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Summary
Background The World Health Organization (WHO) recommends systematic tuberculosis (TB) screening in prisons.
Evidence is lacking for accurate and scalable screening approaches in this setting. We aimed to assess the accuracy of
artificial intelligence-based chest x-ray interpretation algorithms for TB screening in prisons.

Methods We performed prospective TB screening in three male prisons in Brazil from October 2017 to December
2019. We administered a standardized questionnaire, performed a chest x-ray in a mobile unit, and collected sputum
for confirmatory testing using Xpert MTB/RIF and culture. We evaluated x-ray images using three algorithms
(CAD4TB version 6, Lunit version 3.1.0.0 and qXR version 3) and compared their accuracy. We utilized multivariable
logistic regression to assess the effect of demographic and clinical characteristics on algorithm accuracy. Finally, we
investigated the relationship between abnormality scores and Xpert semi-quantitative results.

Findings Among 2075 incarcerated individuals, 259 (12.5%) had confirmed TB. All three algorithms performed
similarly overall with area under the receiver operating characteristic curve (AUC) of 0.88–0.91. At 90% sensitivity,
only LunitTB and qXR met the WHO Target Product Profile requirements for a triage test, with specificity of 84% and
74%, respectively. All algorithms had variable performance by age, prior TB, smoking, and presence of TB symptoms.
LunitTB was the most robust to this heterogeneity but nonetheless failed to meet the TPP for individuals with
previous TB. Abnormality scores of all three algorithms were significantly correlated with sputum bacillary load.

Interpretation Automated x-ray interpretation algorithms can be an effective triage tool for TB screening in prisons.
However, their specificity is insufficient in individuals with previous TB.

Funding This study was supported by the US National Institutes of Health (grant numbers R01 AI130058 and R01
AI149620) and the State Secretary of Health of Mato Grosso do Sul.

Copyright © 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Automated interpretation; Diagnostics; Prisons; Tuberculosis; X-ray
*Corresponding author. Oswaldo Cruz Foundation - Mato Grosso do Sul, Campo Grande, MS 79074-460, Brazil.
E-mail address: julio.croda@fiocruz.br (J. Croda).

iAuthors contributed equally to the work.

www.thelancet.com Vol 17 January, 2023 1

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:julio.croda@fiocruz.br
http://crossmark.crossref.org/dialog/?doi=10.1016/j.lana.2022.100388&domain=pdf
https://doi.org/10.1016/j.lana.2022.100388
https://doi.org/10.1016/j.lana.2022.100388
https://doi.org/10.1016/j.lana.2022.100388
www.thelancet.com/digital-health


Research in context

Evidence before this study
The World Health Organization (WHO) recommends
systematic tuberculosis screening in prisons. We reviewed the
evidence for using chest X-rays with automated
interpretation for tuberculosis screening in prisons by
searching the medline for articles published in English or
Portuguese as of July 31, 2022, using the terms (“prison*” or
“jail” or “correctional” or “detention”) and (“computer-aided
detection” or “artificial intelligence” or “automated
interpretation” or “machine learning”) and (“radiograph” or
“X-ray”). Three studies evaluated the use of CAD4TB among
incarcerated populations, finding that it was useful as a
screening tool to guide further TB testing, though the largest
of these studies included only 33 cases. None of the studies
evaluated other automated interpretation algorithms or
investigated demographic and clinical factors associated with
algorithm performance.

Added value of this study
In a study conducted in three high tuberculosis-burden
prisons in Brazil, we evaluated three automated chest x-ray
interpretation algorithms (CAD4TBv6, LunitTB version 3.1.0.0
and qXR v3) as an initial screening tool for tuberculosis.
Among 259 microbiologically-confirmed tuberculosis cases
and 1816 tuberculosis-negative controls, we found that two
of three systems met WHO target profile product benchmarks
(90% sensitivity, 70% specificity). Accuracy was not

substantially impacted by the presence or absence of
symptoms, smoking, or drug use. The specificity of all
interpretation algorithms declined modestly with age but was
markedly diminished (<50%) for all three algorithms among
individuals with prior tuberculosis. Among cases with medium
or high sputum bacillary load by Xpert MTB/RIF G4, the
sensitivity of all automated interpretation algorithms
exceeded 95%.

