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1  | INTRODUC TION

High-throughput sequencing (HTS) technologies have transformed 
the biological sciences, allowing biologists to generate prodi-
gious amounts of data at genomic-level scales. Methodological 

and bioinformatic advancements have opened HTS applications 
to nonmodel organisms, which have been a boon to fields such 
as conservation genetics, molecular ecology, and evolution-
ary biology (Allendorf, Hohenlohe, & Luikart,  2010; Ekblom & 
Galindo, 2011; Ellegren, 2014; Twyford & Ennos, 2012). Many of 
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Abstract
The advent of high-throughput sequencing (HTS) has made genomic-level analyses 
feasible for nonmodel organisms. A critical step of many HTS pipelines involves align-
ing reads to a reference genome to identify variants. Despite recent initiatives, only a 
fraction of species has publically available reference genomes. Therefore, a common 
practice is to align reads to the genome of an organism related to the target species; 
however, this could affect read alignment and bias genotyping. In this study, I con-
ducted an experiment using empirical RADseq datasets generated for two species of 
salmonids (Actinopterygii; Teleostei; Salmonidae) to address these questions. There 
are currently reference genomes for six salmonids of varying phylogenetic distance. 
I aligned the RADseq data to all six genomes and identified variants with several dif-
ferent genotypers, which were then fed into population genetic analyses. Increasing 
phylogenetic distance between target species and reference genome reduced the 
proportion of reads that successfully aligned and mapping quality. Reference genome 
also influenced the number of SNPs that were generated and depth at those SNPs, 
although the affect varied by genotyper. Inferences of population structure were 
mixed: increasing reference genome divergence reduced estimates of differentiation 
but similar patterns of population relationships were found across scenarios. These 
findings reveal how the choice of reference genome can influence the output of bio-
informatic pipelines. It also emphasizes the need to identify best practices and guide-
lines for the burgeoning field of biodiversity genomics.
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the bioinformatic approaches developed for HTS data require the 
use of established genomic resources as part of the pipeline. By 
“genomic resources,” I am referring to highly vetted consensus 
DNA sequences, whether at the whole genome, transcriptome, 
individual chromosome, or organelle-level, that are meant to serve 
as a “reference” sequence for a given taxa (see Fuentes-Pardo 
& Ruzzante,  2017 for a review). A reference genome provides a 
backbone on which to align HTS data and identify variants based 
on discrepancies between observed nucleotide base calls and the 
reference (Davey et  al.,  2011; Fuentes-Pardo & Ruzzante,  2017; 
Nielsen, Paul, Albrechtsen, & Song, 2011).

It has reached a point where generating HTS data is not a signifi-
cant barrier for geneticists in terms of cost and equipment availabil-
ity (Fuentes-Pardo & Ruzzante, 2017; Puckett, 2017). This has led to 
a torrent of HTS data for species across the Tree of Life. However, 
creating a quality reference genome is still a substantial obstacle that 
requires intense bioinformatic skill and financial investment (Ekblom 
& Wolf, 2014). Thus, HTS data are being generated for species that 
do not have a reference genome. A common practice is to use the 
reference genome of a species related to the target species of inter-
est to align HTS data (Fuentes-Pardo & Ruzzante, 2017). Published 
“whole-genome comparisons” between multiple species often use 
the reference genome for one or a few of the species and then 
align whole-genome resequencing data to them, opposed to actu-
ally generating a reference genome for each species (e.g., Árnason, 
Lammers, Kumar, Nilsson, & Janke, 2018; Cho et al., 2013; VonHoldt 
et al., 2016).

Aligning HTS reads from one species to the reference genome 
of another is not without peril. There should be greater sequence 
variability between species than within species, which could 
produce mismatches between the reference sequence and HTS 
reads and contribute to lower mapping quality in cross-species 
alignments. Reads are likely to be mapped mainly to conserved 
regions between the species, inhibiting the detection of unique 
genomic variation within the target species (Fuentes-Pardo & 
Ruzzante, 2017). Structural variants, repetitive elements, chromo-
some number, and copy number variation can also differ between 
species, affecting mapping and identification of paralogous ge-
nomic regions. Increasing divergence between the target species 
and reference genome can increase the number of missing gen-
otype calls and produce biased estimates of population genetic 
parameters (Nevado, Ramos-Onsins, & Perez-Enciso, 2014; Shafer 
et al., 2017).

Although common practice, it is important to assess the ef-
ficacy of aligning HTS reads across species on both data quality 
and downstream interpretation. There have been several stud-
ies that have investigated its consequences. Nevado et al. (2014) 
simulated HTS datasets and reference genomes to assess the 
impact of genome divergence and sequencing coverage on esti-
mation of population genetic parameters, observing a noticeable 
impact caused by reference genome divergence. Shafer et al. 
(2017) tested an empirical RADseq dataset generated for a spe-
cies of pinniped (Mammalia; Carnivora; Pinnipedia) against a draft 

genome of the target species and reference genomes for three 
related species of increasing phylogenetic divergence. They also 
found reference genome divergence impacted population genetic 
parameters, but different metrics were more sensitive to diver-
gence level. Gopalakrishnan et  al.  (2017) published a reference 
genome for the gray wolf (Canis lupus) and compared population 
genetic inferences for wild canids (Mammalia; Carnivora; Canidae) 
using their wolf genome and the commonly used domestic dog 
(C. l. familiaris) genome. Despite wolves and dogs having diverged 
within the last 30,000 years, the authors observed noticeable dif-
ferences in some of the inferences for wild canids when the wolf 
genome was used.

