce in early stages of the screening

process, making it difficult to generate a predictive model.
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For some well-studied target classes (for example, kinases or GPCRs), rich chemogenomic

data are available in the form of compound activity profiles across many members of a target

class. These data can be structured as a targets-by-compounds matrix of functional interac-

tions, which we term the bioactivity matrix. Though sometimes sparse, incomplete, or limited

in compound and target coverage, such matrices hold valuable information that can be lever-

aged to make predictions on new targets or compounds.

Predictions of compound activities are routinely made using machine learning algorithms

to relate a selection of chemical features to the previously measured bioactivities of a training

set of compounds. In many cases, these features are chemical fingerprints that describe the

presence and proximity of chemical substructures in each compound [6, 7]. Alternative com-

pound fingerprints have been developed on the basis of prior chemogenomic data [8–13]. In

these cases, the bioactivity profile of a compound across a series of assays is used as a finger-

print, referred to as a “High Throughput Screening FingerPrint” (HTS-FP), based either on

continuous bioactivity values or on a binary quantity representing activity/inactivity. HTS-FPs

enable a useful expression of compound relationships through distances derived among stan-

dardized bioactivity profiles in much the same manner as chemical fingerprints. HTS-FPs

have limited extensibility in that the wide array of assays/target responses that confers a rich

pharmacological representation cannot be readily generated for new molecules. However,

looking beyond compound representations, arrays of standardized bioactivity data, even when

incomplete, can help to establish target relationships.

Given a new target with little or no prior structure–activity relationship information, build-

ing an effective ligand-based VS model requires training data acquired through preliminary

screening. For the virtual screening model to be cost effective, the library subset providing

training instances should be as small as possible. However, preliminary unguided screens con-

strained to only 100s to 1000s of compounds are likely to produce insufficient training data

with few active training instances of limited potency and structural diversity.

Motivated by the need for batch selection strategies to enable effective iterative screening

efforts, there has been significant recent effort in developing compound prioritization models

from minimal data [14–18]. These methods prioritize additional compounds for testing based

on an initial increment of screening data, but the selection of the initial subset of compounds

to be screened is often random, pseudo-random, or based on chemical diversity. A recent

effort by Paricharak et al. [18] uses an active learning process to select an informer set from the

most active and least active compounds across a series of PubChem assays. Their work

removes specific assay labels from the chemogenomic data to create a balanced data set, and

selects compounds on the basis of uncertainty from previous predictive models. However,

their optimal informer set is too large to be useful as an initial screening set in most HTS

settings.

Our emphasis in this paper is on the selection of the informer set—the initial set of com-

pounds to be assayed. The experimental data for these compounds may then be used to train

initial models or to select additional compounds as the initial (0th iteration) set of compounds

to be assayed in a multi-phase scheme. We refer to approaches based on informer sets as

Informer-Based Ranking (IBR) methods. This is different than the focus of the studies cited

above that focus on model-guided or heuristic selection of compounds for multiple phases

of screening. Our approaches are analogous to earlier chemometric experimental design

approaches like chemical cluster sampling [19], but leverage chemogenomic data instead. The

proposed IBR methods each involve two steps; see Fig 1. In the first step, they select an

informer set of compounds to evaluate experimentally for bioactivity on the new target.

Importantly, this selection is guided by the bioactivity matrix. The second step involves priori-

tization of the compounds outside the informer set, according to their bioactivity against the
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new target. This prioritization may make use of both the bioactivity data on other targets as

well as the new data obtained on the informer compounds on the new target. We describe

algorithms both for the selection of the informer compounds and for the prioritization of

other compounds after screening data are obtained for the informer compounds.

We propose three novel IBR strategies: Regression Selection (RS), Coding Selection (CS),

and Adaptive Selection (AS). Each strategy consists of (i) an informer set selection method

that chooses a small number of compounds to be tested, based only on characteristics of the

bioactivity matrix, and (ii) a compound ranking method that leverages returned informer data

to predict which of the untested compounds is active against a new target. Underlying all three

strategies is the premise that targets may be naturally organized according to patterns in their

bioactivity profiles across compounds. This organization leads to a clustering of targets as well

as to the identification of informer compounds that are predictive of the cluster identity of a

novel target. The strategies leverage advances in optimization and statistical analysis, and they

differ in how patterns are recognized and computations are deployed.

We apply the proposed IBR strategies in the context of two public human kinase chemoge-

nomics matrices: PKIS1 [20] and PKIS2 [21]. We demonstrate the strategies prospectively, by

prioritizing PKIS1 and PKIS2 compounds for activity against three distinct protein kinase tar-

gets of potential therapeutic importance: Mycobacterium tuberculosis PknB [22], Epstein-Barr

virus BGLF4, and Toxoplasma gondii ROP18 [23]. We also apply the strategies retrospectively,

Fig 1. IBR (Informer-Based Ranking) for compound prioritization on a novel target. From a complete bioactivity data matrix (blue grid), a subset of

informer compounds (green stars) are identified from the broader set of compounds (stars) that have been tested against a large set of targets (pink

circles). A previously uncharacterized target (red circle) is assayed with just the informer compounds, and the new bioactivity data are used to reveal the

new target’s relationship to other targets. The combined data enable activity predictions (purple) on the remaining, non-informer compounds.

https://doi.org/10.1371/journal.pcbi.1006813.g001
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in a cross-validation study of each chemogenomics matrix, leaving out one target at a time and

prioritizing compound activity against the left-out target.

The performance of each new IBR strategy was assessed prospectively by inspection of the

successful activity predictions, and retrospectively using common VS metrics, including: Area

Under the Receiver-Operator Characteristic Curve (ROCAUC) and enrichment factor (EF).

We also assessed each strategy’s ability to retrieve structural diversity among active com-

pounds by computing the fraction of active scaffolds identified in the top of the ranking. For

benchmarking purposes, we compared the proposed IBR methods to a set of baseline models

that make use of the compound structures, and include the commonly used diverse selection

as well as a selection of the most frequently active compounds in the bioactivity matrix.

Results

IBR strategies apply in the low-data regime

We describe IBR strategies that require experimental testing of some new target of interest on

a small fraction of the compound library—the informer subset—with a view to effectively pri-

oritizing the remaining compounds for subsequent testing for activity with the target. The

complete IBR strategy thus has two parts: a scheme to identify the informer subset and a

scheme to prioritize the remaining compounds after assay data have been obtained for the

informer compounds. Initially, we may have no assay data on the new target, though we typi-

cally have some such chemogenomic data on related targets that populate a related sector of

chemical space, in some sense. Ideally, a successful IBR strategy might be applied in target-

agnostic drug development settings (for example, phenotypic targets or incompletely featur-

ized targets), so we intentionally exclude from each IBR strategy target-specific features, such

as protein sequences or structural information.

We described three novel IBR strategies that use statistical patterns in the bioactivity matrix

that is available prior to informer-set assay testing. Regression Selection (RS), Coding Selection

(CS), and Adaptive Selection (AS) all treat the target space as being partitioned into clusters of

targets so that, within each cluster, there is some relevant similarity of the bioactivity profiles

of the targets across the space of tested compounds. These three strategies also posit that a

small number of compounds (the informer subset) have bioactivity profiles that are predictive

of the cluster label appropriate to any target, including the novel target of interest. RS, CS, and

AS differ in how they evaluate clusterings and potential informer subsets. For example, RS and

AS involve kmeans clustering of targets followed by regularized multinomial regression to

learn the relationship between compounds and cluster labels, but they differ in how the regres-

sion is regularized and how the informer compounds are identified. In contrast, CS forms a

single objective function that simultaneously scores clustering strategies and potential

informer compounds.

Computationally simpler baseline IBR strategies are useful to consider, as they may approx-

imate practical experimental design scenarios. Baseline Chemometric strategies (BCs, BCl, and

BCw) use chemical features for both informer selection and non-informer ranking. Three dif-

ferent chemometric ranking strategies are used for the non-informer ranking, as denoted by

subscripts s, l, and w (described in detail in the Methods). Here, clustering is applied on the

compound space using the known chemical structure (fingerprints) of the compounds (not

used in RS, CS, or AS) in order to identify informer compounds. Then, prioritization of the

non-informers makes use of various ways of ranking the chemical distance between bioactive

informers and non-informers. Alternatively, a Baseline Frequent-hitters strategy simply takes

as informer compounds those that show the highest rate of activity within the initial target set

(BFs, BFl, BFw). Prioritization of non-informers uses chemical distance, as in the chemometric
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methods. To simplify, we only report baseline results for each of our top chemometric and fre-

quent-hitters baseline strategies (BCw and BFw). Outcomes for the full set of baselines are avail-

able in the supplemental information.