Implications of all the available evidence
Globally, prisons are high-risk settings for tuberculosis, yet
case detection remains poor, amid limited investments in
active case finding. Tuberculosis screening by chest x-rays
with automated interpretation algorithms, followed by
confirmatory testing using molecular diagnostics, may be an
efficient means to improve case detection among incarcerated
populations. Our findings indicate that currently available
automated interpretation algorithms perform with sufficient
accuracy among incarcerated persons, particularly in
identifying individuals with high sputum bacterial load, and
are robust to individual clinical and demographic
characteristics including symptoms, smoking and drug use.
For individuals with prior tuberculosis, automated
interpretation of chest x-rays falls below WHO accuracy
benchmarks, and alternative means of tuberculosis screening
are needed.
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Introduction
Globally, tuberculosis (TB) incidence in prisons is more
than ten times higher than the general population.1 This
disparity is especially alarming in South America, where
TB cases in prisons have more than doubled since 2000
amid rising incarceration rates.1,2 Several factors
contribute to the elevated risk of TB in prisons,
including overcrowding, poor ventilation, high rates of
smoking, drug use, and limited access to medical care,
leading to delays in TB diagnosis.2

Interventions to address this growing burden are
urgently needed, including improvements in case
detection. In 2021, the World Health Organization
(WHO) released updated guidelines on screening for
TB, upgrading to a strong recommendation that sys-
tematic screening be conducted in prisons and peni-
tentiary institutions.3 However, the recommendation is
based on “very low certainty of evidence”, and guidance
on specific means for screening in this setting is lack-
ing. Moreover, correctional health systems are often
underfunded and poorly equipped, and few prison sys-
tems in low- and middle-income countries perform
systematic screening for TB despite the widely
acknowledged high burden. Therefore, effective, cost-
efficient screening approaches are needed to bring
case-finding to scale in these settings. An important part
of such approaches is a point-of-care screening test that
can substantially reduce the number of people who need
further testing.

Chest radiography is among the oldest tools for
pulmonary TB screening and historically played a major
role in TB control programs in high burden settings.4,5

However, by the 1970s, concerns were raised about
the accuracy, logistics and personnel requirements for
mass radiography, leading the WHO to conclude in its
9th expert committee report that “indiscriminate TB
case finding by mobile mass radiography should be
abandoned”.6

Recently, there has been a resurgence in interest in
the use of radiography as a screening tool for TB,
leveraging recent advances in machine learning ap-
proaches to automate x-ray interpretation.7,8 Clinic-based
evaluations have demonstrated promising accuracy for
several automated interpretation systems among in-
dividuals with TB symptoms, and the comparison be-
tween human and automated interpretations show
comparable results.9–12 As a result, the WHO guidelines
provided a new, conditional recommendation that
computer-aided detection may be used in place of hu-
man readers for screening and triage for tuberculosis.
www.thelancet.com Vol 17 January, 2023
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However, there is a need to understand how well these
algorithms will perform for the purpose of active case
finding, irrespective of symptoms, in incarcerated pop-
ulations with high prevalence of smoking, drug use, and
history of TB. To address this knowledge gap, we eval-
uated the performance of three deep learning-based x-
ray interpretation algorithms in the context of mass
screening for TB in three high burden prisons in Brazil.
Methods
Study design
We performed a cross-sectional study, embedded within
a larger prospective mass tuberculosis screening study,
from October 2017 to December 2019 in three male
prisons in Mato Grosso do Sul State, Brazil: Jair Ferreira
de Carvalho Penitentiary (EPJFC), Campo Grande Penal
Institute (IPCG), and Dourados State Penitentiary
(PED). The prisons have a combined population of
approximately 5500 individuals. All incarcerated in-
dividuals in each prison were invited to participate in TB
screening. Those who agreed to participate in the study
provided written informed consent. The study was
approved by the institutional review boards (IRBs) of the
Federal University of Grande Dourados (UFGD)
(#3.483.377) and Stanford University (#40285).
Study procedures
We outfitted a Volkswagen Constellation 24–240 truck
with a 9.8 × 2.5-m container, lead covering, an access
ramp, an x-ray machine (Altus ST 543 HF, Sawae®), an
x-ray scanner and digitizer (Agfa 15-X CR, Mortsel
Belgium) and a separate room for sputum processing
with two 4-module GeneXpert machines (Cepheid,
Sunnyvale, USA). The mobile screening team consisted
of a nurse, a laboratory technician, and an x-ray tech-
nician, with a physician available for consultation.