These studies shed light on how divergence between reference 
genome and target species can impact the analysis of a HTS data-
set. However, further research is still needed to assess the impact 
of such practices under different scenarios with empirical datasets, 
especially when making biological inferences, and the threshold at 
which genome divergence begins to have an effect. In this study, I 
assessed the impact of aligning HTS reads generated from two em-
pirical RADseq datasets to real reference genomes of multiple spe-
cies within the same taxonomic family. The RADseq datasets were 
for two species of salmonid (Actinopterygii; Teleostei; Salmonidae): 
Coho salmon (Oncorhynchus kisutch) and bull trout (Salvelinus conflu-
entus). I aligned these data to publicly available reference genomes 
for six members of Salmonidae have been recently published, which 
is more than have been tested by other studies (Gopalakrishnan 
et al., 2017; Nevado et al., 2014; Shafer et al., 2017). They also pro-
vide a greater range of genomic divergence between target species 
and reference genome than has been previously tested. A reference 
genome is available for Coho salmon (Rondeau et al., 2017), allow-
ing for a direct comparison of processing the RADseq data with the 
reference genome of the target species and species of increasing 
phylogenetic distance. No reference genome is available for bull 
trout but there is a genome for a closely related species within the 
genus, so performing a similar comparison provides an informative 
complement.

My objective was to evaluate the impact of reference genome 
divergence on mapping quality, number of variants, and inference 
of population structure. I also performed a de novo assembly of 
both RADseq datasets to assess whether coverage and inference 
were improved using contigs derived from the libraries themselves 
compared to aligning to a reference genome (Paris, Stevens, & 
Catchen,  2017). My hypothesis was that increasing phylogenetic 
distance between the target species and reference genome would 
result in fewer reads aligning and lower mapping quality, which 
would impact the discovery of variants. However, I anticipated that 
even if fewer variants were produced when using a more divergent 
reference genome, there would still be sufficient statistical power in 
the resulting data to reach the same biological interpretation (e.g., 
genetic differentiation) compared to using the genome of the tar-
get species. By utilizing recently developed genomic resources, this 
study provides insights into the practice of analyzing HTS data with 
the genome of another species.
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2  | MATERIAL S AND METHODS

2.1 | The genomes

I used published whole genomes from six species within the fam-
ily Salmonidae that represent a gradient of phylogenetic distance 
(Table 1). Among these available genomes, the two most closely re-
lated species are Coho (Rondeau et al., 2017) and Chinook salmon (O. 
tshawytscha) (Christensen, Leong, et al., 2018), which are sister spe-
cies that diverged within the last ten million years (Figure 1) (Crête-
Lafrenière, Weir, & Bernatchez,  2012; Shedko, Miroshnichenko, & 
Nemkova, 2012). Within the same genus, there is a reference genome 
for the rainbow trout (O. mykiss) (Lien et al., 2017), which is part of a 
clade sister to the Pacific salmons (the group that includes Coho and 
Chinook salmon). A reference genome is available for the Arctic char 
(Salvelinus alpinus) (Christensen, Rondeau, et al., 2018): the genus 
Salvelinus, which also contains bull trout, is sister to Oncorhynchus, 
having split around 20–25 million years ago (MYA) (Crête-Lafrenière 
et al., 2012; Lecaudey et al., 2018). Further diverged is the genome 
of the Atlantic salmon (Salmo salar) (Davidson et al., 2010; Lien 
et al., 2016): the genus Salmo is part of a clade that shares a most 
recent common ancestor with the Oncorhynchus/Salvelinus com-
plex around 30–35 MYA (Crête-Lafrenière et  al.,  2012; Lecaudey 
et al., 2018). All five of these species (Coho salmon, Chinook salmon, 
rainbow trout, Arctic char, and Atlantic salmon) are members of the 
subfamily Salmoninae. Basal to this subfamily is the group contain-
ing the European grayling (Thymallus thymasllus), which diverged 
around 60 MYA and also has a publically available reference genome 
(Varadharajan et al., 2017).

These six genomes represent varying levels of divergence from 
the two target species I included in this study. To quantity this 
divergence, I analyzed the annotated protein sequences asso-
ciated with the reference genome assemblies for the six species 
using the OrthoFinder pipeline (Emms & Kelly, 2019). OrthoFinder 
identifies protein sequences that form orthogroups between spe-
cies and then generates multiple gene alignments based on these 
groupings. I used the MAFFT (Katoh & Standley, 2013) option 
to construct the alignments and FastME 2.0 (Lefort, Desper, & 
Gascuel,  2015) to generate a neighboring-joining tree based on 
genetic distance.

2.2 | The datasets

The Coho salmon RADseq libraries were composed of samples col-
lected from three populations (Bohling, Von Bargen, & Bahls, 2020). 
Two of these were from the Hood Canal region of Washington State, 
USA: one composed of hatchery broodstock propagated at Quilcene 
National Fish Hatchery (NFH) and another composed of spawning 
adults returning to Tarboo Creek, a nearby natural tributary. The 
third population consisted of wild-origin Coho salmon from Warm 
Springs River in Oregon, USA, which is part of the Columbia River 
Basin. The Quilcene NFH broodstock was founded from local Hood 
Canal populations and Coho salmon from this region are highly di-
verged from Columbia River populations (Campbell & Narum, 2011; 
Van Doornik, Teel, Kuligowski, Morgan, & Casillas, 2007), meaning 
the samples used for this study should display a clear pattern of ge-
netic structure. These three groups (Tarboo Creek, Quilcene, and 
Warm Springs) had similar sample sizes (n  =  11–18) and produced 
comparable numbers of reads per individual (means of 1.96, 2.16, 
and 1.56 million reads, respectively; all individuals except one pro-
duced >500,000 reads).

