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Abstract

A comprehensive evaluation of every patient with a bloodstream infection includes an attempt to 

identify the infectious source. Pathogens can originate from various places, such as the gut 

microbiome, skin, and external environment. Identifying the definitive origin of an infection would 

enable precise interventions focused on management of the source1,2. Unfortunately, hospital 

infection control practices are often informed by assumptions about the source of various specific 

pathogens; if these assumptions are incorrect they lead to interventions that do not decrease 

pathogen exposure3. Here, we develop and apply a streamlined bioinformatic tool, named 

StrainSifter, to match bloodstream pathogens precisely to a candidate source. We then leverage 

this approach to interrogate the gut microbiome as a potential reservoir of bloodstream pathogens 

in a cohort of hematopoietic cell transplantation recipients. We find that patients with Escherichia 
coli and Klebsiella pneumoniae bloodstream infections have concomitant gut colonization with 

these organisms, suggesting that the gut may be a source of these infections. We also find cases 

where classically non-enteric pathogens, such as Pseudomonas aeruginosa and Staphylococcus 
epidermidis, are found in the gut microbiome, thereby challenging existing informal dogma of 
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these infections originating from environmental or skin sources. Thus, we present an approach to 

distinguish the source of various bloodstream infections, which may facilitate more accurate 

tracking and prevention of hospital-acquired infections.

Clinical management of infection involves the evaluation and elimination of infectious 

sources. Epidemiologically, bloodstream infections (BSI) are common in hospitalized 

patients and contribute substantially to patient morbidity and mortality4. Thus, identifying 

the source of BSIs is critical in both clinical care and hospital epidemiology. BSIs are 

particularly common in immunocompromised patients who are hospitalized for extended 

periods of time, such as hematopoietic cell transplantation (HCT) recipients5–7. Primary 

bloodstream infections with enteric organisms often arise as a result of translocation from 

the intestinal microbial reservoir across a damaged gastrointestinal barrier into the 

bloodstream8. In contrast, non-enteric commensal and environmental bacteria can access the 

bloodstream through intravenous lines and sites where skin epithelial integrity has been 

compromised. Existing methods for identifying the origins of bloodstream infections in 

HCT patients include pulsed-field gel electrophoresis and multi-locus sequence typing 

(MLST)9,10. Although rapid, affordable, and standardized across many organisms, these 

methods are not ideal for distinguishing bacterial strains. Yet, microbial pathogenicity and 

transmission depend in part on strain-level variability, as different strains of the same species 

can vary widely in their ability to cause disease11,12. Whole genome sequencing (WGS) has 

facilitated the exploration of strain-level determinants of virulence and has enabled precise 

tracking of pathogens11,13,14.

While comparisons of strain genomes have primarily been performed on bacterial isolates, 

newer computational tools (metaSNV, MIDAS, and StrainPhlAn)15–17 profile strain 

variation between metagenomes. These careful strain-level analyses allow us to understand 

when and how bacteria are transmitted and how they may change over time. However, 

bioinformatic tools have not been developed for identifying specific sources of infection by 

comparing disease-causing bacterial isolates to complex microbiome samples such as human 

stool. In this work, we present StrainSifter, a bioinformatics pipeline for matching pathogens 

to potential sources. We then apply this tool to compare bacterial strains between the gut and 

bloodstream in HCT patients, with the goal of better understanding the origin of BSI in this 

population.

We performed a retrospective cohort study of autologous and allogeneic HCT recipients at 

Stanford University Hospital. Weekly stool sampling was carried out for all subjects who 

consented to a tissue biobanking protocol between October 5, 2015 and June 9, 2017. 

Patients were included if a stool sample had been collected in the 30 days preceding an 

episode of BSI and if a bloodstream isolate meeting standard BSI criteria had also been 

saved18. Thirty patients (32 bloodstream isolates) met these criteria. We sequenced all 

bloodstream isolates as well as stool samples (n = 82) collected between 60 days before and 

31 days after the date of BSI. Clinical characteristics of the cohort are listed in Table 1 

(individual patient data in Table S1).

We sequenced a median of two stool samples per patient (range 1–8), collected a median of 

nine days prior to BSI (range −58 to +31) (Figure S1, read counts in Tables S2, S3). Stool 
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sequence data were taxonomically classified using the One Codex platform19. We observe 

the BSI species in the gut at a threshold of 0.1% or greater relative abundance for 15 of 32 

(47%) unique organisms, 10 of which are of expected enteric origin (eight typically 

intestinal, two typically oral). One patient developed a BSI with two species, both of which 

were present in the stool above the threshold level (Table S4; full taxonomic classifications 

in Table S5).