Study nurses administered a structured question-
naire to obtain demographic data, incarceration history,
lifestyle factors, health history, and TB symptoms
(cough, fever, night sweats, weight loss, loss of appetite,
tiredness, and chest pain).13 A spot sputum sample was
collected from all participants who were able to produce
sputum, with a target volume of at least 2 ml. After
homogenizing, 1 ml of sputa was tested by Xpert MTB/
RIF G4 (Cepheid, Sunnyvale, USA) and, if an additional
1 ml of sputum remained, it was used for culture on
Ogawa-Kudoh media. Mycobacterium tuberculosis growth
in cultures was confirmed by an immunochromato-
graphic assay (TB Ag MPT64 Rapid Test, Standard Di-
agnostics, Seoul, South Korea).

A posterior-anterior chest x-ray was performed for all
participants using a Sawae analog system and then
scanned and digitized. To simulate a real-world
screening program, all chest x-rays were included, irre-
spective of quality. The images (blinded, and without
www.thelancet.com Vol 17 January, 2023
any metadata) were electronically transferred for auto-
mated analysis by the developers of Computer-Aided
Detection for TB version 6 (CAD4TBv6) at Radboud
University Medical Center (Netherlands); Lunit
INSIGHT CXR2 version 3.1.0.0 (hereinafter LunitTB)
developed by the South Korean medical software com-
pany Lunit; and qXR version 3, developed by Qure.ai in
Mumbai, India. All information was recorded in
Research Electronic Data Capture (REDCap®).14,15
Outcome definitions and analytic approach
We defined TB cases as individuals with a positive Xpert
MTB/RIF or culture growingM. tuberculosis. We defined
controls as individuals who had sputum testing for
Xpert MTB/RIF and no positive result by Xpert or cul-
ture. As a secondary analysis, we included as controls all
individuals who were screened for TB and did not have a
positive test, regardless of whether they were able to
provide sputum. Individuals already undergoing treat-
ment for TB were excluded from all analyses.

For our primary analyses, we evaluated the perfor-
mance of each algorithm with the WHO’s Target
Product Profile16 (TPP) for a triage test by identifying the
threshold that achieved 90% sensitivity and examining
the corresponding specificity. As secondary analyses, we
used pre-selected thresholds. For CAD4TBv6, which
provides a score range of 0–100, we used a positivity
threshold score of ≥60 through calibration with radio-
graphic imaging data from a subset of participants with
(n = 80) and without (n = 200) microbiologically
confirmed TB. For LunitTB, which provides a score
range of 0–1, we used a threshold of ≥0.72 as specified
by the manufacturer and identified through prior cali-
bration.10,11 For qXR (score range 0–1), we used a
threshold of ≥0.5 according to a previous study.17

For each algorithm we calculated the sensitivity,
specificity, positive predictive value (PPV), negative
predictive value (NPV), and area under the receiver
operating characteristic (ROC) curve (AUC). We report
PPV and NPV at a prevalence of 4%, which is the
prevalence observed across three rounds of mass
screening in the study prisons.18 We calculated exact
binomial confidence intervals (CIs) for sensitivity and
specificity. We compared algorithm AUCs using
DeLong’s test. For demographic and clinical character-
istics, continuous variables were compared using the
Mann–Whitney U test and categorical variables using
the chi-square test. To assess the influence of de-
mographic and clinical characteristics on algorithm
performance, we conducted multivariable logistic
regression controlling for age, race, drug use, smoking,
previous TB, and presence of any TB symptoms (cough,
fever, night sweat, weight loss, loss of appetite, tired-
ness, and chest pain). We plotted binned residuals,
evaluated Cook’s distance, and tested for multiple
collinearity by calculating variance inflation factors for
3
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each variable. We report predicted marginal estimates of
specificity for each characteristic at the WHO TPP
threshold of 90% sensitivity. Finally, we investigated the
relationship between Xpert semi-quantitative result and
x-ray algorithm score among confirmed TB cases using
Kendall’s tau. The sample size for the study (anticipated
number of confirmed cases, 158) was based on
achieving precision of ±6% around the anticipated
sensitivity (85%) of the primary study diagnostic
(sputum pooling), which has been previously reported.19