The bull trout libraries contained samples from four populations 
(Bohling et al., 2019). Across its range in the United States, bull trout 
display several hierarchical phylogenetic aggregations. The main 
two lineages are the Coastal and Interior clades, which are sepa-
rated by the Cascade mountain range (Ardren et al., 2011; Bohling 
et al., 2019; Spruell, Hemmingsen, Howell, Kanda, & Allendorf, 2003; 
Taylor, Pollard, & Louie, 1999). I selected data from two populations 
representing two distinct subclades within the Interior clade: the 
upper Columbia River (represented by Warm Spring Creek) and the 
Snake River (represented by Malheur River). For the Coastal clade, I 
selected populations representing two subclades: the Puget Sound 
(represented by Ruby Creek) and lower Columbia River (represented 
by the Lewis River). For the sequence data, these four populations 
had similar sample sizes (n = 15–16) and similar numbers of reads per 
individual (means of 2.0, 1.74, 1.6, and 1.42 million reads; no individ-
ual < 1,000,000 reads).

Procedures for generating the Coho and bull trout libraries 
were similar. To summarize, whole genomic data were digested 
with the Sbf1 enzyme and then prepared following the original 
RADseq protocol of Baird et al. (2008). The Coho libraries were 

TA B L E  1   List of the salmonid reference genomes used for this study. For the European grayling, the version of the reference genome 
used for this study was a draft assembly accompanying a preprint article (see text). The genome has subsequently been submitted to 
GenBank but after the completion of most of the bioinformatic analyses

Species Common name
Year 
published

GenBank assembly 
accession

Assembly 
level

Oncorhynchus kitush Coho salmon 2017 GCA_002021735.1 Chromosome

Oncorhynchus tshawytscha Chinook salmon 2018 GCA_002872995.1 Chromosome

Oncorhynchus mykiss Rainbow trout 2017 GCA_002163495.1 Chromosome

Salvelinus alpinus Arctic char 2018 GCA_002910315.1 Chromosome

Salmo salar Atlantic salmon 2015 GCA_000233375.4 Chromosome

Thymallus thymallus European grayling 2017 NA Scaffold
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sequenced on an Illumina NextSeq500 for 100 forward cycles and 
50 reverse; the bull trout libraries were sequenced on an Illumina 
HiSeq 2500 for 150 forward and reverse cycles. Each sample was 
indexed using a six base pair inline barcode and libraries demulti-
plexed using the process_radtags function in Stacks 2.0 (Catchen, 
Hohenlohe, Bassham, Amores, & Cresko,  2013). PCR duplicates 
were removed using the clone_filter function. Low-quality reads, 
bases, and adaptor sequences were removed using Trimmomatic 
(Bolger, Lohse, & Usadel,  2014) as implemented in the dDocent 
pipeline (Puritz, Hollenbeck, & Gold,  2014) using the default 
parameters.

2.3 | The sequence alignment and genotyping

I aligned the RADseq reads to each of the six reference genomes 
using Bowtie2 (Langmead & Salzberg, 2012) with the “—very-sensi-
tive” preset option for alignment sensitivity (the “—very-fast” option 
was initially tested as well and produced similar alignment patterns in 
relation to reference genome choice). Other parameters were set to 
their defaults. To assess mapping quality associated with reference 
genome choice, I recorded mapping statistics generated from the 
flagstats command with Samtools (Li et al., 2009). I calculated mean 
MapQ after removing reads that did not map or had a MapQ < 1.

Nevado et al.  (2014) found that certain genotyping software 
was more sensitive to genome divergence and sequence cover-
age. Therefore, I tested several different genotypers that have 
different analytical frameworks. Each program used the BAM files 
generated from Bowtie2 as input data. The first was Stacks 2.0 
(Catchen et al., 2013), which uses a maximum-likelihood approach 
to genotype variants based on with-individual read distributions. 

This program is commonly used for RADseq data, and I used the 
SNP model for genotyping, which is the legacy model that has 
been part of earlier versions of the software. I also generated 
genotypes with FreeBayes (Garrison & Marth,  2012), which de-
tects variants using a Bayesian approach that incorporates read 
distributions across all individuals. The final program was ANGSD 
(Korneliussen, Albrechtsen, & Nielsen, 2014), which can generate 
genotype probabilities based on overall read distributions and ac-
tual genotype calls. Within ANGSD, I used the GATK model for 
genotyping.

In comparing genotypes, I focused solely on biallelic SNPs as 
those are the only variants identified by ANGSD and Stacks SNP 
model does not produce indels, providing a fair comparison between 
the genotypers. For all SNPs identified by FreeBayes and Stacks, I 
calculated mean individual read depth at those sites using VCFtools 
(Danecek et al., 2011). Due to differences in output, read depth at 
SNPs identified by ANGSD could not be calculated. Default parame-
ters were used in all applications.

2.4 | The de novo assembly

For the Coho salmon and bull trout datasets, I performed a de 
novo contig assembly and subsequent variant identification. I pro-
cessed the data through two popular pipelines: Stacks 2.2 (Catchen 
et al., 2013) and dDocent 2.6 (Puritz et al., 2014). Each pipeline used 
the reads remaining after the clone_filter procedure described above; 
I performed no filtering prior to running each pipeline. I used the 
default parameters for both pipelines and extended contigs using 
the reverse reads. Note that dDocent uses FreeBayes to call SNPs as 
part of its pipeline, making it comparable to use of FreeBayes with 

F I G U R E  1   Photograph of two Coho 
salmon (top and middle fish) and Chinook 
salmon (bottom fish) harvested from the 
Columbia River. These are sister species 
within the genus Oncorhynchus. Photo 
courtesy of Steve Money
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the reference-aligned data. As with the reference-based alignments, 
I focused only on biallelic SNPs and calculated mean individual read 
depth.

2.5 | The population genetics

Because of the infinite possible ways to filter a HTS dataset, I 
tested a single potential scenario to focus primarily on the effect of 
reference genome on population genetic inference. In their simula-
tions, Nevado et  al.  (2014) observed less variability in estimates 
of neutrality across genotypers with a read depth of 8X to retain 
genotypes. They also used 8X as their genotype threshold in their 
empirical case study, so I used 8X for the reference-aligned and de 
novo datasets. I set a minor allele frequency threshold of 0.05 and 
only retained SNPs that were genotyped in more than 50% of indi-
viduals. To provide a fair comparison among the genotypers, I used 
called genotypes instead of genotype probabilities from ANGSD 
using the above filtering thresholds. Processing genotype prob-
abilities requires specialized software with different algorithms 
and assumptions, which would prevent a direct comparison with 
the other two methods.

