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Abstract

The outbreak of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has led to 

coronavirus disease-19 (COVID-19); a pandemic disease that has resulted in devastating 

social, economic, morbidity and mortality burdens. SARS-CoV-2 infects cells following 

receptor-mediated endocytosis and priming by cellular proteases. Following uptake, SARS-

CoV-2 replicates in autophagosome-like structures in the cytosol following its escape from 

endolysosomes. Accordingly, the greater endolysosome pathway including autophagosomes and 

the mTOR sensor may be targets for therapeutic interventions against SARS-CoV-2 infection 

and COVID-19 pathogenesis. Naturally existing compounds (phytochemicals) through their 

actions on endolysosomes and mTOR signaling pathways might provide therapeutic relief 

against COVID-19. Here, we discuss evidence that some natural compounds through actions 

on the greater endolysosome system can inhibit SARS-CoV-2 infectivity and thereby might be 

repurposed for use against COVID-19.
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Introduction

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an enveloped 

virus containing single-stranded RNA genomic material [1,2]. Coronavirus infectious 

disease-2019 (COVID-19) is a pandemic disease in humans caused by SARS-CoV-2 

infection; symptoms and consequences include cardiovascular disorders, acute respiratory 

distress syndrome (ARDS), and death [3–5]. SARS-CoV-2 infects cells by viral 
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spike proteins interacting with host cells expressing angiotensin-converting enzyme 2 

(ACE2) receptors; the virus enters host cells following transmembrane protease serine 

2 (TMPRSS2)-mediated priming [6–8]. To infect cells, the virus must be endocytosed 

into and then released from endolysosomes; a feature common to enveloped viruses 

[9,10]. In so doing, coronaviruses hijack the endocytic machinery such that they deliver 

their genomic material at replication sites without initiating host immune detection and 

host-pathogen responses [8,11–14]. Once released from endolysosomes into the cytosol, 

coronaviruses replicate in double membrane vesicles that resemble autophagosomes [15–

18] and when viral levels are sufficiently high pathological conditions develop including 

cytokine storms [19–22]. Because endolysosomes are acidic organelles that contain 

~60 acid hydrolases capable of catalyzing the degradation of viral particles, enhancing 

endolysosome acidification might suppress SARS-CoV-2 infection [15,23,24]. The acidic 

nature of lysosomes regulates the functions of endolysosomes and the autophagy system 

and multiple endolysosome-associated ion channels and proteins regulate lysosome acidity 

including vacuolar-ATPase, TRPML1, BK [25], SLC38A9 [26–29], and mammalian target 

of rapamycin (mTOR) [30–34].

mTOR downstream signaling pathways regulate fundamental cellular processes such 

as protein synthesis, metabolism, transcription, cell cycle, apoptosis, endolysosomes, 

autophagy, and immune regulation and tolerance [35–39]. Aberrant mTOR signaling is 

involved in various pathological conditions such as cancer and inflammation as well as 

cardiovascular and metabolic disorders [40,41]. In addition, multiple viruses can hijack the 

mTOR signaling system for the purpose of completing viral replication including influenza 

[42] and HIV-1 [43, 44] as well as the coronaviruses MERS-CoV [45, 46] and SARS-CoV-2 

[15, 47, 48].

The mTOR signaling pathway can be targeted to block the infection and replication 

of viruses other than coronaviruses by inducing autophagy and inhibiting viral protein 

synthesis [15,45–47,49,50]. Hence, mTOR might be targeted to suppress SARS-CoV-2 

infection and COVID-19 using synthetic and natural compounds [51–57]. Natural 

compounds (phytochemicals) can enhance endolysosome acidification and autophagy by 

inhibiting mTOR-signaling pathways [49,58–64]. It has been suggested that increased 

consumption of phytochemicals or foods rich in phytochemicals might decrease the 

prevalence and severity of cancer, osteoporosis, and cardiovascular diseases [63]. 

Fruits, legumes, vegetables, and cereals contain high levels of phytochemicals including 

carotenoids, terpenoids, phytosterols, flavonoids, isoflavones, isothiocyanates, and fibers; 

substances shown to have anti-inflammatory, anti-oxidant and anti-infectious properties 

[64]. Phytochemicals can also enhance the degradative properties of endolysosomes and 

thereby suppress microbial infections as well as human metabolic and aging-related diseases 

[15,63,64]. Here, we briefly discuss natural compounds that affect endolysosomes and 

autophagy, the mTOR sensor, and as such, might find therapeutic use against SARS-CoV-2 

infection and the pathogenesis of COVID-19.

Khan et al. Page 2

J Cell Signal. Author manuscript; available in PMC 2021 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Natural Compounds

Spermidine and spermine

Polyamines are generated endogenously from arginine and ornithine, and they are ingested 

as components of various plants [65,66]. Endogenously, putrescine synthesis from ornithine 

is catalyzed by ornithine decarboxylase [67–69] and from ornithine, the polyamines 

spermidine and spermine are generated [68]. Exogenously, ingestion of polyamines 

protected against age-related memory loss [70,71] and rescued memory performance 

[71,72]. The cardio-protective [73], anti-inflammatory, and antioxidant [74–76], actions 

of the polyamine spermidine may be mediated by the induction of autophagy [71,77]. 

Moreover, spermidine and spermine induce 5’-AMP-activated protein kinase (AMPK) 

and inhibit the mTOR signaling pathway to induce autophagy and suppress functions of 

inflammatory dendritic cells [78–80]. Spermidine and spermine both inhibited SARS-CoV-2 

infection and appeared to do so by inducing viral degradation in endolysosomes [15].