Performance of the IBR strategies was evaluated using two virtual screening metrics that

reflect successful prioritization of active compounds: ROCAUC and Normalized Enrichment

Factor in top 10% of ranking (NEF10)). An additional metric Fraction of Active Scaffolds

Retrieved (FASR10) assesses the diversity of the active chemical structures that were prioritized

in the top 10% of the ranking. Also, standard classification metrics F1 score and MCC were

applied.

Prospective tests of IBR strategies on novel kinase targets

We applied the IBR strategies on three novel kinase targets outside of the PKIS1 and PKIS2

target sets. These microbial targets are phylogenetically distant from most of the human pro-

tein kinases in the PKIS data sets, with relatively low kinase domain sequence identities to the

nearest neighbors in the PKIS1/2 sets in comparison to kinase domain sequences (S1 Fig). For

Mycobacterium tuberculosis kinase PknB (UniProt ID: P9WI81), the nearest neighbors were

the human serine/threonine kinases MARK2 (16.1% kinase domain sequence identity) in

PKIS1 and BRSK1 (16.1%) in PKIS2 (UniProt IDs: Q7KZI7 and Q8TDC3, respectively). For

Epstein-Barr virus kinase BGLF4 (UniProt ID: I1YP37), the most similar kinase domain

sequences were from human protein tyrosine kinase (PTK2 or FAK2) (13.8%) in PKIS1 and

human serine/threonine-protein kinase (LRRK2) (14.2%) in PKIS2 (UniProt IDs: Q14289.2

and Q5S007). For Toxoplasma gondii ROP18 (UniProt ID: Q2PAY2), the most similar kinase

domains are NEK7 (UniProt ID: Q8TDX7.1) (20.2%) in PKIS1 and aurora kinase C (AURKC,

UniProt ID: Q9UQ89.1) (20.7%) in PKIS2.

To prioritize which PKIS compounds might be active on PknB, BGLF4, or ROP18, each

IBR strategy selected 16 informer compounds from PKIS1 and 16 informer compounds from

PKIS2. PknB and BGLF4 were obtained and screened in-house while ROP18 data were col-

lected from an external collaborator [23]. The screening data were held separately from the

IBR and baseline method operators prior to informer selection. After selecting PKIS1 and

PKIS2 informer compounds, screening data only for those compounds were provided to each

IBR and baseline method. Informer set selections by each IBR for PKIS1 are shown with their

associated experimental bioactivity measurements in S1 Table. The assay results for the

informer compounds selected by each of the IBR strategies were used to rank the remaining

non-informers in PKIS1 or PKIS2. To evaluate the performance of the different methods, all of

the available PKIS1 and PKIS2 compounds were assayed. Experimental active/inactive labels

were assigned using μ + 2σ percent inhibition (activity) thresholds in PKIS1: PknB = 13.4%,

BGLF4 = 20.2%, and ROP18 = 43.8% and PKIS2: PknB = 8.7%, BGLF4 = 12.5%, and

ROP18 = 33.4% based on screening results from the PKIS compound sets.

The RS and CS approaches were the only methods that recovered multiple hits and active

scaffolds in their top 10% of ranked compounds for all three kinase targets and both PKIS

datasets (Table 1 and S2 Table). RS managed to recover actives for PknB even though it did

not include any active compounds in its PKIS1 or PKIS2 informer sets. The RS method was

also the best overall for BGLF4 on PKIS2 and tied as the best method for PknB on PKIS1. CS

was the best approach for PknB on PKIS2.

AS and the three BF baseline methods (BFw shown in Table 1) struggled for PknB and

BGLF4 with the PKIS2 compounds, each identifying only a single hit. However, AS was the

best approach for BGLF4 on PKIS1 compounds and performed better on ROP18 with PKIS2

compounds. The three purely chemometric baseline approaches (BC) (BCw shown in Table 1)

Predicting kinase inhibitors using bioactivity matrix derived informer sets
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were the worst overall, in many cases failing to recover any hits. Nevertheless, BCs and BCl

were the top methods on ROP18 with PKIS2 compounds (S2 Table). The best methods were

the same when evaluated with NEF10 or FASR10, but varied slightly for ROCAUC (S3 Table).

Retrospective tests of IBR strategies by cross validation on PKIS1 data

matrix

The PknB, BGLF4, and ROP18 results demonstrate that the IBR methods perform reasonably

well even in a challenging setting where the new targets have low kinase domain similarity

with the targets used to construct the informer set. For a more comprehensive quantitative

assessment of the IBR methods, we conducted retrospective leave-one-target-out (LOTO)

analysis for each of the m = 224 targets in PKIS1. This involved m = 224 separate applications

of all the IBR strategies applied to reduced chemogenomics matrices (m − 1 rows), again using

an informer size of 16 compounds. Each time, the bioactivity profile of the left-out target was

predicted in the sense that compounds were prioritized for activity against this one left-out

target.

Results from PKIS1 LOTO cross validation are summarized in Table 2. With respect to the

ROCAUC metric (Fig 2), the purely bioactivity-based RS model provides the best rankings

with a median ROCAUC value of 0.92 ± 0.11 (± one standard deviation). RS and AS methods

both had better performance than the top chemocentric and frequent-hitter baseline

approaches, BCw (0.67 ± 0.22) and BFs (0.83 ± 0.14). The improvements in ROCAUC of RS

and AS over BCw (p = 5.5E-31, 2.0E-23) and BFs (p = 1.3E-21, 4.9E-6) were statistically signifi-

cant. All p-values were obtained from a 2-sided, pairwise Wilcoxon sign-rank test with S̆idák

Table 1. Retrieval counts by the various methods on new kinase targets (a) PknB, (b) BGLF4, and (c) ROP18 using PKIS1 or PKIS2 matrices. The total number of

experimentally determined active compounds and distinct active scaffolds is indicated in the total column. The values below each of the IBR methods indicate the number

of active informers identified, the number of experimentally determined active compounds that were ranked in the top 10% of predicted active compounds by each

method, and the number of unique active scaffolds identified in those top 10%. For a given target, these 10% are the active informers and the top ranking non-informers

comprising 10% of the set of all compounds after removing inactive informers.

(a) PknB

baselines non-baselines

matrix hits BCw BFw RS CS AS total

PKIS1 active compounds 1 7 7 2 3 8

active scaffolds 1 7 7 2 3 8

PKIS2 active compounds 0 1 2 3 1 7

active scaffolds 0 1 2 3 1 7

(b) BGLF4

baselines non-baselines

matrix hits BCw BFw RS CS AS total

PKIS1 active compounds 3 9 3 7 10 11

active scaffolds 2 6 3 5 7 8

PKIS2 active compounds 1 1 8 3 1 10

active scaffolds 1 1 7 3 1 8

(c) ROP18

baselines non-baselines

matrix hits BCw BFw RS CS AS total

PKIS1 active compounds 4 7 4 4 2 16

active scaffolds 3 4 2 3 2 11

PKIS2 active compounds 7 5 3 3 5 19

active scaffolds 4 3 2 2 3 12

https://doi.org/10.1371/journal.pcbi.1006813.t001
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multiple comparison correction for 6 hypotheses (6 baselines). This correction increases the

stringency of the statistical threshold applied on each of the 6 individual tests from α = 0.05 to

α = 0.0085. The CS method also had statistically better ROCAUC performance than all base-

line models except BFl (p = 0.037) and BFs (p = 0.032). A complete set of p-values from a pair-

wise comparison of the IBRs is available in S5 Table. The hybrid baseline approaches, which

use compound bioactivity profiles to select the most broadly active compounds as informers,

performed much better than the chemometric approaches that use chemical features for

informer selection.

We also compared strategies using enrichment factor (EF) as an alternative VS metric that,

like ROCAUC, reflects retrieval of active compounds (Fig 3). The maximal EF value that could

be achieved on a target, however, depends on the active fraction in the set. To address the vari-

ation in the extent of the class imbalance across kinase targets (active fractions ranging from

0.01-0.12 in PKIS1) (S2 Fig), we apply the normalized EF metric NEF10. The EF cutoff was

also extended from a typical 1% threshold out to 10%, due to the small number of compounds

considered (n = 366). To simplify comparison with the ROCAUC metric, we scale NEF10 such

that a value of 0.5 reflects a random classifier (equivalent to random ranking or no enrich-

ment) and a value of 1.0 represents a perfect classifier, in which the top 10% has been maxi-

mally enriched. Over the 224 targets considered in PKIS1, the three bioactivity-based models

(RS, CS, and AS) are statistically superior to all of the baseline approaches (all p<0.0085). The

AS method had the strongest enrichment for active compounds with a median NEF10 of

0.85 ± 0.13. This was better than the top frequent hitters model, BFl, which had a median

NEF10 of 0.74 ± 0.13 (p = 5.7E-14). The enrichment is even better compared to the chemo-

metric models, the best of which is BCw, providing a median NEF10 of 0.60 ± 0.13 (p =

6.7E-28).

