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Abstract

Background: Staphylococcus aureus is a human pathogen that produces extracellular adenosine to evade
clearance by the host immune system, an activity attributed to the 5’-nucleotidase activity of adenosine synthase
(AdsA). In mammals, conversion of adenosine triphosphate to adenosine is catalyzed in a two-step process: ecto-
nucleoside triphosphate diphosphohydrolases (ecto-NTDPases) hydrolyze ATP and ADP to AMP, whereas 5’-
nucleotidases hydrolyze AMP to adenosine. NTPDases harbor apyrase conserved regions (ACRs) that are critical for
activity.

Results: NTPDase ACR motifs are absent in AdsA, yet we report here that recombinant AdsA hydrolyzes ADP and
ATP in addition to AMP. Competition assays suggest that hydrolysis occurs following binding of all three substrates at
a unique site. Alanine substitution of two amino acids, aspartic acid 127 and histidine 196 within the 5’-nucleotidase
signature sequence, leads to reduced AMP or ADP hydrolysis but does not affect the binding of these substrates.

Conclusion: Collectively, these results provide insight into the unique ability of AdsA to produce adenosine
through the consecutive hydrolysis of ATP, ADP and AMP, thereby endowing S. aureus with the ability to modulate
host immune responses.

Background
Staphylococcus aureus is a Gram-positive pathogen and
the leading cause of bloodstream, lower respiratory tract,
skin and soft tissue infections [1]. S. aureus produces
numerous virulence factors that contribute to its ability
to cause disease [2-4]. These include several toxins that
are known for their detrimental effects on host cells [5,6],
in particular cells of the immune system [7,8]. Staphylo-
cocci can infect a broad range of tissues and organs
resulting in excessive tissue damage [9]. This observation
is highlighted by the appearance of large populations of
necrotic cells surrounding staphylococcal communities
within organ abscesses isolated from infected mice [10].
Cellular damage caused by bacterial triggers the release
of otherwise sequestered intracellular components such
as heat shock proteins (HSPs) [11], S100 proteins [12],
nucleosomes [13], N-formylated mitochondrial peptides
[14] and purines (ATP and ADP) [15,16] all of which are
known to potently stimulate inflammation. Excessive
inflammation can be detrimental to the host due to the

prolonged presence of activated immune cells as well as
the leakage of proteases and other noxious agents that
damage surrounding tissues. A delicate balance of pro-
and anti-inflammatory mediators is critical to prevent
extensive inflammation.
Extracellular nucleotides (i.e. adenosine tri-, di- and

monophosphates and adenosine), which signal through
purinergic cell surface receptors have recently been shown
to serve as mediators of inflammation. For example, sti-
mulation of purinergic PY receptors by ATP and ADP
results in pro-inflammatory responses while stimulation of
PX adenosine receptors leads to an anti-inflammatory
response [17-22]. In addition, nucleotide metabolizing
enzymes that hydrolyze adenosine tri- and di-phosphates
(ATP and ADP) or adenosine monophosphates (AMP),
termed ecto-nucleoside triphosphate diphosphohydrolases
(ecto-NTPDases) or 5’-nucleotidases respectively, regulate
purinergic signaling by controlling the level of extracellular
nucleotides. NTPDases hydrolyze nucleoside tri- and/or
diphosphates, but not monophosphates [23-25]. Eight
members of the NTPDase family have been identified in
mammals, all of which are characterized by five highly
conserved sequence motifs known as “apyrase conserved
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regions” (ACR), which range from 4-13 residues in length
[26]. CD39 (NTDPase 1) was the first member identified
for this family of enzymes. It is expressed on activated B
cells and regulatory T (Treg) cells. Hydrolysis of 5’-AMP is
carried out by a second class of enzymes. CD73 is the best
characterized of the 5’-nucleotidases; CD73 hydrolyzes
5’-AMP specifically and shows no activity towards 2’- and
3’-monophosphates [27]. This ecto-enzyme is expressed in
different tissues, with abundant expression in the colon,
kidney, liver, heart, lung and on specific cells of the
immune system [27,28]. CD73 and CD39 are co-expressed
on the surfaces of CD+4/CD+25/Foxp3+ Treg cells and cata-
lyze the enzymatic conversion of ATP/ADP-derived AMP
into the anti-inflammatory mediator adenosine, subse-
quently leading to inhibition of T cell proliferation and
secretion of cytokines [29,30].
We recently reported that S. aureus AdsA, a cell wall