We next investigated whether BSI organisms are present at a higher relative abundance in the 

gut prior to infection, as has been reported20,21. Of the 15 BSIs in which the organism was 

detected in the stool, we observe intestinal dominance by the BSI pathogen in two instances 

(Figure 1). In both cases, the BSI species are expected to be enteric in origin (Escherichia 
coli from patient 3; Enterococcus faecium from patient 25) (Figure 1, Table S4). In contrast, 

other enteric bacteria are poorly abundant (Klebsiella pneumoniae and Enterobacter cloacae 
from patient 2 at 2.8% and 0.6% relative abundance, respectively) (Figure 1, Table S4). All 

typically non-enteric organisms are poorly abundant (0.01–2%) or not detected in the gut 

prior to bloodstream infection (Pseudomonas aeruginosa from patient 19; Staphylococcus 
epidermidis from patient 13; Staphylococcus aureus from multiple patients) (Figure 1, Table 

S4). In the stool samples of several patients, we observe a high relative abundance of 

candidate pathogens that did not cause BSI in those individuals. Specifically, patient 14 

experienced a K. pneumoniae BSI, yet stool samples at two timepoints are dominated by 

other potential pathogens: E. coli at 64% relative abundance nine days prior to BSI and E. 
faecium at 82% relative abundance 19 days after BSI (Table S5).

While taxonomic concordance suggests BSI organism presence in the gut microbiome, we 

sought to test this hypothesis with greater precision. To do so, we developed StrainSifter 

(Figure S2), a bioinformatic pipeline which detects whether an organism is present with 

sufficient abundance in short-read datasets, and outputs phylogenetic trees and single-

nucleotide variant (SNV) counts between samples. We used StrainSifter to investigate the 

relatedness of strains of each BSI species in our metagenomes and isolates. Isolate reads 

were assembled into draft genomes using a short-read genome assembly tool (assembly 

statistics Table S6; CheckM assessment Table S7). We compared the phylogenetic 

relatedness of all BSI and stool strains in our sample collection to one another (Figure 2) and 

to publicly available data (Figure S3), and counted SNVs using Strainsifter (Tables S8, S9). 

Of note, none of the 30 patients included in our study had sufficient S. aureus in their stool 

samples to profile with StrainSifter, indicating that this organism likely infrequently 

colonizes the gut of HCT patients.

In general, we find that BSI and gut metagenomic strains from the same patient are more 

closely related than strains from unrelated patients. As expected, BSI and intestinal strains of 

typically enteric species such as E. coli (patients 3, 7), E. faecium (patient 25), K. 
pneumoniae (patient 2), and S. mitis (patient 22) are closely phylogenetically related (Figure 

2) supporting the longstanding dogma that these organisms are gut-derived9,10. On one 

extreme, we observe zero SNVs between BSI and stool strains of patient 3 at timepoints 33, 

32, and 27 days prior to BSI, indicating that the identical E. coli strain is present in the gut 

over a month before the onset of infection (Table S9). On the other extreme, we measured 

259 SNVs between the E. coli BSI and the stool sample for patient 7. This surprising 
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observation suggests the possibility of a population of closely-related strains, where the 

dominant strain is varying over time. Alternatively, the E. coli strain that resulted in BSI may 

have been acquired elsewhere.

Unexpectedly, we observe that gut and BSI strains are closely related in samples from the 

same patient for typically non-enteric taxa including S. epidermidis (patient 13) and P. 
aeruginosa (patient 19, not pictured) (Figure 2). We find one SNV (0.4 SNVs per megabase) 

between BSI and gut S. epidermidis strains of patient 13, indicating that the bloodstream 

strain is highly concordant with the strain found in the gut one day prior (Table S9). Further, 

we observe zero discriminating SNVs between identical strains of P. aeruginosa in both the 

blood and stool specimens. While P. aeruginosa can exist in the gut microbiome22, S. 
epidermidis is typically thought to originate from the skin23–26. As further evidence that S. 
epidermidis bacteremia was not clearly line-associated, patient 13’s blood cultures cleared 

within two days, despite retention of the line (Table S1). Interestingly, patient 7 did not 

develop a S. epidermidis BSI despite high relative abundance over two sequential timepoints 

(>60%) (Table S5). Finally, to compare WGS-based approaches to traditional strain typing, 

we performed in silico MLST (Table S10). In the four instances where an MLST type was 

resolved for both gut and BSI strains, results were concordant with StrainSifter.