Table 2. (a) ROCAUC, (b) NEF10, and (c) FASR10 in Leave-One-Target-Out Cross Validation on PKIS1. IBR

methods were evaluated on 224 PKIS1 targets using standard VS metrics that reflect active retrieval: ROCAUC and

NEF10. FASR10 was also evaluated to reflect the chemical diversity of the actives retrieved. All baseline outcomes are

shown in S4 Table along with p-values from pairwise comparisons in S5 Table. �The only non-baseline IBR that fails to

demonstrate statistical improvement (p<0.0085) over all baselines is CS when using the ROCAUC metric. Note: a

Šidák multiple comparison correction was applied using 6 baselines against each non-baseline IBR, lowering the α
threshold from 0.05 to 0.0085.

(a) ROCAUC

baselines non-baselines

BCw BFw RS �CS AS

mean 0.63 0.79 0.90 0.81 0.84

median 0.67 0.81 0.93 0.83 0.88

stdev 0.21 0.13 0.11 0.14 0.14

(b)NEF10

baselines non-baselines

BCw BFw RS CS AS

mean 0.62 0.74 0.80 0.79 0.82

median 0.60 0.72 0.81 0.79 0.85

stdev 0.13 0.13 0.13 0.14 0.13

(c)FASR10

baselines non-baselines

BCw BFw RS CS AS

mean 0.31 0.52 0.68 0.65 0.71

median 0.29 0.50 0.72 0.64 0.75

stdev 0.21 0.21 0.22 0.26 0.23

https://doi.org/10.1371/journal.pcbi.1006813.t002
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Another key characteristic of robust virtual screening performance is the recognition of

diverse active compound structures rather than retrieval of only a subset of the active chemo-

types. Because of the high rate of failure for hits in follow-up hit-to-lead or optimization

efforts, we value methods that can retrieve as many active scaffolds as possible, even at some

expense to predictive accuracy reflected by ROCAUC and NEF metrics. Across PKIS1 targets

we assessed the diversity among the known active chemotypes prioritized by each model by

monitoring the Fraction of Active Scaffolds Retrieved among the top ranking 10% of com-

pounds (FASR10) (Fig 4). The bioactivity-based IBR methods outperform the top hybrid and

chemocentric baseline models, according to this metric. The median FASR10 for the AS

model 0.75 ± 0.23 exceeded the top hybrid model, BFl (0.52 ± 0.21, p = 2.1E-18), and chemo-

centric model, BCw (0.29 ± 0.21, p = 3.7E-32).

Although the IBRs were developed for compound ranking and not necessarily as classifiers,

classifier metrics F1 score (F1) and Matthew’s Correlation Coefficient (MCC) were also evalu-

ated for the methods across the PKIS1 targets. The scores/ranks returned by each method were

converted to binary classifications using a threshold based on the median active fraction for

PKIS1 (5.5%). Over the 224 targets considered in PKIS1, RS, CS, and AS are statistically supe-

rior to all of the baseline approaches (all p<0.0085). The full set of metrics evaluations on

PKIS1 are provided in S4 Table with the corresponding p-values from pairwise comparisons in

S5 Table.

Fig 2. A comparison of models with respect to compound ranking performance as assessed by ROCAUC values. Each model was evaluated on 224

targets through PKIS1 leave-one-target-out validation. ROCAUC of 0.5 indicates a random ranking of compounds on a given target; ROCAUC of 1.0

represents ideal ranking with all active compounds prioritized above the inactives. The individual target evaluations are shown as light grey dots with

median and interquartile ranges displayed as a white circle and black bars, respectively.

https://doi.org/10.1371/journal.pcbi.1006813.g002
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To assess the robustness of IBR performance, we stratified the PKIS1 targets into four equi-

sized subsets and compared IBR methods on all performance metrics separately on each sub-

set. This stratification was based on target hit rate and was obtained by binning targets after

ranking by hit rate. S7, S9 and S11 Figs stratify Figs 2–4, and indicate very little effect on per-

formance of the target hit rate. To examine further, we used linear regression to decompose

each target-method performance metric into a target effect and a method effect; S8, S10 and

S12 Figs plot estimated method effects and multiplicity-adjusted 95% confidence intervals. AS,

CS, and RS are all robust to the target hit rate, having quite similar performance in all strata.

By contrast, BFw is relatively sensitive to the target hit rate. Considering that the hit rate of a

novel target is unknown prior to testing, marginal features such as in Figs 2–4, reflect relevant

operating characteristics of the proposed IBR methods.

Effect of informer set size

All IBR strategies require choosing the number of elements nA to include in the informer set.

Larger nA allows more information to be gleaned from intermediate screening data, and there-

fore improved prioritization of non-informer compounds. Marginal improvements in perfor-

mance as a function of nA are expected to diminish as nA increases, because of redundancies in

the information acquired as more activity data accrues. Larger nA also leads to higher assay

Fig 3. A comparison of models with respect to compound ranking performance as assessed by active enrichment in the top 10% of ranked

compounds. Each model was evaluated on 224 targets through PKIS1 leave-one-target-out validation. NEF10 represents the fold-enrichment of actives in

top 10% above random that is normalized by dividing by the maximum theoretical fold-enrichment that could be achieved at the 10% threshold for the

target of interest.

https://doi.org/10.1371/journal.pcbi.1006813.g003
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costs. The experiments reported above used nA = 16, about 4% of the compounds in the che-

mogenomics matrix.

To examine the relationship of informer set size to prioritization performance, we applied

IBR strategies on a range of informer set sizes. First, we considered AS, our best performing

IBR strategy. S4 Fig shows ROCAUC and NEF10 metrics from the LOTO retrospective analy-

sis of PKIS1 for nA varying from 9 to 28. Performance did not vary greatly over this range. We

also tested a wider range of informer set sizes (nA = 1 to 48 compounds) on PKIS1 target pre-

dictions using LOTO cross validation, and examined ROCAUC and NEF10 using baseline

IBR methods BCw (S5 Fig) and BFw (S6 Fig). Over this range, we observe performance degra-

dation with diminishing informer set sizes. These experiments indicate that our preferred

value nA = 16 strikes a reasonable balance between size and performance for this particular

data set.

Discussion

We set out to establish effective strategies to prioritize compounds for initial testing in iterative

high-throughput screens in a drug discovery setting. Our approach is related to the cold-start

problem in collaborative filtering (recommender systems) and involves informer-based rank-

ing (IBR) strategies that identify a small subset of highly informative compounds to test in the

initial screening round. Data obtained by testing the informers can be used to prioritize

Fig 4. A comparison of models with respect to the structural diversity of the active compounds retrieved. Each model was assessed by FASR10

evaluations on 224 targets through PKIS1 leave-one-target-out validation. The FASR10 metric is the fraction of the total identified active molecule

scaffolds, for the target of interest, that were identified in the top 10% of the ranked compounds on that target. Compounds are grouped by their generic

(all-carbon skeletons) representations of Bemis-Murcko scaffolds.

https://doi.org/10.1371/journal.pcbi.1006813.g004
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compounds for subsequent screening. As a proof of concept, we focused on kinases so that we

could test methods using public kinase chemogenomic data matrices. Among the IBR strate-

gies tested, we found that those leveraging bioactivity data from matrix targets (RS, CS, and

AS) provided better initial sampling than baseline strategies that applied chemometric similar-

ity methods (BC) or hybrid approaches (BF). The hybrid approaches used a “frequent hitters”

heuristic for informer selection, based on matrix activities, and chemometric similarity for

ranking.

We applied our chemogenomic IBR and baseline methods in prospective tests on three

microbial kinases: PknB, BGLF4, and ROP18. An initial batch of just 16 informer compounds

from each set (roughly 4% of the complete set of compounds) was selected for assays on these

new targets. The methods were evaluated with regard to hit prioritization and diversity of

active scaffolds prioritized, compared to the results of assays of the PKIS1 and PKIS2 com-

pounds. Results from these prospective tests indicated that IBRs using bioactivity data and

hybrid baseline IBRs outperformed baseline IBRs that use purely chemometric data for PknB

and BGLF4. The baselines were superior on ROP18 but performed so poorly on PKIS2 com-

pounds for PknB and BGLF4 that they would be risky to apply in practice on a new target.

For a more complete assessment of the IBRs, we performed a retrospective leave-one-tar-

get-out validation on the PKIS1 matrix (m = 224 targets by n = 366 compounds) using a batch

selection of 16 informer compounds. We observed statistically better hit prioritization and

active scaffold retrieval for the purely bioactivity-based IBRs (RS, CS, and AS) than for any of

the baseline methods. The successful early hit and active scaffold retrieval in these small kinase

datasets suggests that the IBRs could be a valuable approach for prioritizing compounds in

larger libraries that cannot be exhaustively screened.