anchored protein, is a 5’-nucleotidase that catalyzes the
conversion of AMP to adenosine. The nucleotidase activity
of AdsA is critical for S. aureus survival in blood and adsA
mutants are impaired in their ability to induce abscess for-
mation during infection [31]. Thus, we surmise that
S. aureus uses AdsA to increase the concentration of ade-
nosine concentrations within the host and take advantage
of adenosine’s immunosuppressive properties to escape
immune clearance. Since staphylococci are surrounded by
large populations of dead or dying host cells within deep
tissue abscesses [10], it can be assumed that there is an
abundance of extracellular nucleotides released from
damaged tissues. The importance of extracellular nucleo-
tide signaling in mediating pathogen clearance led us to
further investigate AdsA’s nucleotide metabolizing capa-
city. Although analyses of the amino acid sequence of
AdsA did not reveal conserved ACR motifs indicative of
NTPDases, a recombinant AdsA was able to efficiently
hydrolyze both ATP and ADP in vitro. We further charac-
terized the enzyme kinetics of AdsA hydrolysis of ATP,
ADP and AMP and also identified amino acid residues cri-
tical for AdsA’s hydrolase activity.

Methods
Purification of recombinant AdsA
Recombinant GST-tagged AdsA (rAdsA) was expressed
using pVT1 in Escherichia coli BL21 (DE3) and purified
using glutathione S-transferase affinity chromatography as
described previously [31]. The N-terminal GST tag was
cleaved with thrombin and thrombin removed by incuba-
tion with benzamadine sepharose beads per manufac-
turer’s conditions (GE Healthcare).

Assays for enzymatic activity of AdsA
Hydrolysis of ATP, ADP and AMP (Sigma-Aldrich) was
carried out in 50 mM Tris-HCl buffer pH 7.5, in the pre-
sence of 1 mM nucleotide and 0.5 mM MnCl2. rAdsA

was added to the reaction at 0.15 μg/μl and the reaction
was incubated at 37°C for 15 min. Inorganic phosphate
release was detected by addition of malachite green dye
reagent [32] (1.1% w/v ammonium molybdate, 0.04% w/v
malachite green hydrochloride) and 3.4% citric acid and
concentration was calculated from a known concentra-
tion range of phosphate standards. Similar conditions
were used to determine the pH optima of rAdsA for
AMP and ADP. Inorganic phosphate release was also
recorded using malachite green dye reagent to assess
hydrolysis of non-adenine based nucleotides. To deter-
mine the divalent cation preference of rAdsA, ADP
hydrolysis (1 mM) was assayed in 50 mM Tris-HCL buf-
fer pH 7.5, containing either 0-5 mM MgCl2 or MnCl2,
or 0-2.5 mM ZnCl2, or CuSO4. Thin layer chromatogra-
phy was performed as previously described [31]. Purified
rAdsA (2 μM) was incubated in a 15 μl reaction volume
with increasing amounts of [14C]AMP (Moravek bio-
chemicals) in 50 mM Tris-HCL buffer, pH 7.5 containing
0.5 M sucrose and 0.5 mM MnCl2. Samples were incu-
bated for 15 minutes and then spotted onto silica plates,
followed by separation by TLC using a 75:25 isopropa-
nol/double distilled H2O-0.2 M ammonia bicarbonate
solvent. 75 μM cold nucleotide (AMP or ADP) was used
for competitive inhibition experiments.