I performed two analyses to assess the impact of reference ge-
nome divergence on population genetic inference. First, I estimated 
overall FST (Weir & Cockerham, 1984) between populations for both 
species under the different scenarios using the package assigner 
(Gosselin, Anderson, Bradbury, 2016) for the R 3.6.1 statistical envi-
ronment (R Core Team, 2018). I also performed a clustering analysis 
using Admixture (Alexander & Lange, 2011) to assess genetic struc-
ture. For each genome/genotyper combination, I used the cross-val-
idation approach to estimate the optimal number of genetic clusters 
in the dataset. I allowed the number of clusters (K) to vary from one 
to ten.

3  | RESULTS

3.1 | Reference genomes

The OrthoFinder pipeline recovered a phylogeny similar to that 
reported in other studies (Figure  2) (Crête-Lafrenière et  al.,  2012; 
Lecaudey et al., 2018). Compared to the Coho salmon genome, both 
species within the genus Oncorhynchus (Chinook salmon and rain-
bow trout) had a sequence divergence between 1% and 2% (Table 2). 
The genome from other species in the subfamily Salmoninae (Arctic 
char and Atlantic salmon) was ~3.5% diverged from the Coho salmon 
genome. One unexpected result: although the phylogeny generated 
with the OrthoFinder pipeline (Figure  2) and those estimated by 
other studies (Crête-Lafrenière et al., 2012; Lecaudey et al., 2018) 
place the genus Salvelinus sister to Oncorhynchus with Salmo as an 
outgroup, the actual estimated genomic divergence to the Coho 
salmon was slightly less for the Atlantic salmon genome compared 
to the Arctic char (Table 2). The European grayling genome was by 
far the most diverged at 8.7%. These divergence percentages are 
compared to those tested by Nevado et al. (2014) and Shafer et al. 
(2017) in Table 2.

3.2 | Read mapping

The degree of divergence between the target species and reference 
genome impacted alignment success. For the Coho salmon dataset, 
the mean proportion of reads that aligned to the reference genome 
was highest when the Coho salmon reference genome was used 
and decreased with increasing divergence from the target species 
(Figure 3a). On average, 80% of the reads aligned to Coho reference 
genome; aligning them to another species produced mean align-
ment rates < 70%. Aligning Coho salmon reads to non-Oncoryhnchus 

F I G U R E  2   Neighbor-joining tree 
based on genetic distances between the 
salmonid reference genomes used for this 
study. The tree was constructed using 
orthologous protein sequences identified 
by the OrthoFinder pipeline. It is a rooted 
tree, and branch lengths represent genetic 
distance. A scale bar depicting genetic 
distance is provided

 Oncorhynchus kisutch

 Oncorhynchus tshawytscha

 Oncorhynchus mykiss

 Salvelinus alpinus

 Salmo salar

 Thymallus thymallus

0.05
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genomes (i.e., Arctic char, Atlantic salmon, and European grayling) 
resulted in less than 50% of reads aligning. A similar pattern was 
observed with the bull trout data, with the highest proportion of 
reads aligning when the Arctic char genome was used as a reference. 
However, the proportion was still < 80%, meaning aligning bull trout 
data to the Arctic char genome was comparable to aligning Coho 
salmon data to other Oncorhynchus species.

The proportion of reads that mapped as singletons (i.e., only one 
read of a mate pair mapped) (Figure 3b) and the proportion of reads 
in a mate pair that aligned to different chromosomes (Figure 3c) in-
creased as the reference genome became more diverged. MapQ for 
the Coho salmon RADseq alignments was highest when aligned to 
the Coho salmon reference genome, with a gradual decrease as the 
reference genome became further diverged (Figure 3d). It was high-
est for the bull trout data when mapped to the Arctic char genome 
but relatively equivalent across the other genomes.

3.3 | Variant discovery

The number of SNPs generated by each of the three genotypers was 
highly variable for the two datasets and produced different patterns 
depending on the reference genome that was used to produce the 
alignments (Figure  4). For the Coho salmon data genotyped with 
ANGSD, the fewest number of raw SNPs were identified when the 
reads were aligned to the Coho salmon genome: More SNPs were 
detected as the reference genome became increasingly diverged ex-
cept for the grayling genome. Similarly, the fewest SNPs detected 
by ANGSD with the bull trout data were when it was aligned to the 
Arctic char genome: other genomes produced more SNPs aside from 
the grayling.

With FreeBayes and Stacks, the pattern was reversed: The high-
est number of SNPs was generated for the Coho salmon data using 
the Coho salmon reference genome (Figure 4). There was a similar 
pattern with the bull trout data, although the highest SNP total pro-
duced by Stacks was generated with the Atlantic salmon genome. By 
far, the fewest SNPs were identified by Stacks: no aligner/genome 
combination resulted in more than 650,000 SNPs, whereas almost 
all FreeBayes and ANGSD analyses identified more than that regard-
less of reference genome.

There was a complication using FreeBayes when the Atlantic 
salmon genome was used as a reference. FreeBayes requested more 
memory than available with the computational resources I used 
when processing alignments from this genome, likely due to repet-
itive elements. As an alternative, I generated a masked genome to 
remove repetitive elements. After realigning the data to this masked 
genome, FreeBayes successfully genotyped, but produced fewer 
SNPs than other genomes (Figure 4).

For the de novo assembly pipelines, dDocent identified substan-
tially more SNPs than Stacks regardless of the dataset (Figure  4). 
Number of SNPs identified de novo by Stacks were within the range 
identified by Stacks using the reference-based alignments. The de 
novo dDocent pipeline uses FreeBayes to genotype: compared to TA
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when FreeBayes was used directly on the reference-based align-
ments, the number of SNPs generated de novo for the Coho salmon 
data was much lower but comparable for the bull trout data.