IBRs and related approaches

Chemogenomic assay data have been used through inductive transfer or transfer learning

approaches to make successful predictions on compound-target interactions in several con-

texts [24, 25]. Reker et al. [16] and Cichonska et al. [26] placed chemogenomic predictions

into 4 classes: (1) filling in missing elements within a relatively complete chemogenomic

matrix (bioactivity imputation), (2) predicting interactions for a target on matrix compounds

(virtual screening), (3) predicting interactions for a compound on matrix targets (drug re-pur-

posing or off-target effects), and (4) predicting interactions for non-matrix compounds on a

non-matrix target (virtual screening). Wasserman et al. [27] showed that simple kernel

approaches using nearest proxy targets could be used to rank compounds effectively for a

query target (class 2), as long as it was possible to identify proxy targets closely related to the

query target. For kinase targets, Cichonska et al. [26] explored a wide range of ligand and tar-

get kernels to address class-1 and class-3 problems. For focused target sets (kinases and

GPCRs), Janssen et al. [28] recently applied nearest-neighbor approaches to ligand and targets

mapped on t-SNE projections to address class-2 and class-3 problems.

The methods we report differ from prior chemogenomic methods for addressing the class-

2 problem by involving strategic but limited data acquisition on the query target. Determina-

tion of the responses of targets to key informer compounds shifts a relatively difficult class-2

problem into the more tractable class-1 problem of imputation. Unlike chemogenomic kernel-

based approaches [26, 27], we did not use target features, focusing instead on target-agnostic

strategies for compound ranking that could be used in the future for cell-based or phenotypic

assays. Our focus on limited, strategic data acquisition on the target of interest frames the

problem in a more practical context akin to compound prioritization in early, low-data stages

of an iterative screening effort [14, 18, 29, 30]. Lack of active compound instances can stall
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implementation of supervised models for compound selections [15]. Our bioactivity-based

IBR methods overlap hit expansion methods using chemogenomic data, as applied by groups

at Novartis for guiding molecule selection in iterative screening [18, 29]. In agreement with

their findings, IBR methods that use compound bioactivity profiles, rather than chemical fea-

tures, provided broader active scaffold retrieval [29]. Previous implementations of HTSFP,

however, define compounds by normalized bioactivity vectors from an independent reference

assay set, whereas our IBRs use compound bioactivity profiles derived directly from the avail-

able chemogenomic matrix. We tested targets only from the same target class, namely, protein

kinases. The IBR-based informer sets could be applied in the same way that Paricharak et al.

used their Mechanism-of-Action Box (MoABox) of probe compounds for testing in “iteration

zero” of their iterative screening procedure [29].

Practical implications

The IBR strategies described here could enable iterative screens either on orphan members of

a target class or on targets on which very few compounds have been tested. Data returned on

each screening iteration would then be used as new training instances to refine the model,

potentially in an active-learning framework that also considers relevance of training instances

for subsequent compound selection. To promote efficiency of an iterative approach, initial

compound batches are often limited in size, with compounds are often being selected at ran-

dom or to achieve chemical diversity. Initial screens chosen in this way are likely to return few

active compounds, thus stalling effective implementation of a supervised activity prediction

model. The IBR strategy reported here can be deployed for compound prioritization in early

rounds of batch selection; the informer set could be tested to obtain preliminary compound

rankings in the low-data phase of iterative screens. Due to class imbalance being skewed

towards inactive compounds in drug discovery tasks, IBR methods could enable rapid identifi-

cation of relatively rare but important active instances necessary for training the activity-pre-

diction model until it can score compounds accurately for prioritization.

Moreover, the bioactivity-based IBR methods exhibited diverse active-scaffold recognition

properties, yielding positive training instances with greater structural diversity for supervised

compound prioritization models. The FASR10 results indicate that bioactivity-based IBR

approaches generalize better over different compound structures than chemometric IBRs, so

they should exhibit a greater tendency to scaffold hopping [29, 31, 32]. In contrast, all of the

baseline IBR methods use Morgan fingerprint-derived distances to active informers, thus con-

fining their perspective to those active regions of chemical space identified with the informer

set. Different chemotypes, however, can exhibit strong activity on the same target. Plots of

PKIS1 compounds projected into their three major principal components of chemical feature

space (Morgan fingerprints) frequently show active regions that are non-adjacent (S3 Fig).

While active compounds tend to cluster in specific regions of chemical space, many targets

elicit multiple, sometimes distantly separated regions of active chemical space.

Future directions

There are several potential uses for IBRs in drug discovery. This work demonstrates the possi-

bility of effective prediction of activities for new targets within the same target class (kinases)

from an extensive chemogenomics data matrix representing many targets within that class. A

future direction of research is to quantify the amount of chemogenomic data needed to enable

robust prediction within the same target class. It appears that low-rank structure in the chemo-

genomic matrix used in the IBR methods helps to enable reliable predictions of a target’s com-

pound preferences. Statistical models that faithfully represent variation and dependence in
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bioactivity data also could be leveraged to guide the development of alternative IBR strategies

beyond RS, CS, and AS.

Of greater interest is the development of a more general informer set from a broader collec-

tion of chemogenomic data. To investigate the generalizability of the methods, we plan to

apply them to a wider range of novel targets (or held-out targets) using an expanded chemoge-

nomic data set with broader target and compound coverage. We do not know how well IBRs

will perform on new targets that are unrelated to those within the matrix. We are encouraged

by the prospective predictive performance on query kinases (PknB, BGLF4, and ROP18) that

are dissimilar from kinases in the chemogenomic data but note that these targets are still simi-

lar structure and chemical function as protein kinases. More comprehensive data matrices

tend to be incomplete, with many missing data values, but they should be useful in testing

whether these methods are effective in extended pharmacological spaces. The size of the

informer set may well have a dramatic impact on overall performance.

It may be possible to use IBR methods for prioritizing non-matrix compounds on a new

target (a class-4 problem). Chemogenomic matrices enable pharmacological mapping of a

given new target (query) to matrix targets that exhibit similar bioactivity profiles (proxy tar-

gets). Associations between query targets and proxy targets can be made on the basis of full-

compound bioactivity profile in the matrix, or potentially just informer assay results. Given

that certain proxy targets are likely to be more extensively screened (tested with compounds

outside the matrix set), it might be possible to use non-matrix screening data on proxy targets

to infer activities for additional compounds and thus prioritize them for testing on some query

target.

Materials and methods

PKIS data sets

Most of the IBR strategies developed here leverage chemogenomics data matrices for activity

predictions on compounds against selected kinase targets. The matrices were derived from

two public human kinase chemogenomics data sets PKIS (PKIS1) [20, 33] and PKIS2 [21].

Prior to development and testing of methods, these sets were processed as described below.

(Links to our processed PKIS datasets are provided below).

PKIS1. The original PKIS data set (PKIS1) was downloaded from https://www.ebi.ac.uk/

chembldb/extra/PKIS/PKIS_screening_data.csv Each row in this data set contains an assay

result on a specific compound. Each row lists several identifiers for each compound and the

target, assay conditions, and the assay read-out (percent inhibition). For nearly every com-

pound, kinase activity was tested independently at 0.1 μM and 1.0 μM concentrations. For this

work, only the inhibition values obtained at 1.0 μM were used, in order to match the PKIS2

concentrations. PKIS1 contains 366 unique compounds with unique SMILES and ChEMBL

IDs that were tested on 200 unique parent kinases having unique target ChEMBL IDs. When

we include mutants/variants of the parent isoforms, there is a total of 224 targets with unique

ChEMBL ASSAY IDs. Our processed PKIS1 data was therefore arranged as a matrix of 224

kinase targets by 366 compounds.

PKIS2 The original PKIS2 was downloaded from https://doi.org/10.1371/journal.pone.

0181585.s004. This set comprises 641 unique compound SMILES and 406 target columns.

However, only of these 415 compounds were available to us from the original set for testing.

We included only these compounds from the PKIS2 data set, so our bioactivity matrix has 406

targets by 415 compounds. PKIS2 activity values represent percent inhibition values observed

at inhibitor concentrations of 1 μM.
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Bioactivity-based prediction methodology

Setup. We let X ¼ fxi;jgmi¼1
; n

j¼1
denote the bioactivity inhibition matrix that is available

initially, where m denotes the number of kinase targets and n denotes the number of com-

pounds. We use xi� for the vector of bioactivity results on target i, and x�j for column entries of

this matrix (that is, bioactivity results for compound j). Let I = {1, 2, � � �, m} denote the targets

associated with rows of the data matrix X, and J = {1, 2, � � �, n} denotes the set of available

compounds.