Site-directed mutagenesis of rAdsA
The following primers were used for PCR amplification
reactions:
D127F (5’-ACAACACATAAAATATTACA TACAAA

TGCTATCCATGGCCGACTAGC-3’), D127R (5’-GCT
AGTCGGCCATGGATA GCATTTGTATGTAA-
TATTTT ATGTGTTGT-3’), H129F (5’-ACACATAAAA-
TATTACATACAAATGATATCGCTGGCCGACTAGC
CGAAG A-3’), H129R (5’-TCTTCGGCTAGTCGGC-
CAGCGATATCATTTGTATGTAATATTTTAT GTGT-
3’), H196F (5’-GATG CTATGGCAGTCGGTAACGCT-
GAATTTGACTTTGGATAC-3’), H196R (5’-GTATCCA
AAGTCAAATTCAGCGTTACCGACTGCCATAGCA
TC-3’), D199F (5’-GTCGGTAAC CATGAATTTGCC
TTTGGATACGATCAGTTG-3’), D199R (5’-CAACTGA
TCGTATC CAAAGGCAAATTCATGGTTACCGAC-3’).
Site-directed mutagenesis was performed using AccuPrime
pfx DNA polymerase (Invitrogen) using pVT1 as a tem-
plate for replacement of Asp127 to Ala (D127A), His129 to
Ala (H129A), His196 to Ala (H196A), and Asp199 to Ala
(D199A). All plasmids were transformed in E. coli BL21
(DE3) to produce recombinant variants. All mutations
were confirmed by nucleotide sequencing of plasmid
DNA.

Assessment of nucleotide binding to rAdsA
Binding of AMP and ADP to rAdsA was carried out as
described [33]. Briefly, rAdsA (10 μM) was incubated
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with 9 μCi [14C]AMP or 9 μCi [14C]ADP for 15 min on
ice in 50 mM Tris-HCl buffer, pH 7.5 containing 0.5 M
MnCl2. Samples were adsorbed to a nitrocellulose mem-
brane using a vacuum manifold and washed twice with
10 ml buffer. Radioactivity retained on the membranes
was measured by scintillation counting.

Circular dichroism
rAdsA was dialyzed against 8 mM NaH2PO4, 1.5 mM
Na2HPO4 buffer. Purified protein (100 μg/ml) was sub-
jected to circular dichroïsm using an AVIV 202 CD
spectrometer at room temperature.

Results
AdsA hydrolyzes adenosine nucleoside tri- and di-
phosphates
We have previously shown that S. aureus AdsA hydro-
lyzes AMP to produce adenosine [31]. However, extracel-
lular ATP and ADP stimulate inflammation as well. We
wondered whether AdsA might also hydrolyze these
molecules. Hydrolysis was assessed following incubation
with rAdsA for 15 min by measuring the release of inor-
ganic phosphate using the malachite green colorimetric
assay. rAdsA hydrolyzed ATP and ADP efficiently. In
fact, the enzyme released 1.5 fold more phosphate from
ATP and ADP after 15 min incubation than from AMP
(Figure 1A). In addition, rAdsA hydrolyzed both guano-
sine derivatives GTP and GDP, albeit at reduced effi-
ciency compared to ATP and ADP. In comparison, the
inosine nucleosides ITP and IDP were poor substrates
for the enzyme (Figure 1B, C). Cytosine nucleosides were
not hydrolyzed by rAdsA (Figure 1B, C).
In mammals, nucleotide di- and tri-phosphate hydrolysis

is primarily attributed to NTPDases whereas 5’-nucleoti-
dases display specificity toward nucleotide mono-phos-
phate substrates. NTPDases encompass five conserved
ACR motifs that form the active site of these enzymes.
Such ACR motifs indicative of NTPDases cannot be found
in the primary sequence of AdsA. NTPDases are rarely
found in prokaryotes, however bacterial 5’-nucleotidases
from Escherichia coli and Vibrio costicola have been
shown to possess the capacity to hydrolyze ATP molecules
[34,35]. Thus, our results suggest that the bacterial 5’-
nucleotidase AdsA utilizes a distinctive mechanism for the
hydrolysis of ADP/ATP that has been shown to occur in
mammalian NTPDases.