For the gut microbiome to be a contributing source of pathogens, the organisms must be 

alive. However, it is not possible to ascertain whether these organisms are alive using 

StrainSifter. A surrogate for measurement of a living organism is the rate of DNA 

replication. We used an available bioinformatic tool27 to assess replication rates for 11 stool 

samples from 9 patients where gut and BSI strains were concordant and found that all had 

rates suggestive of active replication (Table S11).

We observe relatively few events of potential pathogen transmission between individuals 

despite overlapping hospital admissions during the 20-month study period, based on 

sequence-relatedness of bloodstream isolates or of candidate pathogens measured in the gut 

microbiome reservoir. For example, stool samples from patients 12 and 14 reveal E. faecium 
strains that differ by 49–76 SNVs (18–26 SNVs per megabase) relative to the bloodstream 

isolate of patient 25 (Table S8). Similarly, several S. aureus BSI strains appear related: 710 

SNVs (250 per megabase) between BSIs from patients 10 and 21, 166 SNVs (58 per 

megabase) between patients 3 and 5, and 729 SNVs (263 per megabase) between patients 1 

and 12. However, it is important to note that StrainSifter profiles the dominant strain in each 

sample. Thus, true transmission events may be missed if different strains dominate in 

different individuals.

Finally, we asked whether closely related strains from different patients are also functionally 

related. We compared computationally predicted (Figure 3, Table S12) and clinical antibiotic 

resistance (Table S13) for individual patient BSIs. We find that predicted and clinical 

antibiotic resistance results are highly concordant. As noted previously, E. coli bloodstream 

isolates from patients 3 and 11 are phylogenetically related, differing by relatively few SNVs 

(60 SNVs per megabase). Functional analysis reveals that patient 3’s BSI contains a gene 

encoding CTX-M, whereas patient 11’s BSI does not. CTX-M is an extended-spectrum 

beta-lactamase (ESBL), which confers resistance to most penicillins and cephalosporins. As 
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predicted, clinical testing confirmed that patient 3’s BSI was resistant to most penicillins and 

cephalosporins, whereas patient 11’s BSI was not. In contrast, the E. coli BSI strain from 

patient 7 differs from that of patient 3 by 24,088 SNVs (7,390 SNVs per megabase), but 

demonstrates similar predicted and clinical ESBL activity, also likely conferred by CTX-M. 

Phylogenetically related S. aureus BSIs exhibit similar predicted and clinical phenotypes. 

For example, MecR1-mediated methicillin resistance is predicted and present in S. aureus 
BSIs 3 and 5, which are closely related (Figure 3, Tables S12, S13). S. aureus BSIs 1 and 12, 

which are closely related to each other but distant from BSIs 3 and 5, lack a gene encoding 

MecR1 and are methicillin-sensitive.

In conclusion, a detailed analysis using StrainSifter allowed us to precisely and 

comprehensively identify the candidate source of various bloodstream infections. While 

there is great enthusiasm for the incorporation of WGS into real-time patient management, 

at present, challenges in sample preparation and sequencing turnaround-time limit the 

incorporation of such approaches into clinical care. Nevertheless, WGS is playing a growing 

role in hospital epidemiologic studies. Characterization of gut microbiome dynamics that 

occur prior to infection may help us precisely identify potential reservoirs of pathogens, thus 

enabling improved hospital infection prevention and management strategies.

The results presented are suggestive of a gut microbiome source for both enteric and non-

enteric organisms. However, given that the present study sampled only stool microbiota, we 

cannot exclude the possibility of the same pathogenic strain colonizing multiple body sites 

from which the infection may have originated instead. Additionally, although StrainSifter 

can precisely identify shared variants between genomes and metagenomes, it is limited to 

profiling only the dominant strain of a given organism in a community. However, it has been 

shown that gut metagenomes frequently contain only one predominant strain of each 

species, so StrainSifter is likely to function well under many circumstances17.

In the future, we anticipate that high resolution WGS-based strain comparisons will facilitate 

discovery of additional instances where typically “non-enteric” organisms are found in the 

gut microbiome, a model supported here. This knowledge may complement the growing 

body of research on therapies to improve gut microbiota diversity and may inform attempts 

to bolster colonization resistance against pathogens. Further, more precisely identifying the 

origins of bloodstream infections may influence how hospitals and healthcare providers can 

most effectively work to prevent infections. With these powerful genomic tools, we 

anticipate that precision source identification and strain tracking will lead us to a new, 

sharpened model of infectious disease.