For some methods, the kinase inhibition matrix X is reduced to a binary matrix

Z ¼ fzi;jgmi¼1
n
j¼1

, which captures empirical assessments of whether target i is inhibited (or not)

by compound j. We use a target-wise threshold criterion Eq (1), based on the sample mean

and sample standard deviation of each row xi�, as follows:

zi;j ¼

(
1; if xij � mean½xi�� þ 2� s:d:½xi��;

0 if xij < mean½xi�� þ 2� s:d:½xi��:
ð1Þ

Our ultimate task is prediction from X of binary activities: zi�,j, on a new target i� =2 I for

available compounds, j 2 J. Our approach is first to identify from X a small informer set of

compounds, A� J, on which bioactivity data xi�,j will be measured against target i�. The data

obtained from this experiment with the informer set, denoted by x� = {xi�,j, j 2 A}, will be used

to identify other compounds in the full compound set J that inhibit new target i�, in the sense

that zi�,j = 1. Machine-learning and statistical tools are used to design and study this approach,

but except through general parallels with adaptive experimental design, the selection of an

informer set is neither a supervised nor an unsupervised machine-learning task. We describe

three novel heuristic methods that have favorable empirical characteristics: regression selection

(RS), coding selection (CS), and adaptive selection (AS).

The informer-based ranking (IBR) methods that we propose entail partitions of the target

set I, also referred to as a set of clusters, sometimes denoted by S = {S1, S2, � � �, SK}. Methods dif-

fer as to how any candidate partition S is evaluated or acted upon. A partition S induces a label-

ing of targets i 2 I, denoted y = (yi), where yi = k if (and only if) i 2 Sk. In all methods, the new

target i� becomes associated with one of the clusters by virtue of similarity of bioactivity pro-

files with other targets.

Regression selection (RS). The relationship between the training target space I and a new

target (point) needs to be established in order to predict active compounds on novel kinase tar-

gets. The informer set serves to locate the new target in the training space. Unsupervised clus-

tering is used to partition the target space; then the informer set is chosen from compounds

that are predictive of cluster labels in a coupled, supervised analysis.

Informer set. The informer set is identified using clustering, regression, and feature selec-

tion. First, we classify the target space—the row space xi�—into clusters such that all targets

within the same cluster exhibit a similar response to the compounds. For this task we consid-

ered k-means, which tries to minimize the sum of the within-cluster distances from each

cluster centroid. Formally, given a parameter K as the number of clusters, and m data vectors

xi�, . . ., xm�, it aims to solve

min
S

XK

k¼1

X

p2Sk

xp� �

P
q2Sk

xq�

jSkj

�
�
�
�

�
�
�
�

2

; ð2Þ

where S = {S1, . . ., SK} forms a partition of I = {1, � � �, m}, and |V| denotes the cardinality of the
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set V. For robustness, we scale each column of the bioactivity data X linearly so that its entries

lie in the range [0, 1] prior to clustering analysis.

There are two difficulties in using k-means. The first is that its iterative process relies on

random initialization, hence the results generally differ on each run. Secondly, we do not

know in advance how to specify the number clusters K. To deal with the first problem, we use

the kmeans++ initialization procedure [34]. kmeans++ guarantees that the expected final

objective value is no more than O(log K) times larger than the optimal. To further improve

robustness, we repeat the kmeans++ procedure 100 times and choose the outcome that has

the lowest objective value in Eq 2. For the second issue of selecting K, we find the value that

achieves the best performance in a five-fold cross-validation procedure.

We note that other techniques for clustering are available, for example, hierarchical

agglomerative clustering. None of these techniques has a strong guarantee of finding a global

minimizer of Eq 2, and some are deterministic rather than stochastic, yielding only one candi-

date solution. Our approach based on k-means is preferable because it can be run multiple

times, cheaply, generating numerous candidate solutions, of which the one achieving the mini-

mum value of Eq 2 can be chosen. In practice, because many instances of our procedure con-

verge to the same conformation with the apparent global minimum value of Eq 2, we are

confident that it finds the global solution.

Clusters serve to label the targets, as noted above. Namely, we set yi = k if i 2 Sk in Eq 2.

Next, multinomial logistic regression with a penalty term is applied to train a label classifier. In

this approach, training data has the form {(xi�, yi)}, over an appropriate set of targets i. The

multi-class classifier is trained by fitting the multinomial logistic model. That is, we seek a set

of coefficients, ω = {ω10, � � �, ωK0, ω1, � � �, ωK}, by minimizing the objective function

� log
Y

i

exp ðoyi0
þ wT

yi
xi�Þ

PK
k¼1

exp ðok0 þ ωT
k xi�Þ

 !

þ lRðωÞ; ð3Þ

where the first term is the (negative) log-likelihood from the multinomial logistic model, λ� 0

is a tuning parameter, and R(ω) is a penalty function. The coefficients ωk, one for each cluster,

are vectors whose length equals the number of compounds, each of whose elements (ωk)j rep-

resents the weight that is applied to the activity measurement for compound j in predicting

membership of cluster k. An appropriately chosen penalty yields sparse solutions in which

coefficients of compounds that are only weakly predictive of the target cluster are set to zero.

Since the whole coefficient vector ω�j≔ ((ω1)j, (ω2)j, � � �, (ωK)j) captures the influence of com-

pound j on all targets, variable selection is achieved only if these K coefficients are shrunk

simultaneously to zero. Therefore, we use the group LASSO norm [35] corresponding to the

penalty function:

RðωÞ ¼
Xn

j¼1

kω�j k¼
Xn

j¼1

ððω1Þ
2

j þ � � � þ ðωKÞ
2

j Þ
1=2
; ð4Þ

where kuk¼ kuk2 ¼
ffiffiffiffiffiffiffiffi
uTu
p

denotes the L2-norm.

We combine this regularized model with the greedy heuristic proposed in [36], which was

shown to outperform the model obtained by directly solving Eq 3 by choosing relevant features

greedily, one at a time. This algorithm starts by setting A = ;, then solves Eq 3, and then selects

the feature vector ω�j with the largest Euclidean norm, from among those features still repre-

sented in the regularization term R. It adds j to the informer set A, then re-solves Eq 3 with all

feature vectors ω�j for j 2 A excluded from R. This process is repeated until either we have

selected enough features (denoted by nA) or else the remaining ω�j included in the norm
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calculation are all zero. After selecting the features in this fashion, we retrain a model by solv-

ing Eq 5 again using only the selected features and omitting the regularization term R alto-

gether, that is,

min
w1 ;...;wk

� log
Ym

i¼1

exp ðoyi0
þ wT

yi
xi�Þ

PK
k¼1

exp ðok0 þ wT
k xi�Þ

 !

; such that ω�j ¼ 0 for j =2A: ð5Þ

Compound ranking. Given any new target and its bioactivity with compounds from the

informer set, we use the trained logistic regression model to predict the cluster label. With yi�
denoting the to-be-predicted cluster label of the new target i� and x� the informer set com-

pound activities for this target (i.e., the intermediate data), the multi-class logistic model

asserts:

Prðyi� ¼ kjx�Þ ¼
exp ðwT

k x
�Þ

PK
l¼1

exp ðwT
l x�Þ

: ð6Þ

Using this probability and the centroids, we predict the whole activity vector of the new tar-

get with the vector of expected values:

m̂ j≔
XK

k¼1

Prðyi� ¼ kjx�Þ
P

i2Sk
xij

jSkj
ð7Þ

for compound j.
Parameter estimation. Given the whole active prediction procedure, we are able to conduct

parameter selection using cross-validation. We conduct five-fold cross-validation to pick the

best value of K for each evaluation metric and then retrain on the whole data matrix using the

selected K to generate the final model for predicting the test data. Pseudo-code for the entire

regression selection process is provided in Algorithm 1 in the S1 Text. We fix λ = 10−6 in Eq 3

in our implementation.

Coding selection (CS). Coding selection works directly on the binary bioactivity data Z =

{zi,j}i2I,j2J rather than the quantitative inhibition measurements. The idea is to construct a sin-

gle objective function to score potential informer compounds for how well they predict target

activity the non-informer set. For a potential informer set A� J, CS considers that distinct

rows of the sub-matrix ZA = {zi,j}i2I,j2A constitute a kind of encoding of the kinase target space.

Specifically, row i of ZA, which corresponds to kinase target i, is a length nA = 16 vector of

zeros and ones. Among the 216 = 65536 possible such vectors, only a relatively few distinct

ones, numbering LA� n, manifest themselves as rows of the sub-matrix in a given example.

We call these distinct vectors code words, and denote them q1; q2; � � � ; qLA
. For some K� LA,

we introduce a partition π = {bk} of these code words, where each block bk holds a set of code

words, and where π has K disjoint blocks. Together, the informer set A and the partition π
induce a partition S = {S1, S2, � � �, SK} of the targets I by the rule that i 2 Sk if (and only if) row i
of the sub-matrix equals some code word ql 2 bk. We emphasize that given candidates A and

π, the target-space partition S is obtained using only information in the binary data sub-matrix

ZA.