Kinetic activity of AdsA
Substrate preference for nucleoside di- and tri-phos-
phates varies among members of the ecto-NTPDase
family of enzymes. For example, CD39/NTPDase1 hydro-
lyzes both ATP and ADP with similar efficiency, whereas
NTPDase2 preferentially exhibits ATPase activity [26].
We examined and compared the relative rate of ATP,

ADP and AMP hydrolysis by rAdsA at pH 7.5 in the
presence of 0.5 mM MnCl2 (Figure 2A). The rate of inor-
ganic phosphate released from all three nucleotides was
linear over the first 20 min of incubation (with linear
regression using GraphPad Prism5 software yielding r2

Figure 1 AdsA efficiently hydrolyzes adenosine nucleoside tri-
and diphosphates. The ability of rAdsA to hydrolyze nucleoside tri-
or diphosphates was evaluated by assessing inorganic phosphate
released after incubation of rAdsA with the indicated substrates for
15 minutes. Percent activity is expressed as the amount of inorganic
phosphate released relative to ATP (A and C, 914 ± 70 nmol pi) and
ADP (B, 840 ± 55 nmol pi) within each experiment. The results are
the average of 3 independent analyses conducted in duplicate and
the error bars represent the SEM.
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value of 0.90, 0.98 and 0.96 for AMP, ADP and ATP
hydrolysis, respectively). The initial rate of reaction var-
ied with the concentration of substrate (AMP or ADP)
and followed the Michaelis-Menten kinetic model of a

single-substrate reaction (Figure 2B). GraphPad Prism5
software was used to perform nonlinear regression analy-
sis and a Vmax value 713 μmol Pi/min/mg for ADP
hydrolysis compared to 391 μmol Pi/min/mg for AMP

Figure 2 Kinetic activity of AdsA. (A) hydrolysis of 1 mM AMP, 1 mM ADP and 1 mM ATP by 0.15 μg/μl rAdsA, measured as nmol Pi released
over time. The results are expressed as nmol Pi released over time and the average of two independent analyses conducted in triplicate. Error
bars represent the standard error of the mean. (B) Michaelis-Menten plots of enzyme velocity demonstrating the effect of varying AMP (upper
panel) or ADP (lower panel) concentration as shown. Curve fitting using nonlinear regression was performed using GraphPad Prism5 software.
The results are expressed as average μmol Pi released/min/mg protein and error bars represent the standard error of the mean. Data is
representative of two independent analyses conducted in triplicate.
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hydrolysis together with a calculated Km value of 0.93
mM for AMP and 0.51 mM for ADP. The total release of
inorganic phosphate from 1 mM ADP was approximately
1.8 times higher than from 1 mM AMP after 10 minutes
(Figure 2B). ADP contains two phosphate groups to a
single phosphate group in AMP suggesting similar hydro-
lysis rates for both the a- and b-phosphate groups. How-
ever, only a slight increase in inorganic phosphate was
observed from 1 mM ATP relative to 1 mM ADP over
the same time period, suggesting that AdsA may prefer-
entially hydrolyze the a- and b-phosphate groups of
AMP and ADP compared to the g-phosphate in ATP.
Together these results confirm that AdsA is capable of
hydrolyzing ATP and ADP in addition to its known AMP
substrate.

Effect of pH and metal cations on AdsA activity
Increased concentrations of adenine nucleotides in the
extracellular milieu may contribute to the drop in pH
observed during severe inflammation and hypoxia. This
prompted us to evaluate the effect of pH on both ADP
and AMP hydrolysis over a pH range of 4-10. AdsA dis-
played optimal activity at pH 7.0 when AMP and ADP
served as substrates. However, substantial ADPase activ-
ity was observed as low as pH 4.0 (Figure 3A, B). This
finding suggests that the enzyme remains active in var-
ious acidic environments that bacteria encounter during
host invasion.
All mammalian surface-located NTPDases are inactive

in the absence of Mg2+ or Ca2+ cations [26]. In contrast,
the majority of parasitic enzymes are stimulated by Mg2+