Methods

Cohort selection

A retrospective cohort study, approved by the institutional review board under the IRB 

protocol # 42053 (Principal investigator: Dr. Ami Bhatt), was performed at Stanford 

Hospital. Informed consent was obtained from all samples collected. At the time of cohort 

identification (July 2017), a stool biospecimen collection containing 964 stool samples from 

402 patients was available for investigation. This collection consisted of convenience 
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samples collected from autologous and allogeneic hematopoietic cell transplantation (HCT) 

patients at Stanford University Hospital between October 5, 2015 and June 9, 2017. Patients 

were included in this study if a stool sample had been collected within 30 days prior to an 

episode of bloodstream infection (BSI) for which a blood isolate was also available. From 

this final cohort, we sequenced all stool samples in our collection within 60 days prior to and 

31 days after BSI.

Bloodstream isolate identification

Bloodstream isolates from HCT patients who received medical care at Stanford University 

Hospital were obtained from the Stanford Hospital Clinical Microbiology Laboratory. All 

isolates considered typical bloodstream pathogens by National Healthcare Safety Network 

(NHSN) guidelines were stored in a glycerol suspension at −80°C for up to 12 months17. 

Blood culture isolates considered to be skin-associated bacteria (including viridans group 

Streptococcus spp. and coagulase-negative Staphylococcus spp.) were saved if they were 

recovered in two or more blood culture sets as per NHSN criteria17. Isolates were identified 

by standard biochemical testing and matrix-assisted laser desorption and ionization time-of-

flight mass spectrometry (MALDI-TOF MS) (Bruker Daltonics).

Sample processing

Bacterial bloodstream isolates were plated on brain heart infusion agar with 10% horse 

blood. DNA was extracted from isolates using the Gentra Puregene Yeast/Bact. Kit per 

manufacturer’s instructions. Stool samples were collected and stored at 4°C for up to 24 

hours prior to homogenization, aliquoting, and storage at −80°C. DNA was extracted from 

stool using the QIAamp DNA Stool Mini Kit (QIAGEN) per manufacturer’s instructions, 

with an initial bead-beating step prior to extraction using the Mini-Beadbeater-16 (BioSpec 

Products) and 1 mm diameter Zirconia/Silica beads (BioSpec Products). Bead-beating 

consisted of 7 rounds of alternating 30 second bead-beating bursts followed by 30 seconds 

cooling on ice. DNA concentration for all samples was measured using Qubit Fluorometric 

Quantitation (Life Technologies). DNA sequencing libraries from both isolates and stool 

were prepared using the Nextera XT DNA Library Prep Kit (Illumina) with isolates and 

stool microbiota libraries prepared at separate times following DNA decontamination of all 

lab surfaces and pipets (DNAZap, Ambion). Library concentration was measured using 

Qubit Fluorometric Quantitation (Life Technologies) and library quality and size 

distributions were analyzed with the Bioanalyzer 2100 (Agilent). Prepared libraries were 

multiplexed and subjected to 100 base pair paired-end sequencing on the HiSeq 4000 

platform (Illumina).

Computational methods

WGS preprocessing—Sequence data were demultiplexed by unique barcodes (bcl2fastq 

v2.20.0.422, Illumina). Reads were deduplicated to remove PCR and optical duplicates 

using SuperDeduper v1.4 with the start location in the read at 5 base pairs (-s 5) and 

minimum length of 50 base pairs (-l 50)28. Deduplicated reads were trimmed using 

TrimGalore v0.4.4, a wrapper for CutAdapt v1.16, with a minimum quality score of 30 for 

trimming (-q 30), minimum read length of 50 (--length 50) and the “--nextera” flag to 
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remove Illumina Nextera adapter sequences29,30. Draft genomes of bacterial isolates were 

assembled using SPAdes v3.11.031 with default parameters. Summary statistics for each BSI 

assembly were generated using ‘basic_assembly_stats.py’ from GAEMR v1.0.132. Draft 

genome completeness was assessed with CheckM v1.0.11 “lineage_wf”33. Draft genomes 

were filtered to remove contigs smaller than 1kb for downstream analyses.

Taxonomic classification—Gut metagenomic reads were taxonomically classified via 

the One Codex platform, a web-based tool for assigning read-level classifications based on 

unique k-mer signatures relative to a curated reference database (database v2017)19.