To provide some intuition for the coding construction, let’s look ahead to when interme-

diate data x� are obtained in experiments with informer set compounds j 2 A on new

target i�. These inhibition measurements may also be binarized to produce bioactivity calls

z� = {zi�,j, j 2 A}. If z� exactly matches one of the code words ql, then any targets in I having

this same code word are natural comparators for i�. Their bioactivity profiles on the non-

informer compounds may be the basis for a useful secondary prediction. In fact we may not
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have an exact match of the new code word, and there may be distinct code word profiles on

the informer compounds that yield similar non-informer profiles. Therefore, we propose the

following objective function to measure properties of the potential informer set A and the

code-word partition π that are conducive to high-accuracy prediction on non-informer com-

pounds:

fK;lðA; pÞ ¼
XK

k¼1

X

i;i02Sk

1 �

P
j2Aczijzi0j

P
j2Aczij _ zi0j

( ) !

� lLA ð8Þ

The inner summation in Eq 8, which is over pairs of targets within cluster Sk, accumulates

pairwise differences between targets, as measured on the non-informer compounds, and using

the asymmetric binary distance: among non-informer compounds that are active against either

target, what fraction are not active against both? The outer sum is over clusters (partition

blocks) of targets. The objective function value is low, therefore, if clusters induced by A and π
and informer data are internally homogeneous on the non-informer data. For tuning parame-

ter λ> 0, the penalty term λLA encourages informer sets that have many code words, in

order to reduce the rate of extrapolation from intermediate data. The proposed scoring func-

tion Eq (8) is essentially non-parametric, allowing potentially complex relationships to exist

between bioactivities of informer and non-informer compounds. This modeling flexibility

comes at a cost, however, in that it is a combinatorial optimization task to identify the best A
and π settings for any fixed K and λ.

Initially we sought to solve arg min fK,λ(A, π) approximately by Monte Carlo search. Fixing

parameters K and λ, we randomly sample (A1, π1), (A2, π2), � � �, (AB, πB) for a large number of

trials B, such as 106 or 107. Each Ab is a random subset of size nA = 16 taken from the full set of

n compounds; then πb is a random partition of the code words from ZAb
. In numerical experi-

ments, we found that marginally stabilizing compound scores is more effective than taking the

informer set Â to be the sampled set Ab having the lowest objective value Eq (8). Specifically,

we score every compound j 2 J by

fj ¼
X

K2K

1

B

XB

b¼1

1ðj 2 AbÞfK;lðAb; pbÞ ð9Þ

where K is a set of entertained cluster numbers. We used K ¼ f2; 3; � � � ; 40g, and fixed λ = 5

based on preliminary experimentation. The computed informer set Â contains the nA best

(lowest) scoring compounds by this score.

Compound ranking. To proceed with ranking compounds, we require a code word z�

derived from the intermediate data x� obtained on the new target i�. A threshold level, such as

used to binarize the original data Eq (1), may not be available. Instead we revert to the inhibi-

tion data on the informer compounds, say XÂ (an m × nA sub-matrix of X), and we keep track

of all the rows of XÂ associated with each code word in the computed informer set. We com-

pute a centroid for code-word ql, say, cl, by averaging the rows of XÂ associated with ql. Then,

the code-word centroid that is closest (in Euclidean distance) to the new data x� is the derived

code word z� for target i�.
Having our new target i� provide code word z� on the basis of intermediate data x�, we next

require a prediction of non-informer compounds that may also inhibit i�. We score j 2 Âc by
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their activity rates among the n� targets with the same code word as i�:

aj ¼
X

i2I

zi;j1½z
� is the code word of i �; n� ¼

X

i2I

1½z� is the code word of i �: ð10Þ

Our prediction of the active non-informer compounds is L ¼ fj 2 Âc : aj � kg for some

threshold κ. We set κ with an appeal to false-discovery-rate (FDR) control, recognizing that

the Bernoulli trial zi� ,j may be regarded as having success probability estimated by aj/n�. Then a

crude estimate of FDR of L is

1 �

P
jðaj=n�Þ1½aj � k�
P

j 1½aj � k�
ð11Þ

Similarly, we could estimate under the Bernoulli model the expected number of active non-

informer compounds,
X

j2Acðaj=n�Þ, which may guide our choice of κ. Pseudo-code for the

entire coding selection method is provided in Algorithm 2, S1 Text.

Adaptive selection (AS). The AS approach first identifies a base informer set of size n0 <

nA compounds by a minor variation of the regression selection (RS) approach. We use n0 = 8

and nA = 16. This step establishes both a clustering of the target space and the identity of n0

compounds that are predictive of the cluster labels. Next, AS adaptively grows the informer

set, one compound at a time, so as to identify compounds that are predictive of non-informer

bioactivity.

To identify the base informer set Ao, the target space I is clustered using k-means, which

aims to solve Eq 2. With LK ¼ min S

PK
k¼1

P
p2Sk

xp� �

P
q2Sk

xq�

jSkj

�
�
�
�

�
�
�
�

2

; the number of clusters K is

determined by

K ¼ arg min
k

1 �
Lkþ1

Lk

�
�
�
�

�
�
�
� � �

� �

: ð12Þ

� is a small value. In our calculations, � = 0.02. Similar to RS, the clustered target space {Sk}
then serves as the response variable in a penalized multinomial regression to select the first n0

compounds of the informer set. Our specific implementation uses group LASSO as deployed

in the glmnet R package for the multinomial response [37]. The regularization penalty is

chosen so that precisely n0 compounds enter the predictive model.

For the remaining nA − n0 informer compounds, we augment the current set one com-

pound at a time. Letting Ac denote the current set, the next added compound solves:

j� ¼ arg min
j =2Ac

X

k =2Ac[fjg
kx�k � cn k2; ð13Þ

where x�k is the column vector in the inhibition matrix {xi,j}i2I,j2J for compound k;

cn ¼ 1

jAc[fjgj

P
k2Ac[fjg

x�k denotes the centroid of the current informer set. Eq 13 finds the com-

pound that minimizes the distance between informers and non-informers; the informer set is

updated Ac Ac [ {j�}. The final informer set is generated by iterating this process until there

are nA compounds in Ac.

For compound ranking, AS uses the same approach as CS Eq (11) after the code word z� is

acquired on generated informer set. Pseudo-code for AS is provided in Algorithm 3 of S1 Text.

Baseline models (B). As practical baseline approaches against which to compare our bio-

activity-guided experimental design strategies (RS, CS, and AS), we applied two different

informer selection methods: one based on compound structural diversity and the other

Predicting kinase inhibitors using bioactivity matrix derived informer sets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006813 August 5, 2019 19 / 29

https://doi.org/10.1371/journal.pcbi.1006813


leveraging the most frequent hitter (nonselective) kinase inhibitors as observed from the com-

pound bioactivity matrix. Then, based on data returned from these informer selections, we

applied three different chemical feature-based compound ranking methods, yielding a total of

six strategies.

Baseline informer set selection. Baseline informer compounds were selected from each data

matrix by one of two different methods:

• Chemometric selection (BC)—Compounds are grouped by scikit-learn’s hierarchical

agglomerative clustering procedure (nA = 16 clusters, average linkage) using a Jaccard dis-

tance matrix computed from RDKit-derived Morgan chemical fingerprints (radius = 2,

1024-bits) as features [38–40]. The 16 cluster medoids are taken as the informers.

• Frequent Hitters selection (BF)—Matrix compounds j are ranked in descending order by the

number of targets on which each is labeled active, i.e., by fj = ∑i2I zi,j, where zi,j indicates

activity in the input bioactivity data (1). In other words, the informer set contains the 16

most broadly active compounds.

Note that in the cross validation study, the informer set needs to be recomputed each time a

different target is left out.

Baseline compound ranking. After data were returned on the informer set, the remaining

non-informer compounds were then ranked by three chemometric “hit expansion” methods:

• Simple Expansion (s)—ranks each non-informer by its distance to the nearest active informer

compound as measured by Jaccard distance between Morgan fingerprints.

• Loop Expansion (l)—loops through active informer compounds in order of descending activ-

ity and prioritizes the nearest unranked non-informer compound to the current active

informer based on fingerprint distance. The loop continues until all non-informers have

been ranked.