or Ca2+ [36-38] and Zn2+. Hydrolysis of ATP and ADP by
other bacterial 5’-nucleotidases require Mg2+ or Mn2+ and
these enzymes are inhibited by Zn2+ [34]. We have pre-
viously shown that optimum hydrolysis of AMP by staphy-
lococcal AdsA is stimulated by Mg2+ and Mn2+ and
inhibited by Zn2+ and Cu2+ [31]. Here, we examine how
divalent cations modulate the ADPase activity of rAdsA.
Similar to AMP hydrolysis, we observe that optimal
ADPase activity occurred in the presence of Mn2+ and
Mg2+ specifically at 0.5 mM MnCl2 and MgCl2 (Figure 3C,
D). The presence of Zn2+ and Cu2+ inhibited hydrolysis of
ADP. The 50% Inhibitory Concentration (IC50) for Zn

2+

and Cu2+ were calculated using non-linear regression as
159 μM and 512 μM, respectively (Figure 3E, F). These
results suggest that hydrolysis of AMP and ADP may
require similar catalytic reactions and active site residues.

Inhibition of AdsA 5’-nucleotidase activity by ADP
The crystal structure of S. aureus AdsA has not been deter-
mined and the molecular interactions between AdsA and
its substrates are unknown. To examine AdsA’s substrate
interactions further, we asked whether ADP is a competi-
tive inhibitor of rAdsA’s 5’-nucleotidase activity. rAdsA

was incubated with [14C]AMP and increasing concentra-
tions of cold non-radiolabeled AMP or ADP and produc-
tion of [14C]adenosine was measured by separation of
substrate and product using thin layer chromatography
(TLC) and recording of radioactive counts. (Figure 4A) and

Figure 3 AdsA is highly active at a near neutral pH and is
dependent on metal cations. (A and B) Effect of pH on activity of
rAdsA. Relative hydrolysis of 1 mm AMP (A) or 1 mm ADP (B) in
buffer containing 50 mm Tris-HCl and 0.5 mM MnCl2 over the
indicated pH range is shown. The results are expressed as the
percentages of activity and are the average of three independent
analyses. (C-D), Shown is the relative ADPase activity of AdsA in the
presence of (C) MnCl2, (D) MgCl2, (E) ZnCl2, and (D) CuCl2. The
results are expressed as relative activity of the highest value in each
experiment. Data is the average of two independent analyses
conducted in triplicate.
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the data were analyzed using the non-linear curve fitting of
the GraphPad Prism software to determine Km values (Fig-
ure 4B). Co-incubation of either cold AMP or ADP with
[14C]AMP similarly inhibited the hydrolysis of [14C]AMP,
as the Km value of [14C]AMP in the presence of either

AMP or ADP was reduced to similar levels. Furthermore,
Lineweaver-Burk analyses (Figure 4C) clearly show that
cold AMP and ADP function as similar competitive inhibi-
tors of the reaction, suggesting that ADP and AMP may
compete for the same AdsA substrate binding site.

Figure 4 Inhibition of AdsA 5’-nucleotidase activity by ADP. 2 μM rAdsA was incubated with 0-500 μM [14C]AMP in the presence of 75 μM
cold AMP or ADP as indicated. (A) Radioactive signals for [14C]AMP and [14C]Ado after TLC were captured by a phosphorimager. Data is
representative of two independent analyses. (B) Curve fitting analysis of data from (A) using nonlinear regression was performed using GraphPad
Prism5 software. The results are expressed as nmols [14C]adenosine produced/min/mg rAdsA and are the averages of two experiments
performed in duplicate. (C) Lineweaver-Burk plot of data in (B).
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Residues in the 5’-nucleotidase signature sequence that
contribute to AdsA activity
Extensive site-directed mutagenesis studies have been car-
ried out with both CD39/NTPDase1 and NTPDase3
[39-42], as well as bacterial 5’-nucleotidases [27,43,44] to
reveal the importance of conserved residues to catalytic
activities. The structure-function analysis of E. coli 5’-
nucleotidase (UDP-sugar hydrolase) identified residues
within its first nucleotidase signature sequence that are
implicated in binding divalent metal cations. This analysis
also revealed that the enzyme’s catalytic Asp-His dyad is
located in the second nucleotidase signature sequence.
Similar amino acid residues and signature sequences can
be identified in the primary sequence of staphylococcal
AdsA. Specifically, Asp127 and His129 are located in the
first signature sequence, ILHTnD127iH129GrL, whereas
His196 and Asp199 are located in the second signature
sequence, YdamaVGNH196EFD199. To examine the contri-
bution of these four amino acids to AdsA catalysis, we
individually substituted Asp127, His129, His196 and Asp199