Despite the large discrepancies in the number of raw SNPs that 
were identified, read depth at those SNPs averaged across individ-
uals was not substantially different between FreeBayes and Stacks 
(Figure 5). Comparatively, FreeBayes had lower mean depth across 
all identified SNPs and was impacted more by reference genome di-
vergence. SNPs produced by FreeBayes had higher coverage with 

decreasing divergence between the target species and reference 
genome (i.e., Coho salmon data aligned to Coho salmon genome, 
bull trout data aligned to Arctic char genome). Stacks was relatively 
consistent in mean depth per SNP: There was a slight trend in lower 
depth with increasing reference genome divergence but it was not 
substantial. SNPs identified de novo by Stacks had lower coverage 
than those identified with reference genomes; the opposite was true 
with dDocent with de novo SNPs having higher coverage than the 
FreeBayes reference-generated SNPs.

F I G U R E  3   Outcome of experiment aligning RADseq data from Coho salmon (Oncorhynchus kisutch) and bull trout (Salvelinus confluentus) 
to different reference genomes. The reference genomes tested are on the horizontal axis and abbreviated (Okis = O. kisutch, Otsh = O. 
tshawytscha, Omyk = O. mykiss, Salp = Salvelinus alpinus, Ssal = Salmo salar, Tthy = Thymallus thymallus). Genomes are ordered from left 
to right by increasing phylogenetic distance from the Coho salmon (Okis). (a) Proportion of raw reads mapped to each genome averaged 
across individuals. (b) Proportion of reads mapped to each genome as singletons (i.e., without the paired read) average across individuals. (c) 
Proportion of reads mapped to each genome in which mates composing a set of paired reads mapped to a different chromosome. (d) Mean 
mapping quality scores (MapQ) averaged across individuals generated using different reference genomes
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3.4 | Population genetics

Several trends were noticeable with the estimates of FST. First, there 
were differences in the magnitude of values depending on the geno-
typer. In general, FreeBayes and Stacks produced estimates within a 

similar range; ANGSD consistently produced much lower estimates, 
especially for the bull trout data (Figure  6). Second, regardless of 
genotyper or species, there was a tendency for lower estimates of 
FST with increasing genome divergence. Estimates with the Coho 
salmon data showed a gradual decline with genome divergence; 

F I G U R E  4   Total number of SNPs for 
Coho salmon (Oncorhynchus kisutch) and 
bull trout (Salvelinus confluentus) identified 
by genotyping software using different 
reference genomes. The reference 
genomes tested are on the horizontal 
axis and abbreviated (Okis = O. kisutch, 
Otsh = O. tshawytscha, Omyk = O. mykiss, 
Salp = Salvelinus alpinus, Ssal = Salmo salar, 
Tthy = Thymallus thymallus). Genomes are 
ordered from left to right by increasing 
phylogenetic distance from the Coho 
salmon (Okis). Runs of FreeBayes with 
the Atlantic salmon genome produced no 
useable SNPs. The right panel displays the 
number of SNPs identified by the two de 
novo pipelines
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F I G U R E  5   Boxplot of the distribution 
of mean read depth per SNP for Coho 
salmon (Oncorhynchus kisutch) and bull 
trout (Salvelinus confluentus) produced 
by genotyping software using different 
reference genomes. Depth is averaged 
across SNPs for each individual and 
based upon all raw SNPs identified 
by the genotypers. The reference 
genomes tested are on the horizontal 
axis and abbreviated (Okis = O. kisutch, 
Otsh = O. tshawytscha, Omyk = O. mykiss, 
Salp = Salvelinus alpinus, Ssal = Salmo salar, 
Tthy = Thymallus thymallus). Genomes are 
ordered from left to right by increasing 
phylogenetic distance from the Coho 
salmon (Okis). Runs of FreeBayes with 
the Atlantic salmon genome produced no 
useable SNPs. The right panel displays the 
number of SNPs identified by the two de 
novo pipelines
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F I G U R E  6   Global estimates of FST 
for both the Coho salmon (Oncorhynchus 
kisutch) and bull trout (Salvelinus 
confluentus) RADseq datasets aligned 
to different reference genomes. The 
reference genomes tested are on 
the horizontal axis and abbreviated 
(Okis = O. kisutch, Otsh = O. tshawytscha, 
Omyk = O. mykiss, Salp = Salvelinus alpinus, 
Ssal = Salmo salar, Tthy = Thymallus 
thymallus). Genomes are ordered from 
left to right by increasing phylogenetic 
distance from the Coho salmon (Okis). 
The estimates are also grouped by the 
genotyping software that was used to 
produce the estimates. Runs of FreeBayes 
with the Atlantic salmon genome 
produced no useable SNPs
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TA B L E  3   FST values generated for A. Coho salmon (Oncorhynchus kisutch) and B. Bull trout (Salvelinus confluentus) RADseq datasets 
using different reference genomes and genotypers. Provided are the 95% confidence intervals (in parentheses) for the point estimates. The 
reference genomes tested are abbreviated (Okis = O. kisutch, Otsh = O. tshawytscha, Omyk = O. mykiss, Salp = Salvelinus alpinus, Ssal = Salmo 
salar, Tthy = Thymallus thymallus). Genomes are ordered from top to bottom by increasing phylogenetic distance from the Coho salmon 
(Okis). De novo refers to the assembly pipelines of Stacks and dDocent, which uses FreeBayes to genotype. The Atlantic salmon genome 
(Ssal) processed with FreeBayes produced no useable SNPs

(A) Genome ANGSD FreeBayes Stacks De novo

Oncorhynchus kitush 0.014 (0.014–0.015) 0.031 (0.029–0.033) 0.053 (0.049–0.057)