• Weighted Expansion (w)—ranks each non-informer compound by Euclidean inner product

of a target’s informer activity vector (16 normalized activities) and a compound’s vector of

Jaccard similarities to those 16 informers. This scalar represents the “activity-weighted” simi-

larity of each compound to the informer set. Compounds are prioritized in order of ascend-

ing values. Therefore, for target i�, we have a single activity vector x� comprising the 16

informer activities (normalized to [0, 1]):

x� ¼ ½x1; x2; x3; :::; x16� ð14Þ

Each noninformer compound, j, has a similarity vector v representing the compound’s simi-

larity to each of the informers tested on target i�:

vj ¼ ½v1; v2; v3; :::; v16� ð15Þ

The weighted expansion score, w, for compound j on target i� is then the Euclidean Inner

product:

wj ¼ vTj x
� ð16Þ

In the simple and loop expansion ranking methods, a binary label is required to designate

“active” and “inactive” informers. One issue that arises from this is that a compound’s activity

label depends on a target’s compound activity distribution (μ+2σ threshold), which is

unknown prior to experimental screening of the compound set. Another is that these
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expansion methods cannot proceed if none of the informers are identified as active. To address

the former issue, we predict the activity threshold used for assigning a compound’s binary

activity label on a given target using data returned on the 16 informer compounds. From these

16 informer activities, a threshold is inferred from the available compound activity distribu-

tions on other targets in the matrix. This threshold for each target is the κ parameter described

above in the Coding Selection method. To address the latter issue, where no active informer

compound is identified, the simple and loop expansion ranking methods treat the highest

activity informer compound as an active center for expansion.

Biological assays on novel microbial kinase targets

Mycobacterium tuberculosis PknB. Recombinant bacterial kinase (PknB) and bacterial sub-

strate (GarA) were purified from E. coli following published procedures [22]. The kinase inhi-

bition assay was done using the Kinase Glo(R) kit from Promega similar to published

procedures. PknB was added to plated kinase inhibitor libraries (the available compounds

from PKIS 1 and 2) and incubated at room temperature for 10 minutes, after which ATP and

GarA (protein substrate) were added. The final concentrations were: PknB 0.25 μM, GarA 40

μM, ATP 100 μM, inhibitors 2 μM, DMSO 1% in a final volume of 5 μL. The kinase reaction

proceeded at room temperature for 30 minutes and quenched by the addition of 5 μL of Kinase

Glo(R) reagent. The plate was allowed to develop for 10 minutes and luminescence was

detected on a BMG PheraStar multiplate reader. Luminescence was converted to μmol/minute

of ATP consumed using a standard curve of ATP from 100 to 0 μM. A negative control (no

inhibitor) was used to determine percent activity. A positive control (GSK690693) was used to

ensure a baseline and compare plate-to-plate variation. Data were analyzed using CDD Vault

(Collaborative Drug Discovery, Inc.) to determine plate Z0 > 0.5 and report percent inhibition

for each compound.

Epstein-Barr virus BGLF4. Viral kinase BGLF4 was provided by the laboratory of Professsor

Yongna Xing. BGLF4 was expressed with an N-terminal His8-MBP-dual-tag in insect cells,

and purified over Ni2+-NTA resin (Qiagen) and then Maltose resin (Qiagen), followed by ion

exchange chromatography (Source 15Q, GE Healthcare) and gel filtration chromatography

(Superdex 200, GE Healthcare) to more than 95% homogeneity. The purified BGLF4 was then

used for kinase inhibition assays using the C-terminal fragment peptide of retinoblastoma pro-

tein (RB) as substrate (Millipore Sigma cta# 12-439). The remaining assay parameters were the

same as those applied for PknB except for the following changes. The final concentrations in

the reaction medium were: BGLF4 0.004 μg/μL, RB 0.04 μg/μL, ATP 500 μM, inhibitors 3 μM,

DMSO 0.3% in a final volume of 5 μL. As a positive control, K252a (5 μM) was used. The reac-

tion proceeded at room temperature for 20 minutes and was then quenched by the addition of

5 μL of Kinase Glo(R) reagent. ADP depletion proceeded for 40 minutes, followed by addition

of 10 μL of kinase detection reagent. The reactions were incubated for 1 hour prior to lumines-

cence detection.

Toxoplasma gondii ROP18. Inhibition data for the PKIS compounds on the Toxoplasma
gondii kinase ROP18 was provided by the University of North Carolina Structural Genomics

Consortium and Professor L. David Sibley at Washington University in St. Louis. Their assay

measured phosphorylation of a substrate peptide by purified ROP18 using microfluidic capil-

lary electrophoresis [23].

Model metrics and evaluation procedure

Metrics. To evaluate model performance, we applied three different virtual screening metrics,

ROCAUC, NEF10, and FASR10. Standard classification metrics, F1 score (F1) and Matthew’s
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Correlation Coefficent (MCC), were applied as well. ROCAUC and NEF10 measure the extent

to which a model prioritizes the active compounds in its ranking. ROCAUC is a standard met-

ric in virtual screening [41] and applied generally in machine learning to evaluate classifiers.

Enrichment Factor (EF) (Eq 17) is another commonly used metric for assessing virtual screen-

ing performance. EF reflects the fold increase in active compounds over that expected from

random compound selection, for a subset of a compound library taken from some top ranking

portion of a prioritized compound list.

EF10i ¼

P
j2Bzi;j
jBj

=

Pn
j¼1

zi;j
n

; ð17Þ

where B is the set of compounds among the top 10% of those ranked by a method applied to

target i, and zi,j is as in (1).

However, the number of active compounds for each left-out target i varies from target to

target (S1 Fig). We apply a scaling scheme on EF at the top 10% (Eq 18), which enables better

comparisons across targets exhibiting significant differences in active:inactive ratios.

NEF10i ¼

1þ
EF10i � EFbase

EF10maxi � EFbase
2

;
ð18Þ

where EFbase is 1, which corresponds to random guessing; EF10maxi is the maximum theoret-

ical EF10i, which means all actives are ranked at the top and depends on the number of actives

for each target. Our NEF metric returns a value between 0.5 and 1, where a NEF10i larger than

0.5 shows better ranking performance than random guessing–similar to ROCAUC. We

selected the 10% threshold with consideration of the sizes of our informer (nA = 16) and full

compound sets (n = 366 and n = 405). This threshold includes the 16 informers and 21 nonin-

former compounds in our PKIS1 evaluation.

For the ROCAUC and NEF10 metrics, experimental percent inhibition (activity) data were

binarized using a target-specific μ+2σ threshold based on the activity distribution of the PKIS1

compounds for the kinase target. Actives were defined as compounds with greater than twice

the standard deviations above the mean, as noted in (1). When applying the metrics, active

informer compounds were counted as true positives, whereas inactive informers did not count

against the models as false positives. It should be noted that the main purpose of the informer

set is to facilitate accurate activity ranking on the non-informers. However, since informer

compounds represent the highest priority compounds for testing, we reward models for

retrieving active informers but refrain from penalizing models for choosing inactive informers.

Some baseline models that rely upon binary compound labels occasionally failed to evaluate

the noninformer compounds in cases where no active informers are returned. In such cases,

metric scores reflecting random ranking were assigned to the model: ROCAUC and NEF10 of

0.5 and a FASR10 score of 0.0.

FASR10 assesses a model’s capacity to recognize different active chemotypes among the

the top 10% of ranked compounds. The metric reflects the fraction of all active scaffolds identi-

fied on a given target within the compound set. Again, zi is the Boolean vector of compound

binary activity labels on target i for compound set J. Let OJ be the vector of chemical scaffold

identifiers for compounds in J. The scaffold identifiers are arbitrary integer scaffold indices

assigned to each of the generic Bemis-Murcko scaffold presented in J, as obtained using the

MurckoScaffold module in RDKit [39, 42]. Bemis-Murcko scaffolds were made generic

by stripping hydrogens, converting all bonds to single, and setting all atom types to aliphatic

carbon. The unique active scaffold identifiers are the set of all non-zero values in the
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Hadamard product vector:

CJ ¼ fzi � OJg ð19Þ

If we then let z10
i and O10

J be the binary activity labels and scaffold IDs for the top 10%

ranked compounds, the subset of unique active scaffolds recognized just among the top 10% of

compounds is:

C10
J ¼ fz

10
i � O

10
J g ð20Þ

The fraction of active scaffolds recognized in the top 10% is:

FASR10 ¼
jC10

J j

jCJj
ð21Þ

Note, active scaffolds were not considered retrieved unless an experimentally observed

active member from that chemotype was in the top 10%. Cases arise where only inactive mem-

bers of an active scaffold were obtained in the top 10% of the compound ranking. In such

cases, the FASR10 metric does not count the chemotype as recognized.

Although the IBRs were developed for compound ranking and not necessarily as classifiers,

standard classification metrics F1 and MCC were also applied for IBR performance evalua-

tions. The scores/ranks returned by each method were converted to binary classifications

using a fixed threshold across targets based on the median active fraction of the chemoge-

nomic data: 5.5% for both PKIS1 and PKIS2. This amounts to assigning an active classification

to the top 20 and top 23 scoring compounds in PKIS1 (366) and PKIS2 (415), respectively. As

in the other metrics, inactive informers were not counted as false positives and were removed

before metric calculations. Active informers, however, were counted as true positives.