for alanine. Each variant rAdsA was purified and its cataly-
tic activity and substrate specificity was compared to that
of the wild-type enzyme.
The release of inorganic phosphate was monitored

when using either AMP or ADP as substrates. Replacing
His129 or Asp199 with alanine did not affect the ability of
the enzyme to hydrolyze AMP or ADP. However, substi-
tution of Asp127 to Ala reduced ADP hydrolysis to 30% ±
4% of wild type levels but did not affect the ability of
rAdsA to hydrolyze AMP. Conversely, subsitution of
His196 to Ala led to a moderate reduction of AMP hydro-
lysis (65% ± 3% of wild-type activity) but significantly
affected the ADPase activity of the enzyme (23% ± 5% of
wild-type activity) (Figure 5A,B). Next, we asked whether
reduced AMP or ADP hydrolysis by the variant proteins
(specifically Asp127Ala, His196Ala and Asp199Ala) could
be explained by a loss of affinity for the substrates. Wild-
type and variants of rAdsA were incubated with either
[14C]AMP or [14C]ADP at 4°C degrees for 10 min and
adsorbed onto a nitrocellulose membrane. Unbound
[14C] labeled nucleotide was removed by extensive
washes of the membranes and measurements of radioac-
tivity counts were recorded as a direct assessment of
nucleotide binding to the enzymes. All three mutants
(Asp127Ala, His196Ala and Asp199Ala) bound [14C]AMP
or [14C]ADP with affinities similar to the wild type
rAdsA enzyme (Figure 5C,D). Furthermore, we recorded
circular dichroism (CD) spectra and confirmed that none
of the substitutions altered the secondary structure of
rAdsA (Figure 5E). Together, these data identify rAdsA
residues implicated in metal ion binding as well as its
Asp-His catalytic dyad, two AdsA features that are shared
with other 5’-nucleotidases.

Discussion
We have previously shown that AdsA secreted by
S. aureus hydrolyzes AMP to produce adenosine, which
enhances the ability of S. aureus to evade immune clear-
ance [31]. In this study, we defined the enzymatic prop-
erties of rAdsA and demonstrated that in addition to
exhibiting 5’-nucleotidase activity, rAdsA also exhibits
NTPDase activity. This was exemplified by rAdsA’s abil-
ity to hydrolyze ADP and ATP and to a lower extent
GDP and GTP, with its ADPase activity retained even
under acidic conditions. In contrast, the enzyme was
not able to utilize CDP or CTP.
In mammals, the conversion of ATP to adenosine

requires the sequential activity of ecto-NTPDases and
5’-nucleotidases. The substrate specificities of the two
types of enzyme are quite specific as CD39 (NTPDase1)
cleaves ATP and ADP but not AMP [26] and likewise
CD73 (5’-nucleotidase) cleaves AMP but not ATP and
ADP. Substrate specificity is thought to result from struc-
tural differences between the binding pockets of
NTPDases and 5’-nucleotidases. Active site residues lying
within the NTPDase ACR motifs are shown to be situated
in close proximity of the g- and b-phosphate groups of
ATP whereas the a-phosphate of an AMP molecule
would be further buried and inaccessible. We identified
amino acid residues Asp127 and His196 within the con-
served 5’-nucleotidase signature sequences as being critical
for ADP hydrolysis. Furthermore, results from the compe-
titive inhibition experiments with cold nucleotide sub-
strates displayed in Figure 4 imply that AdsA binds AMP
and ADP at a single site. Together these observations sug-
gest that the two 5’-nucleotidase signature sequences of
AdsA lie within close proximity of the nucleotide binding
pocket in a unique spacial orientation that allows for the
removal of both the b- and a-phosphates. Comparison of
crystal structures from AdsA bound to AMP or ADP sub-
strates is needed to further our understanding of AdsA’s
unique enzymatic activity; this is currently being pursued
in the laboratory.
The ability to produce adenosine from multiple sub-