For the sub-study, the actual case numbers were found
to be sufficient for characterizing x-ray sensitivity with
equal or greater at the WHO TPP benchmark of 90%.
Data were analyzed using SPSS version 25.0 and R
version 4.0.3, including the pROC package (version
1.17.0.1).20
Role of the funding source
The funders did not have any role in study design, data
collection, data analysis, interpretation, or writing of the
report.
Results
Between October 2017 and December 2019, we enrolled
7081 participants across three male prisons in the Bra-
zilian state of Mato Grosso do Sul. Sixty-six participants
were excluded from further analyses as they were
already under treatment for tuberculosis. Among the
remainder, 2075 (29.3%) participants were able to pro-
duce valid sputum samples for Xpert and were included
in the primary analysis (Fig. 1). Among these, 1084
(52.2%) additionally had sputum cultures performed.
Fig. 1: Flow diagram of study participants in mass screening and
inclusion of participants in x-ray evaluation.
Participants in the primary analysis had a median age of
33 years (IQR 28–40) (Table 1). Compared with partic-
ipants who did not produce a valid sputum sample,
those who did had a higher prevalence of TB symptoms
(73% vs 18%, p < 0.001), smoking (73% vs 55%,
p < 0.001), illicit drug use (70% vs 54% p < 0.001), and
previous tuberculosis (14% vs 5%, p < 0.001)
(Supplementary Table S1).

During the screening period, 259 (12.5%) partici-
pants were diagnosed with pulmonary TB, of which 113
(43.6%) were diagnosed by sputum Xpert alone, 17
(6.6%) were diagnosed through sputum culture alone,
and 129 (49.8%) had positive Xpert and culture tests.
Sixty-two participants were Xpert positive and culture
negative. The presence of any TB symptom did not
differ between TB cases and controls (76% vs 73%,
p = 0.28); however, cough was slightly more common
among TB cases (66 vs 60%, p = 0.04). Smoking, drug
use, history of incarceration, and history of TB were
significantly more prevalent among TB cases compared
to non-TB cases (Table 1).

Among TB cases, 209 (80.7%) had X-ray abnormality
scores above the threshold selected by CAD4TBv6, 207
(79.9%) by, LunitTB, and 193 (74.5%) by qXR (Table 2).
At 90% sensitivity, only LunitTB and qXR met the
WHO’s Target Product Profile (TPP) with specificity of
83.7% (95% CI 72.4–87.3) and 74.2% (95% CI
60.2–81.3), respectively. At a 4% prevalence of TB,
LunitTB had the highest PPV (18.7%), followed by qXR
(12.7%) and CAD4TBv6 (9.0%). Receiver operating
characteristic (ROC) curves for each algorithm are
shown in Fig. 2. Compared with CAD4TBv6 (AUC
0.88), LunitTB (AUC 0.91, p = 0.003) and qXR (AUC
0.90, p = 0.01) had higher AUCs, though AUC did not
differ between LunitTB and qXR (p = 0.17). In a sec-
ondary analysis of accuracy in which we included the
4940 participants unable to provide sputum (total
N = 7015), AUCs did not differ substantially from the
primary analysis, with LunitTB at 0.93, qXR at 0.92, and
CAD4TBv6 at 0.90 (Supplementary Figure S1).

We next performed multivariable logistic regression
analysis to examine whether the performance of each
algorithm varied by sociodemographic characteristics
and risk factors, namely: age, race/ethnicity, current
smoker, drug use, previous TB, and TB symptoms.
Specificity of all three algorithms decreased with age
and tended to be lower among current smokers and
those without TB symptoms, compared to their respec-
tive counterparts (Fig. 3, Supplementary Figures S2 and
S3). LunitTB was the only algorithm that met WHO TPP
criteria among individuals 45 years and older. Notably,
specificity was under 50% across all three algorithms for
individuals with a history of TB.

To further investigate diagnostic performance
depending on history of previous TB, we analyzed the
distribution of abnormality scores for TyB cases versus
non-TB cases as confirmed by sputum Xpert or culture,
www.thelancet.com Vol 17 January, 2023
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Variables Total
N = 2075 (%)

TB cases
N = 259 (%)

No TB
N = 1816 (%)

p value

Median age (IQR) 33 (28, 40) 33 (28, 39) 33 (28, 40) 0.5

Prison Unit <0.001

PED 889 (42.8) 65 (25.1) 824 (45.0)

EPJFC 840 (40.5) 144 (55.6) 696 (38.3)

IPCG 346 (16.9) 50 (19.3) 296 (16.3)

Race/ethnicity 0.2

Mixed 1279 (61.6) 158 (61.0) 1121 (61.4)