Oncorhynchus tshawytscha 0.008 (0.007–0.008) 0.026 (0.023–0.028) 0.035 (0.032–0.039)

Oncorhynchus mykiss 0.006 (0.006–0.006) 0.026 (0.023–0.029) 0.03 (0.027–0.034)

Salvelinus alpinus 0.003 (0.002–0.003) 0.017 (0.014–0.02) 0.013 (0.011–0.015)

Salmo salar 0.004 (0.003–0.004) NA 0.023 (0.02–0.026)

Thymallus thymallus 0.002 (0.001–0.002) 0.01 (0.01–0.01) 0.007 (0–0.016)

FreeBayes 0.01 (0.01–0.02)

Stacks 0.05 (0.05–0.06)

(B) Genome ANGSD FreeBayes Stacks De novo

Oncorhynchus kitush 0.02 (0.02–0.02) 0.27 (0.26–0.28) 0.28 (0.27–0.3)

Oncorhynchus 
tshawytscha

0.02 (0.02–0.02) 0.28 (0.27–0.3) 0.28 (0.27–0.29)

Oncorhynchus mykiss 0.02 (0.02–0.02) 0.26 (0.25–0.27) 0.27 (0.25–0.28)

Salvelinus alpinus 0.06 (0.05–0.06) 0.42 (0.41–0.43) 0.35 (0.34–0.35)

Salmo salar 0.03 (0.03–0.03) NA 0.31 (0.3–0.32)

Thymallus thymallus 0.01 (0.01–0.01) 0.08 (0.07–0.09) 0.08 (0.04–0.12)

FreeBayes 0.28 (0.28–0.29)

Stacks 0.51 (0.5–0.52)
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with the bull trout, FST was highest when the data were aligned to 
the Arctic char genome and comparable when other genomes were 
used. The two de novo pipelines had opposite patterns: The dDo-
cent pipeline produced lower FST estimates than when FreeBayes 
was run on the reference-aligned data. In contrast, de novo Stacks 
datasets produced the highest estimates of FST, higher than with 
the reference-aligned Stacks data. Confidence intervals bounded 
FST estimates tended to be narrow (Table 3) and overlap between 
estimates generated with the same dataset was variable. Due to 

using the masked genome, SNPs generated by FreeBayes using the 
Atlantic salmon genome produced too few SNPs following filtering 
to be used in the population genetic analyses.

The cross-validation error rates produced by admixture were 
comparable regardless of genotyper or reference genome (Figure 7). 
Every single Coho salmon dataset run with admixture had the lowest 
error at K = 1 with a steady increase in error at high values. For the 
bull trout, with Stacks and FreeBayes the lowest error was at K = 4 
regardless of reference genome except for the data aligned to the 

F I G U R E  7   Cross-validation error across K values varying from 1 to 10 for the admixture clustering analysis of the RADseq datasets. 
Panel A is for the Coho salmon (Oncorhynchus kisutch) and Panel B for the bull trout (Salvelinus confluentus). The lowest error value is 
often interpreted as the most feasible clustering patterns among the data. The reference genomes tested are on the horizontal axis and 
abbreviated (Okis = O. kisutch, Otsh = O. tshawytscha, Omyk = O. mykiss, Salp = Salvelinus alpinus, Ssal = Salmo salar, Tthy = Thymallus 
thymallus). Genomes are ordered from left to right by increasing phylogenetic distance from the Coho salmon (Okis). Runs of FreeBayes with 
the Atlantic salmon genome produced no useable SNPs. For the Coho salmon data when Stacks was used with the grayling genome (Tthy) it 
produced a low number of SNPs and the admixture run failed
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grayling genome. The bull trout datasets produced by ANGSD had 
the lowest error at K = 1 regardless of reference genome.

I compared clustering patterns at K  =  3 for the Coho salmon 
data and K  =  4 for the bull trout data, for these were the num-
ber of known populations that were included in each respective 
dataset. The Warm Springs River was expected to be more diver-
gent from the other two populations, but it did not form a distinct 
cluster with every genome/genotyper combination (Figure 8). With 
ANGSD, it was only distinct when the Coho genome was used: no 
other genomes produced any clear clustering patterns. In contrast, 
there was a clear Warm Springs cluster when SNPs were produced 
by FreeBayes using all the genomes except for the grayling. It only 
formed a distinct cluster with Stacks when Oncorhynchus genomes 

were used. The dataset produced by Stacks with the grayling ge-
nome had so few SNPs that the admixture run failed. Both de novo 
assemblies resulted in a distinct Warm Springs cluster. No com-
bination clearly separated the Quilcene NFH and Tarboo Creek 
populations: although two clusters were identified among these 
individuals, they did not clear correspond to the two populations. 
Admixture proportions also variety across genome/genotyper 
combinations.

The bull trout clustering at K  =  4 was consistent every time: 
every single genome/genotyper combination resulted in the same 
clustering pattern with the exception of the Stacks data produced 
with the grayling genome (Figure 9). These clusters corresponded to 
the four known populations.
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4  | DISCUSSION

4.1 | Effect of genome divergence

The practice of aligning HTS sequences generated for one species 

to the genome of another has been a necessary evil for biologists 
due to the logistical constraints of producing reference genomes 
for every species on Earth. However, this study demonstrates 
that the reference genome is an important component of vari-
ant discovery. Substantial space has been given in the literature to 