Model evaluations. Performance of the models was evaluated in two stages. The first stage

follows a retrospective leave-one-target-out (LOTO) evaluation scheme. Each of the 224 kinase

targets in the PKIS1 target set is removed and treated as a new target of interest i. The PKIS1

compound activities are hidden for this target. An informer set Ai is selected for this new tar-

get, the activities are revealed for the informers, and then the model rank orders the remaining

noninformers Ac
i using the informer data and in some cases data from the other 223 targets.

The 9 models were evaluated in this stage using the 3 metrics described above. The second

stage is a prospective evaluation of the 9 models as applied on three novel, non-human, kinase

targets. In these evaluations, informer sets were generated twice for each model–once on each

of the training matrices, PKIS1 and PKIS2. The remaining compounds (noninformers) from

the corresponding matrix are then ranked on the two novel kinase targets using data returned

for the informer sets and data within the corresponding PKIS1 or PKIS2 training matrix from

which the informer set was selected. As in the retrospective PKIS1 LOTO evaluation, each

model was assessed using the 3 metrics described above. However, in this prospective test on

the new targets, each model was applied twice, using each of the PKIS data matrices, and there-

fore a total of 6 evaluations were performed on each model. We attempted to build a larger

PKIS matrix by merging the PKIS1 and PKIS2 data matrices. The structure of the merged

matrix, was however problematic in that the compound sets were nearly disjoint between

PKIS1 and PKIS2. The resulting incomplete matrix lacks a structure that enables accurate

imputation of the missing activity elements.
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Code and data availability

PknB and BGLF4 screening data obtained at the UW-Carbone Cancer Center’s Small Mole-

cule Screening Facility, ROP18 data, formatted PKIS1 and PKIS2 datasets, and a Python imple-

mentation of the baseline IBR methods, evaluation metrics, and plotting procedures are

available here: https://github.com/SpencerEricksen/informers. Matlab code and documenta-

tion involving the RS method is available here: https://github.com/leepei/informer. An R pack-

age for running CS and AS methods is available here: https://github.com/wiscstatman/esdd/

tree/master/informRset.

Supporting information

S1 Fig. Nearest-neighbor sequence identity distributions for kinase domains in PKIS sets.

A sequence similarity matrix (% kinase domain sequence identity) was determined for most

members of the PKIS1 and PKIS2 kinase sets (mutants removed). The kinase domain

sequences of targets BGLF4, PknB, and ROP18 were also included. The histograms show the

distribution of nearest-neighbor sequence identities among kinase domains within the matri-

ces (PKIS1 or PKIS2). The blue (BGLF4), red (PknB), and green (ROP18) diamonds indicate

nearest neighbor sequence identities observed for these targets in the PKIS1 and PKIS2 kinase

sets. BGLF4, PknB, and ROP18 do not have closely related neighbors in the sets.

(TIFF)

S2 Fig. The distribution of active compound fractions across kinase targets in PKIS1 and

PKIS2. The variation in the class imbalance is even wider when a universal threshold is applied

(percent inhibition) over all targets. Diamonds indicate the fraction of active compounds for

BGLF4 (blue), PknB (red), and ROP18 (green) in the PKIS1 and PKIS2 compound sets.

(TIFF)

S3 Fig. Projection of PKIS1 compounds along the 3 primary components taken from PCA

on their Morgan fingerprints. Target kinases EGFR and LOK are shown here as examples.

PKIS1 compounds (points) are colored according to their experimental activity on the target:

yellow indicates high activity (strong inhibition) and blue is low. Active compounds (exceed-

ing threshold) have markers outlined in red. On these example kinase targets, separated

regions of active chemical space can be observed.

(TIFF)

S4 Fig. PKIS1 LOTO VS performance of AS method as function of informer set size. We

examined the relationship between informer set size (nA = 9 to 28) for IBR method AS and vir-

tual screening performance in terms of ROCAUC and NEF10 metrics.

(TIFF)

S5 Fig. PKIS1 LOTO virtual screening performance as a function of informer set size for

baseline method BCw. ROCAUC (left) and NEF10 (right).

(TIFF)

S6 Fig. PKIS1 LOTO virtual screening performance as a function of informer set size for

baseline method BFw. ROCAUC (left) and NEF10 (right).

(TIFF)

S7 Fig. Violin plots of ROCAUC stratified over four target sets (Q1-Q4) with different

activity rates (Q1 lowest, Q4 highest) in PKIS1.

(TIFF)
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S8 Fig. Methods effects on ROCAUC from stratified regression. Shown are 95% confidence

intervals (Tukey’s method) from a regression model allowing target and method to affect per-

formance.

(TIFF)

S9 Fig. Violin plots of NEF10 stratified over four target sets (Q1-Q4) with different activity

rates (Q1 lowest, Q4 highest) in PKIS1.

(TIFF)

S10 Fig. Methods effects on NEF10 from stratified regression. Shown are 95% confidence

intervals (Tukey’s method) from a regression model allowing target and method to affect per-

formance.

(TIFF)

S11 Fig. Violin plots of FASR10 stratified over four target sets (Q1-Q4) with different

activity rates (Q1 lowest, Q4 highest) in PKIS1.

(TIFF)

S12 Fig. Methods effects on FASR10 from stratified regression. Shown are 95% confidence

intervals (Tukey’s method) from a regression model allowing target and method to affect per-

formance.

(TIFF)

S1 Table. Informer selections among PKIS1 compound set by IBR method. From 366

PKIS1 matrix compounds, 16 informer compounds were selected by each IBR method. The

union of all informer compounds across 5 IBRs is listed. Informers selected by each method

are indicated black dots. Informer activities are reported as normalized percent inhibition val-

ues [0, 1]. Informers considered active have activities reported in boldface.

(PDF)

S2 Table. Retrieval counts by the various methods on new kinase targets (a) PknB, (b)

BGLF4, and (c) ROP18 using PKIS1 or PKIS2 matrices. The values below each of the IBR

methods indicate the number of active informers observed (out of 16), the number of active

compounds identified in the top 10% ranking compounds by each method, and the number of

distinct active scaffolds recognized in the top 10%. The total number of experimentally deter-

mined compounds and active scaffolds is indicated in the total column. For a given target,

molecules included in the top 10% compounds are the active informers and the top ranking

non-informers comprising 10% of the set of all compounds after removing inactive informers.

(PDF)

S3 Table. Metrics evaluations against three new kinase targets (a) PKNB, (b) BGLF4, and

(c) ROP18 using PKIS1 or PKIS2 matrices. IBR strategies were applied prospectively on

novel kinase targets, (a) Pknb, (b) BGLF4, and (c) ROP18, which do not belong to either of the

PKIS1 and PKIS2 target sets.

(PDF)

S4 Table. (a) ROCAUC, (b) NEF10, (c) FASR10, (d) F1 score (F1), and (e) Matthew’s Corre-

lation Coefficient (MCC) in Leave-One-Target-Out Cross Validation on PKIS1. Nine IBR

methods were evaluated on 224 PKIS1 targets using standard VS metrics that reflect active

retrieval, ROCAUC, NEF10, F1, and MCC. FASR10 was also evaluated to reflect the chemical

diversity of the actives retrieved.

(PDF)

Predicting kinase inhibitors using bioactivity matrix derived informer sets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006813 August 5, 2019 25 / 29

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006813.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006813.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006813.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006813.s011
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006813.s012
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006813.s013
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006813.s014
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006813.s015
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006813.s016
https://doi.org/10.1371/journal.pcbi.1006813


S5 Table. P-values in methods comparison for PKIS1 LOTO VS. VS metrics (a) ROCAUC,

(b) NEF10, (c) FASR10, (d) F1 score (F1), and (e) Matthew’s Correlation Coefficient (MCC) in

Leave-One-Target-Out Cross Validation on PKIS1 are compared across 9 IBR methods evalu-

ated on 224 PKIS1 targets. A pairwise, 2-sided Wilcoxon signed-rank test (non-parametric)

was applied to calculate p-values. Bold font is used to indicate p-values that fail to pass α = 0.05

threshold for significance when comparing IBR to baseline methods. To collectively compare

all 6 baseline IBRs against each non-baseline IBR, we imposed a S̆idák multiple comparison

correction with 6 hypotheses. This increases the stringency of the statistical threshold applied

on each of the 6 individual tests to α = 0.0085. However, after applying this correction, non-

baseline methods remained statistically superior to all baselines for all metrics except for CS

when considering the ROCAUC metric and RS when compared on F1 and MCC metrics.

(PDF)

S1 Text. Pseudocode for regression selection, coding selection, and adaptive selection.

(PDF)
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