White 508 (24.5) 56 (21.6) 452 (24.9)

Black 253 (12.2) 38 (14.7) 215 (11.8)

Indigenous 33 (1.6) 7 (2.7) 26 (1.4)

Asian 2 (0.1) – 2 (0.1)

<8 years of schooling 1546 (74.5) 198 (76,4) 1348 (74.2) 0.23

Current smoker 1520 (73.3) 208 (80.3) 1312 (72.2) 0.006

Illicit drug use over the last year 1460 (70.4) 203 (78.4) 1257 (69.2) 0.003

Previously incarcerated 1557 (75.0) 214 (82.6) 1343 (74.0) 0.003

BCG vaccinated 1862 (89.7) 223 (86.1) 1639 (90.3) 0.04

Previous TB 293 (14.1) 55 (21.2) 238 (13.1) <0.001

Report any WHO TB symptoms 1512 (72.9) 196 (75.7) 1316 (72.5) 0.28

Report cough 1255 (60.5) 172 (66.4) 1083 (59.6) 0.04

TB contact 1565 (75.4) 211 (81.5) 1354 (74.6) 0.16

Table 1: Sociodemographic characteristics and risk factors for TB among study participants, stratified by TB status as determined by sputum Xpert or
culture.

Articles
disaggregated by history of TB. We focused on LunitTB
for this analysis given its superior overall performance
and its relatively stable specificity by subgroup
compared to the other two algorithms. Strikingly, the
thresholds required to reach WHO TPP benchmarks of
90% sensitivity and 70% specificity varied dramatically
by history of TB (Fig. 4). In participants without previ-
ous TB, LunitTB score thresholds ≥0.04 had 70%
specificity and those ≤0.15 had 90% sensitivity,
providing a range of thresholds (0.04–0.15) meeting
TPP benchmarks. Conversely, in participants with pre-
vious TB, a threshold of at least 0.73 was required for
70% specificity, and there was no score threshold to
satisfy both TPP sensitivity and specificity. In partici-
pants with previous TB, neither CAD4TBv6 nor qXR
had a score that satisfies both TPP sensitivity and
specificity (Supplementary Figures S4 and S5).

Finally, we assessed the relationship between
sputum bacillary load and algorithm performance by
examining x-ray abnormality scores by Xpert semi-
System AUC (95% CI) At pre-defined thresholds

Sensitivity % (95% CI) Specific

CAD4v6 0.88 (0.85–0.90) 80.7 (75.4–85.3) 82.7 (8
LunitTB 0.91 (0.89–0.93) 79.9 (74.5–84.6) 89.8 (8
qXR 0.90 (0.88–0.92) 74.5 (68.8–79.7) 89.4 (8

Table 2: Sensitivity, Specificity, Area Under the Curve (AUC), Positive Predictiv
pre-defined thresholds or with thresholds adjusted to 90% sensitivity as sp

www.thelancet.com Vol 17 January, 2023
quantitative result (negative, very low, low, medium,
high). Among TB cases with a positive Xpert test for
whom Xpert semi-quantitative results were available
(188/242, 77.7%), all three algorithms yielded abnor-
mality scores that were positively correlated with
sputum Xpert semi-quantitative levels (p < 0.0001)
(Fig. 5). Among the 67 participants with a medium
or high Xpert result, CAD4TBv6 had 97% sensitivity
(65/67) and LunitTB and qXR both had 96% sensitivity
(64/67) at the 70% specificity threshold (Supplementary
Table S2).
Discussion
Active case finding for tuberculosis in high burden
carceral settings is needed to address the substantial
excess burden among incarcerated populations. How-
ever, despite WHO recommendations for routine TB
screening in prisons, most facilities in low- and middle-
income countries do not perform systematic active case
At 90% sensitivity, 4% prevalence

ity % (95% CI) Specificity % (95% CI) PPV % NPV %

0.8–84.4) 62.3 (52.0–73.1) 9.0 99.3
8.3–91.2) 83.7 (72.4–87.3) 18.7 99.5
7.9–90.8) 74.2 (60.2–81.3) 12.7 99.4

e Value (PPV) and Negative Predictive Value (NPV) of each algorithm at
ecified by the WHO Target Product Profile minimum target.