F I G U R E  8   Clustering patterns for the Coho salmon (Oncorhynchus kisutch) RADseq datasets aligned to different reference genomes. 
Barplots represent individual runs of the dataset with different genome and genotyper combinations. These plots are based on running 
admixture assuming three clusters. Each cluster is represented by a different color. The horizontal bars at the bottom of the plot denote 
the population of origin of the individual Coho salmon. The reference genomes tested are on the horizontal axis and abbreviated (Okis = O. 
kisutch, Otsh = O. tshawytscha, Omyk = O. mykiss, Salp = Salvelinus alpinus, Ssal = Salmo salar, Tthy = Thymallus thymallus). Genomes are 
ordered from left to right by increasing phylogenetic distance from the Coho salmon (Okis). Runs of FreeBayes with the Atlantic salmon 
genome produced no useable SNPs. For the Coho salmon data when Stacks was used with the grayling genome (Tthy) it produced a low 
number of SNPs and the admixture run failed
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assessing the impacts of various aspects of bioinformatics pipelines, 
including alignment and genotyping software, de novo versus ref-
erence-aligned, and data filtering (Andrews, Good, Miller, Luikart, 
& Hohenlohe, 2016; Fountain, Pauli, Reid, Palsbøll, & Peery, 2016; 
Hodel et al., 2017; Mastretta-Yanes et al., 2015; Nielsen et al., 2011; 
Paris et al., 2017; Shafer et al., 2017). The choice of reference genome 

should also be added to the list of variables geneticists should care-
fully evaluate when designing a study.

Perhaps unsurprisingly, greater divergence between the target 
species and reference genome resulted in fewer mapped reads and 
lower mapping quality. Although other studies have shown that using 
nontarget reference genomes affect SNP calling and downstream 

F I G U R E  9   Clustering patterns for the bull trout (Salvelinus confluentus) RADseq datasets aligned to different reference genomes. 
Barplots represent individual runs of the dataset with different genome and genotyper combinations. These plots are based on running 
admixture assuming four clusters. Each cluster is represented by a different color. The horizontal bars at the bottom of the plot denote the 
population of origin of the individual bull trout. The reference genomes tested are on the horizontal axis and abbreviated (Okis = O. kisutch, 
Otsh = O. tshawytscha, Omyk = O. mykiss, Salp = Salvelinus alpinus, Ssal = Salmo salar, Tthy = Thymallus thymallus). Genomes are ordered from 
left to right by increasing phylogenetic distance from the Coho salmon (Okis). Runs of FreeBayes with the Atlantic salmon genome produced 
no useable SNPs
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analysis (Gopalakrishnan et  al.,  2017; Nevado et  al.,  2014; Shafer 
et al., 2017), they have not documented whether this extended to 
the initial phase of read mapping as well. Results from this study 
suggest the impacts of reference genome divergence are rooted 
in the alignment process, which would subsequently affect down-
stream analyses. Parameters could be adjusted during the alignment 
process to account for this, but it will not eliminate the problem. 
RADseq data may be particularly sensitive to reference genome di-
vergence given that mutations in the restriction cut-site would lead 
to complete absence of overlapping sequence data between species 
(Arnold, Corbett-Detig, Hartl, & Bomblies, 2013; Davey et al., 2013). 
Salmonids add another wrinkle in that the ancestor to the entire 
family underwent a whole-genome duplication around 65 million 
years ago event that was subsequently rediplodized (Varadharajan 
et al., 2017). The presence of paralogous regions of the genome may 
pose problems for read mapping, further exasperating the impact of 
using a divergent reference genome.

The most practical consequence of this phenomenon is that per-
fectly good sequencing reads may be removed from a dataset sim-
ply due to the choice of reference genome, reducing overall genome 
coverage. Another issue is that the reads that do map do so with 
less precision as the reference genome becomes more diverged, ev-
idenced by mate pairs mapping to different chromosomes and the 
MapQ scores. For genotyping algorithms that incorporate these 
metrics into variant discovery, as both FreeBayes and ANGSD do, 
this may result in fewer and more error-prone variants.

Although mapping metrics and SNP discovery matter, at the end 
of the day for many practical applications, the major issue is whether 
reference genome divergence impacts biological inference. To this 
point, the results from this study were mixed. Clearly, estimates of 
FST were impacted: Populations appeared less differentiated as the 
reference genome became more divergent. However, clustering 
patterns produced by admixture were highly consistent for the bull 
trout data, but less so for the Coho salmon. This could be related to 
the properties of the two analyses: FST is computed using the mean 
allele frequencies across populations. Less data in the form of fewer 
aligned reads could lead to less accurate allele frequency estimates. 
Furthermore, if identified SNPs reflect fixed differences between 
the target species and reference genome, a large portion of the allele 
frequencies may be homogenous across populations. In contrast, 
clustering algorithms identify patterns based on Hardy–Weinberg 
discontinuities across individuals: Even if individuals share the same 
genotypes across large numbers of SNPs, consistent differences in 
genotype frequencies at several loci can be detectable.

It is also notable that the clustering results were more con-
sistent in detecting deeper divergences between populations. 
The bull trout populations, which originate from highly diverged 
phylogenetic lineages, were consistently differentiated. However, 
Coho salmon lineages across the West Coast are not particularly 
well-defined, which would explain why the Warm Springs River 
population did not always cluster separately from the two Hood 
Canal populations. The Quilcene NFH and Tarboo Creek popu-
lations were never identified as separate clusters. Broodstock 

propagated at Quilcene NFH were founded from local popula-
tions within the past several decades, meaning allele frequencies 
may not have significantly diverged to be detected by admixture. 
Alternatively, the observed mixing of the two populations may 
be a real biological signal: Tarboo Creek and Quilcene NFH are 
within close proximity, and migrants have been found between 
the two populations (Bohling et al., 2020). However, considering 
that admixture proportions varied for individuals across genome/
genotyper combinations suggests the shallow divergence played a 
large role in the lack of clear clustering. Plus, Bohling et al. (2020) 
found the broodlines propagated at Quilcene NFH were distinct 
from naturally spawning local populations. Overall, using more di-
vergent reference genomes for alignment may be practical when 
detecting deep patterns of population structure, but may cause 
problems in detecting more recent population splits.