Phylogenetic tree building and variant identification with the StrainSifter 
pipeline—StrainSifter is a pipeline deployed as a Snakemake34 workflow packaged with 

conda, available at GitHub (https://github.com/bhattlab/strainsifter). Snakemake v5.1.4 and 

conda v4.5.9 were used in this manuscript. StrainSifter source code can be found in the 

Supplementary Information. Strainsifter contains modules for variant calling and 

phylogenetic tree building. StrainSifter accepts as input an assembled bacterial draft 

genome, designated as the reference, and two or more short read data sets (isolate or 

metagenomic), and can report a phylogenetic tree of input samples as well as pairwise SNV 

counts.

To build the phylogenetic trees reported in this manuscript, the most contiguous and 

complete genome from our isolate collection was chosen as the reference genome for each 

infectious species (based on clinical laboratory taxonomic classifications). For the variant 

counting reported herein, BSI isolate draft genomes were supplied to StrainSifter. For both 

analyses, all stool and BSI short read datasets were provided as input. We also used 

StrainSifter to evaluate the phylogenetic relatedness of our BSI strains to those available in a 

published database of pathogenic isolates from an intensive care setting (BioProject 

PRJNA267549)35. For both phylogeny and SNV-counting modules, preprocessed short reads 

are first aligned to the reference genome using the Burrows-Wheeler Aligner v0.7.1036. 

Alignments are filtered to include only high-confidence alignments with mapping quality of 

at least 60 using the “view” tool from the SAMtools suite (v1.7)37 (samtools view -b -q 60), 

and further filtered using BamTools “filter” (v2.4.0) to include only reads with the desired 

number or fewer mismatches (i.e. for five or fewer mismatches: bamtools filter -tag 

‘NM:<=5’)38. For phylogenetic tree construction, reads with 5 or fewer mismatches were 

included; for determining strain single-nucleotide variants, reads were limited to 1 or fewer 

mismatches. Per-base coverage is calculated from each resulting BAM file using bedtools 

genomecov (v2.26.0) and processed with custom python scripts to identify samples meeting 

a minimum average coverage of 5X across at least 40% of the genome39,40. Only samples 

meeting the coverage requirement are continued through the pipeline. Pileup files are created 

from BAM files using SAMtools “mpileup”, and are analyzed using custom python scripts 

to identify bases occurring with at least 0.8 frequency at positions covered 5X or greater 

(Computational methods supplement). Only bases with a minimum phred score of >=20 are 

considered. Consensus sequences for each sample are created, wherein bases that cannot be 

confidently determined given the described parameters are called as “N”.
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To create a phylogenetic tree, core positions are identified on a per-species basis, where core 

positions are defined as positions in the reference genome where a base could be confidently 

called for all samples meeting the coverage requirements. To generate phylogenetic trees, 

core positions with variants in at least one sample are identified and concatenated into one 

FASTA file per sample. FASTA files are aligned using MUSCLE v3.8.3141 and a maximum-

likelihood phylogenetic tree is computed using FastTree v2.1.742. Phylogenetic trees are 

visualized in R using the ape v5.143, phangorn v2.4.044, and ggtree v1.10.545 packages. 

Pairwise SNVs are determined from the consensus sequences using a custom python script.

Synthetic multilocus sequence typing—Metagenomic short reads were assembled 

using metaSPAdes v3.11.046. Multilocus sequence typing (MLST) schemes and sequences 

were downloaded from the PubMLST database47. MLST gene sequences were aligned to 

metagenome assemblies using nucleotide BLAST v2.2.3148, and the top hit for each 

alignment was chosen based on E-value, percent identity, and alignment length. Only MLST 

sequences that were present in the metagenomic assembly with 100% identity across the 

entire length of the sequence were reported. MLST types generated by our in-house analysis 

were confirmed with the SRST2 synthetic multilocus sequence typing tool (v0.2.0)49.

Antibiotic resistance gene annotation—Putative protein sequences were identified in 

BSI draft genomes using Prodigal v2.6.350. Antibiotic resistance genes were annotated from 

protein sequences by searching the Resfams antibiotic resistance protein family database 

(v1.2)51 using hmmscan from the hmmer package with the “--cut_ga” and “--tblout” flags52.

Determination of bacterial replication rates within metagenomic samples—
Bacterial replication rates were assessed using the iRep v1.10 software53. Gut metagenomic 

samples were aligned to the BSI draft genome from the same patient using StrainSifter as 

described above. The resulting BAM files were converted to SAM format using SAMtools 

“view” and the resulting SAM file and corresponding BSI draft genome were supplied to 

iRep as input for each sample.