5
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Fig. 2: Receiver operating characteristic (ROC) curves for CAD4v6,
LunitTB and qXR.
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finding, often citing resource and infrastructure con-
straints. Despite being an upper-middle-income coun-
try, Brazil is considerably unequal in income
distribution, so it faces all these limitations of low-
middle-income countries. Effective, cost-efficient
screening strategies are needed to make active case
finding more accessible in such environments. In this
study, conducted via a nurse-led mobile diagnostic unit
in three prisons in Central-Western Brazil, we found a
very high prevalence of undiagnosed, microbiologically
Fig. 3: Specificity of LunitTB, by sociodemographic characteristics and ri
confidence intervals from a multivariable logistic regression, holding sen
confirmed TB (3.7%). Algorithms for automated inter-
pretation of x-rays achieved high sensitivity and speci-
ficity as a screening tool, with the LunitTB and qXR
systems exceeding the WHO minimal TPP thresholds
for a screening or triage test. Sputum molecular testing
is still needed to confirm TB, but a limiting factor in the
speed and costs of screening has been the number of
tests that can be run daily during mass screening of
thousands of individuals.3,18 Our findings suggest that
screening by mobile x-ray systems with automated
interpretation could reduce the number of confirmatory
tests required and enable screening to be more rapid in
high burden TB settings, while still maintaining suffi-
cient sensitivity.

Recent studies have evaluated x-ray interpretation
algorithms among individuals presenting to clinics with
TB symptoms, finding variable results. An individual
participant meta-analysis found that none of the systems
investigated met the WHO TPP criteria for triage, with
specificities ranging from 54 to 61% at 90% sensitivity.21

By contrast, a study in Bangladesh found that the qXR
and CAD4TB systems achieved >70% specificity at the
same threshold, and that all algorithms outperformed
interpretation by radiologists.22 Our study differed in
that it was performed in the context of active case
finding, irrespective of symptoms, which could affect
estimates of accuracy in several ways. For instance, the
cases identified through systematic screening are often
those in early stages of disease, with lower bacillary
burden, as evidenced by the fact that 54% of confirmed
cases in our cohort had low, very low, or negative Xpert
results. Given the association we observed between
sputum bacillary load and abnormality scores, this could
sk factors. Shown are the predicted margins for specificity and 95%
sitivity at 90%.

www.thelancet.com Vol 17 January, 2023
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Fig. 4: Sensitivity and specificity according to LunitTB score threshold, with the WHO sensitivity (dashed line) and specificity (dotted line)
benchmarks (top) among individuals without (A) and with (B) previous TB. Distribution of LunitTB scores for participants without (C) or with
(D) previous TB (bottom).

Articles
have resulted in the algorithms having lower sensitivity
in our cohort. At the same time, we might expect higher
specificity in the context of active case finding, regard-
less of symptoms, compared to use in clinics among
those presenting with TB symptoms, as the latter setting
may include more patients with other pulmonary dis-
eases such as bacterial and viral pneumonias that can be
challenging to distinguish from TB. Furthermore, we
evaluated these algorithms in incarcerated populations,
which tend to be younger, predominantly male, and
with high prevalence of various risk factors for TB.
Fig. 5: Relationship between the bacillary load in the sputum and the perf
the semiquantitative Xpert result.

www.thelancet.com Vol 17 January, 2023
LunitTB was the best-performing algorithm in this
cohort, with greater accuracy and generalizability among
subgroups, with particularly superior robustness to age
compared to the other two algorithms. Nonetheless,
performance of all three algorithms varied by subgroup,
with consistently lower specificity among older in-
dividuals and those with previous TB, corroborating
previous findings.22,23 We also found reduced specificity
among current smokers and those without TB symp-
toms. Of note, our pre-defined thresholds for each al-
gorithm led to overall sensitivity under 90%, suggesting
ormance of the algorithm through the stratification of the scores by

7
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that setting- or population-specific threshold calibration
may be an important step in implementation.

Specificity of all three algorithms decreased consid-
erably to less than 50% for those with previous TB,
indicating failure to meet the WHO TPP for this sub-
group. For the three analyzed software tools, the distri-
bution of abnormality scores among non-TB cases was
shifted higher for those with a history of TB, suggesting
the algorithm may not distinguish active TB lesions
from fibrous scarring of the lung parenchyma and other
chest radiograph patterns indicative of previous TB.24

Thus, in populations with high prevalence of previous
TB, Xpert may be more appropriate for screening,25

though studies have raised concern about its speci-
ficity in individuals with prior tuberculosis.26

We found that x-ray abnormality scores were higher
—suggestive of more abnormalities—in individuals
with high sputum bacillary loads. At the 70% specificity
threshold, sensitivity for individuals with medium or
high bacillary loads exceeded 96% for all three systems.
Given that Xpert bacillary load correlates with smear
status,27 and smear status predicts infectiousness,28,29 it
may be reasonable to infer that x-ray automated inter-
pretation algorithms may be more sensitive in identi-
fying the most infectious individuals.