strates provides a clear advantage for S. aureus in the
fight against the host’s immune system. Initiation of sta-
phylococcal infections usually involve bacterial invasion
of the skin or blood stream via trauma, surgical wounds,
or medical devices [45] and much is known about the
mechanisms that S. aureus uses to combat the initial
innate immune defense in the blood. Advanced S. aureus
infection leads to dissemination of staphylococci into var-
ious tissues and formation of abscesses in organs. How-
ever, the molecular mechanisms of abscess formation
during staphylococcal infections are not clearly under-
stood but likely involve both pathogen and host response
factors [46]. The architecture of kidney abscesses
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observed in cross sections of kidneys collected from mice
5 days after staphylococcal infection shows a central sta-
phylococci community surrounded by several distinct
layers of infiltrating immune cells [10]. Closer examina-
tion of the abscesses in the histological images reveals a
population of necrotic immune cells directly surrounding
foci of bacteria, which likely encompasses a localized
environment rich in cellular debris. As high concentra-
tions of nucleotides are likely available as substrates for
AdsA, S. aureus may be able to increase the abundance

of adenosine to local concentrations that are even higher
than those observed in blood [31]. In turn, the accumula-
tion of adenosine may diminish the bactericidal attributes
of infiltrating immune cells or alter the spectrum of
immune cells that arrive at the abscess lesions. Further-
more, it has been shown that inflammatory microenvir-
onments are significantly more acidic due to hypoxia and
high levels of adenosine. AdsA’s ADPase activity is
retained at low pH (Figure 3B), an attribute that may be
important in pathogenesis under these conditions.

Figure 5 Amino acid substitutions of conserved residues present in the 5’-nucleotidase signature sequences affects the level of AdsA
activity. (A and B) hydrolysis of 1 mm AMP (A) or 1 mM ADP (B) by 0.15 μg/μl rAdsA measured as nmol Pi released over time. (C and D)
Binding of AMP or ADP to rAdsA protein. Protein in mixtures of rAdsA and [14C]AMP (C) or [14C]ADP (D) were adsorbed onto nitrocellulose filters
and the amount of radioactivity retained on the filter was determined. The results are expressed as radioactive counts per minute (cpm). Data is
representative of two independent analyses conducted in triplicate and error bars represent the SEM. (E) CD spectra of WT rAdsA, rAdsAD127A
and rAdsAH196A. (F) SDS-PAGE analyses of 5 μg protein as quantified by a BCA protein assay. Lanes 1-5 correspond to WT, D127A, H129A,
H196A and D199A respectively.
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Consistent with these observations, we have shown that
kidneys isolated from mice infected with wild-type
S. aureus harbored higher number of abscesses as com-
pared to mice infected with isogenic adsA variants [31].
S. aureus is known to survive within the host for pro-

longed periods of time, however the mechanisms involved
in such a lifestyle are not clearly known [reviewed in
[47,48]]. The conversion of GTP to GDP inside cells is cri-
tical to intracellular signaling events [49] and the ability of
staphylococci to hydrolyze GTP substrates may play a role
in host intracellular survival, an area of investigation that
we believe warrants further examination.

Conclusions
We show that in addition to its 5’-nucleotidase function,
AdsA is functionally similar to NTPDase enzymes, owing
to its ability to hydrolyze both ATP and ADP substrates.
AdsA does not harbor any NTPDase ACR motifs and sug-
gests that bacterial 5’-nucleotidases such as AdsA may
harbor a unique active site. Comparative structural ana-
lyses between AdsA and NTPDases may enable the future
design of inhibitors that block not only S. aureus AdsA
but perhaps even the AdsA homologs from other bacterial
pathogens [31].
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