Plots—Plots were generated using the R programming language (v3.4.0) using the ggplot2 

v2.2.154, reshape2 v1.4.355, and dplyr v0.7.456 packages.

Reporting summary

Additional information on experimental design is available in the Life Sciences Reporting 

Summary.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. BSI pathogens are present in the gut microbiome at varying relative abundance prior 
to bloodstream infection.
Relative abundance of microbial reads classified at the species level. Plots show species 

present at 1.5% relative abundance or greater and thus stacked bars do not necessarily add up 

to 100%. The BSI causing organism is outlined in black in the bar plot and figure legend for 

each panel. Timing of BSI and engraftment relative to HCT are available in Table S1. 

Domination by Escherichia coli (a) and Enterococcus faecium (b) occurs prior to 

bacteremia. Klebsiella pneumoniae (c) and Staphylococcus epidermidis (d) are present in 

the gut microbiome prior to BSI at relatively low abundance.
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Figure 2. Gut and BSI strains from the same patient are more closely related than strains from 
different patients.
Phylogenetic relatedness between bacterial strains as assessed by StrainSifter. Branch tip 

colors indicate stool (brown) and bloodstream infection (BSI) (red) samples. Samples from 

the same patient are more closely phylogenetically related to each other (blue highlight) than 

to samples from other patients. Days given are relative to BSI. Phylogenetic trees for P. 
aeruginosa and E. cloacae are not shown, as these species are not observed with sufficient 

abundance in more than one gut metagenome. Of note, although patient 20’s BSI is 

classified as S. epidermidis, this strain does not meet the coverage requirements for inclusion 

in the S. epidermidis phylogenetic tree.
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Figure 3. Antibiotic resistance gene predictions in bloodstream isolate genomes
Antibiotic resistance genes predicted in bloodstream isolate draft genomes. Antibiotic 

resistance profiles are similar for different isolates of a given species. Of note, the 

Staphylococcus epidermidis isolate that was found to be concordant with a strain in the 

matching gut sample13, S. epidermidis BSI) has a larger number of predicted antibiotic 

resistance genes compared to the remaining S. epidermidis isolates.
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Table 1:

Cohort summary, n=30

Baseline characteristics N (%)

Age (years)

≤30 4 (13%)

31–40 4 (13%)

41–50 6 (20%)

51–60 4 (13%)

61–70 10 (33%)

≥71 2 (7%)

Sex (%male) 17 (57%)

Underlying diagnosis

Lymphoma 8 (27%)

AML 7 (23%)

MDS/Myelofibrosis 6 (20%)

ALL 5 (17%)

CMMoL 2 (7%)

Other* 2 (7%)

Conditioning regimen

Myeloablative 16 (53%)

Reduced intensity 9 (30%)

Non-myeloablative 5 (17%)

Transplant source

Peripheral blood 20 (67%)

Bone marrow 8 (27%)

Double umbilical cord blood 2 (7%)

Type of donor

Autologous 3 (10%)

Allogeneic 27 (90%)

Matched related donor 10 (37%)

Matched unrelated donor 14 (52%)

Mismatched unrelated donor 3 (11%)

TPN within 30 days 15 (50%)

Antibiotics within 30 days** 30 (100%)

Fluoroquinolones 26 (87%)

Beta-lactams 14 (47%)

Carbapenems 6 (20%)

Vancomycin (IV) 12 (40%)

Bacteremia species, n=32 32 (100%)

Gram-positive Staphylococcus aureus 8 (25%)

Methicillin-sensitive 5 (63%)
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Baseline characteristics N (%)

Methicillin-resistant 3 (38%)

Staphylococcus epidermidis 4 (13%)

Streptococcus mitis 7 (22%)

Enterococcus faecium 2 (6%)

Rothia mucilaginosa 2 (6%)

Gram-negative Escherichia coli 4 (13%)

Klebsiella spp. 3 (9%)

Klebsiella pneumoniae 2 (67%)

Klebsiella oxytoca 1 (33%)

Enterobacter cloacae 1 (3%)

Pseudomonas aeruginosa 1 (3%)

List of abbreviations: AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia; CMMoL, chronic myelomonocytic leukemia; MDS, 
myelodysplastic syndrome; TPN, total parenteral nutrition; IV, intravenous

*
Other=Paroxysmal nocturnal hemoglobinuria, testicular cancer

**
Select categories of antibiotics (antibiotics are not exclusive and do not add up to 100%)
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