4.2 | Genotypers

There were also differences in how the three genotyping software 
programs responded to reference genome divergence, making 
general characterizations difficult. By far, more SNPs were pro-
duced by FreeBayes and ANGSD relative to Stacks. This makes 
sense as FreeBayes and ANGSD are more amenable to low cover-
age data and incorporate Bayesian models that use the full suite of 
sequencing data to identify variants. However, Stacks was much 
less impacted by reference genome divergence. Stacks does not 
depend on the reference genome for actually calling SNPs: It 
identifies variants within individuals based on base calls and then 
combines those across individuals. Both FreeBayes and ANGSD 
will call SNPs based on base call differences between the HTS 
reads and the reference genome itself, explaining why reference 
genome divergence did not decrease the number of overall SNPs, 
especially for ANGSD. This could create a false impression of data 
robustness, generating a large number of SNPs that are totally 
homozygous within the target populations (Nevado et al., 2014). 
Genotyping approaches like those implemented by Stacks may be 
a safer choice when HTS data are aligned to a divergent, nontarget 
reference genome.

Inferences derived with SNPs identified by ANGSD diverged 
considerably from the other two genotypers. One contributing fac-
tor may have been the choice of analytical pipelines: providing a fair 
comparison between the genotypers meant using the same analy-
sis software, which meant actually calling genotypes with ANGSD. 
The strength of ANGSD, however, it is calculation of genotype 
probabilities instead of called genotypes (Waples, Albrechtsen, & 
Moltke, 2019; Warmuth & Ellegren, 2019). This approach has sev-
eral advantages, especially with low coverage data, and can provide 
accurate estimates of allele frequencies (Korneliussen et al., 2014; 
Nielsen, Korneliussen, Albrechtsen, Li, & Wang, 2012). The problem 
is that many of the traditional software applications in population ge-
netics are not designed for genotype probabilities: Specialized soft-
ware must be used to exploit this output (Fumagalli, Vieira, Linderoth, 
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& Nielsen, 2014; Skotte, Korneliussen, & Albrechtsen, 2013). Thus, 
providing a direct comparison between called genotypes and proba-
bilities is problematic. For example, ngsAdmix, the equivalent of ad-
mixture that was developed to perform clustering of ANGSD output, 
does not perform the cross-validation procedure for inferring K. Nor 
is there a straightforward way to calculate overall FST among more 
than two populations using genotype probabilities. Using genotype 
probabilities has inherent appeal with HTS data, but software appli-
cations must be developed to meet the diverse needs of geneticists 
for it to reach its full potential.

4.3 | Implications for biodiversity genomics

There are several additional observations gleaned from this study 
that serve as important lessons for geneticists as we advanced into 
the genomic era. First relates to the de novo assemblies compared 
to the reference-aligned datasets. Several studies have suggested 
for RADseq data that higher coverage and genotyping accuracy 
are achieved with reference-aligned pipelines compared to de novo 
(Fountain et  al.,  2016; Shafer et al., 2017; Torkamaneh, Laroche, 
& Belzile,  2016). Analyzing these salmonid datasets suggests that 
the question of de novo versus reference-aligned is more nuanced. 
Whether the de novo pipelines produced fewer SNPs depended on 
the dataset: with bull trout RADseq data, the de novo numbers were 
comparable to reference aligned. Mean read depth at SNPs was 
higher for the dDocent de novo pipeline than with the FreeBayes 
reference-aligned data, but the opposite was true with Stacks. The 
highest estimates of FST were obtained with data assembled de novo 
by Stacks, suggesting it was emphasizing divisions between our 
populations. Paris et al.  (2017) suggested that de novo assemblies 
take full advantage of the information contained within RADseq 
data, some of which may be lost due to poor alignment or difference 
between the target species and reference genome. Thus, de novo 
assemblies may be the preferred approach in situations when there 
is no genome from the target species or any closely related species.

A final observation concerns the varying estimates of pop-
ulation differentiation generated by all the genome/genotyper 
combinations. Even though produced with the same underlying se-
quence data, estimates of FST and clustering patterns were variable. 
These findings echo those of Nevado et al. (2014), Gopalakrishnan 
et al.  (2017), and Shafer et al. (2017) and emphasize an important 
point: biological inferences can be unpredictable when nontarget 
species reference genomes are used. As researchers have exam-
ined the factors that influence genotyping with HTS, a common 
thread has emerged that changing a few parameters can alter pop-
ulation genetic estimates (Fountain et al., 2016; Hodel et al., 2017; 
Mastretta-Yanes et al., 2015; Paris et al., 2017). Even the choice of 
software should be viewed as a parameter that can influence biolog-
ical inference (Nevado et al., 2014; Shafer et al., 2017; Torkamaneh 
et al., 2016).

This has profound consequence for interpretation, especially in 
situations in which findings have consequences for conservation and 

other applied applications. Geneticists should be transparent that pro-
cessing a single dataset through a single pipeline represents a single 
snapshot view of biodiversity. Researchers should be careful in as-
suming inferences made when aligning HTS data to the genome of a 
nontarget species will hold up when another genome is used. Unless 
consensus builds that particular pipelines and parameters are required 
for genomic studies, it would be advisable to test varying parameters 
and software to gain a more generalized view of biological patterns.

To close, this study reveals that the reference genome is an im-
portant variable in the processing of HTS data. Over the past de-
cade, there have been a variety of initiatives to develop reference 
genomes for as many species as possible, such as the Genome 10K 
project (Genome 10K Community of Scientists,  2009; Koepfli, 
Paten, Genome 10K Community of Scientists, & O’Brien, 2015) 
and Earth BioGenome Project (Lewin et al., 2018). One practical 
application of these initiatives is that reference genomes will be 
available for conducting intraspecific population analyses, reduc-
ing the need to align HTS data to more diverged genomes. This 
would increase the veracity of studies using HTS data, resulting in 
better coverage and higher-quality variants. It is tempting to gen-
erate HTS data to investigate a wide array questions we have in 
genetics: however, we may need to assess whether we are putting 
the cart before the horse in generating these data before refer-
ence genomes are available for these species.
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