Even with the availability of automated interpretation
algorithms, the cost-effectiveness of using x-rays for mass
screening in prisons is still unclear. Previous work found
that mass screening in prisons with sputum Xpert alone
had high yield and was less costly than using x-ray and
CAD4TB (version 5) for triage prior to confirmatory
Xpert.18 However, the prior study used a single CAD4TB
threshold for all individuals and evaluated an additional
strategy where only individuals without symptoms were
screened with x-ray and CAD4TB prior to confirmatory
Xpert. Our present findings suggest that such strategies
may be less effective due to the algorithms’ variable
performance by subgroup, particularly the reduced ac-
curacy for individuals without TB symptoms. Further-
more, CAD4TB (version 6) was shown to have the lowest
performance in this study; thus, screening with a more
accurate algorithm like LunitTB could increase cost-
effectiveness. Based on the findings of this study, at a
prevalence of 4%, LunitTB could detect 90% of cases
while reducing the number of individuals requiring
confirmatory Xpert testing by 80%. Additionally,
emerging technologies for portable, digital radiography
could reduce consumable costs, making x-rays more
accessible and affordable in resource-constrained envi-
ronments. Screening programs based on automated
interpretation of x-rays still require x-ray equipment and
protective equipment, radiographers and other
personnel, electricity, and downstream diagnostics for
tuberculosis confirmation; further studies are needed to
quantify the costs of these components and evaluate the
cost-effectiveness of mass screening programs utilizing x-
ray automated interpretation.
This study has several limitations. First, in our pri-
mary analysis, we only included participants who were
able to produce sputum for confirmatory testing, as
sputum induction was not able to be undertaken in this
environment. The excluded participants were less likely
to be current smokers, to have TB symptoms, and to
report previous TB; we expect that their inclusion may
have affected overall estimates of algorithm perfor-
mance in this population. In secondary analyses of the
entire population, AUCs did not differ significantly.
However, future research is needed to evaluate these x-
ray interpretation algorithms on this group, given that a
strength of x-ray screening is the lack of requirement for
sputum. Second, we used solid media culture due to
local availability costs; however, solid media culture is
less sensitive than liquid media and could have led to
missed cases, which could lead to overestimation of
sensitivity and underestimation of specificity. We could
not compare directly against smear microscopy, as we
have replaced it with GeneXpert in our mass screening
programs. Additionally, we note that while for
LunitTB and qXR we used the manufacturers’ rec-
ommended thresholds, for CAD4TBv6 we used a
threshold determined from a subset of our popula-
tion; therefore, the thresholds at 90% sensitivity may
be more appropriate than our pre-defined thresholds
for comparison of the three algorithms. A newer
version of CAD4TB (version 7) has been released but
was not available to us at the time of analysis. Due to
the low prevalence of HIV in our population, we did
not consider HIV status in our study.30 Moreover, our
study only included those in male prisons as there are
fewer than 10 cases annually among incarcerated
women in this state; consequently, the performance of
these algorithms for TB screening in female prisons
remains unknown.23 Finally, we did not include the
human interpretation of the radiographic images as a
comparator, and we also did not evaluate the quality
of the images before the CAD analysis.

Overall, our results suggest that the use of chest x-
rays and artificial intelligence-based interpretation al-
gorithms can be part of an effective mass screening
strategy in high-burden settings like prisons.
Although Lunit-TB had the greatest accuracy and
robustness in our cohort, all three algorithms
exhibited similar performance, particularly as a rule-
out-test, and could be used to reduce the need for
universal molecular testing. However, our findings
suggest the need for future optimization of these
algorithms to improve generalizability across sub-
groups, especially for individuals with a history of TB.
Nevertheless, given their high overall accuracy in this
population, especially among cases with the greatest
sputum bacillary load, automated interpretation algo-
rithms could enable scaling of mass screening to help
mitigate disparities in TB diagnosis among incarcer-
ated populations.
www.thelancet.com Vol 17 January, 2023
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