Resveratrol

Resveratrol is a polyphenol with antioxidant and anti-inflammatory properties, and 

resveratrol has been found to protect against oxidative damage in high-risk conditions like 

cancer, diabetes, heart diseases, neurodegenerative diseases, and microbial infections [81]. 

Resveratrol is enriched in peanuts, berries, and red grapes [81,82], and it can be ingested 

in capsules containing Polygonum cuspidatum plant extracts [83,84]. Resveratrol has an 

ability to enhance autophagy and kill cancer cells by suppressing the phosphoinositide 

3-kinase (PI3K)/A serine/threonine protein kinase (Akt)/mTOR signaling pathway and 

enhancing AMPK and sirtuin (SIRT1) pathways [85–88]. Resveratrol can exert antiviral 

effects against various viral infections [89] including herpes simplex virus [90], enterovirus 

71, Epstein-Barr virus, respiratory syncytial virus, influenza, and Middle East Respiratory 

Syndrome-coronavirus (MERS-CoV) [49]; MERS-CoV is a family member of SARS-CoV-2 

virus [91,92]. Co-administration of resveratrol with copper may be useful in suppressing 

SARS-CoV-2 replication and diminishing SARS-CoV-2-induced cytokine storms [93,94].

Phytoestrogen

Phytoestrogens are natural compounds found in plants such as tofu, flaxseed, soybean, 

sesame seeds, and garlic [95,96]. Phytoestrogens exert estrogen-like effects [95] and have 

antioxidant, anti-inflammatory [97–100] and neuroprotective [101,102] properties as well 

as the ability to induce autophagy [103]. Phytoestrogens restrict PI3K/Akt/mTOR signaling 

pathways and this mechanism has been implicated in their ability to induce autophagy 

and kill cancer cells [104–106]. One estrogen, 17β-estradiol, is known already to suppress 

multiple viral infections including influenza [107], rubella [108], HIV-1 [109], HSV-1 [110], 

SARS-CoV [111], and SARS-CoV-2 [112–114].

Trehalose

Trehalose, also known as tremalose and mycose, is a stable disaccharide assembled from 

two molecules of d-glucose [115]. Some plants, fungi, bacteria, and invertebrate animals can 

produce trehalose and use it as an energy source as well as to survive freezing and lack of 
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water [116–118]. Trehalose has antioxidant [119] and neuroprotective properties [119–122], 

and it has been shown to inhibit HIV-1 and mycobacterium tuberculosis (Mtb) co-infection 

by inducing the endolysosomal degradation pathway [123]. Further, trehalose induced 

mTOR-independent autophagy and suppressed cytomegalovirus infection in different cell 

types [124].

Baicalin

Baicalin, a component of Scutellaria baicalensis and Scutellaria lateriflora [125], can protect 

against amyloid-β protein-, hydrogen peroxide [H2O2]-, middle cerebral artery occlusion-, 

and oxygen/glucose deprivation-induced neurotoxicity [126–131]. At least some of these 

protective effects might be mediated through its actions on endolysosomes because baicalin 

can attenuate high-fat diet-induced endolysosome deacidification [132]. Baicalin can also 

induce apoptosis in cancer cells by downregulating mTOR signaling pathways [133–135]. 

The anti-influenza [136] effects of baicalin suggests its possible use against SARS-CoV-2 by 

targeting its 3CL protease enzyme [137].

Curcumin

Turmeric is a spice with many purported medicinal properties [138] and is a rich source of 

curcumin [139,140]. Curcumin (1,7-bis (4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-

dione) is also known as diferuloylmethane; a natural polyphenol present in the rhizome 

of turmeric (Curcuma longa) [140,141]. Curcumin has antioxidative and anti-inflammatory 

properties, and it has been used against arthritis, bacterial infections, metabolic syndrome, 

anxiety, and hyperlipidemia [142–147]. Curcumin has anti-viral effects against a broad 

spectrum of viruses including herpes simplex virus-2 (HSV-2) [148], HIV-1, zikavirus 

[149], influenza virus [149], hepatitis virus [150], and human papillomavirus (HPV) 

[151]. Moreover, curcumin increases endolysosomal functions by promoting lysosomal 

acidification and suppressing the mTOR sensor [152–154].

Quercetin

Quercetin is a flavonoid that is present in many plants and foods including onions, red wine, 

berries, green tea, apples, ginkgo biloba, and buckwheat [155]. Quercetin has a broad range 

of biological activities including being anti-inflammatory, attenuating lipid peroxidation, 

inhibiting platelet aggregation [156–159], inducing cell death in cancer cells by enhancing 

autophagic flux and lysosomal activity [160], and suppressing PI3K/Akt/mTOR signaling 

pathways [161–163]. Quercetin displays a broad range of antiviral properties; it interferes 

with virus entry, replication, and assembly [164–167]. Quercetin can suppress SARS-CoV-2 

infection but has yet to be tested against COVID-19 [168].

Coumarin

Coumarin is a phenolic substance that is a fusion of benzene and α-pyrone rings [169,170]. 

Coumarin is present in Tonka bean (D. odorata) and Cinnamomum aromaticum and has also 

been isolated from various plants [171]. Coumarins have anti-oxidant, anti-bacterial, anti-

fungal, anti-viral, and anti-cancer properties [172–175]. A hybrid of phenylsulfonylfuroxan 

and coumarin induced caspase-dependent cell death, autophagy, and suppressed PI3K/Akt/
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mTOR signaling pathway to kill cancer cells [176–178]. Accordingly, it has been suggested 

that coumarin might protect against COVID-19 by blocking the protease enzyme of SARS-

CoV-2 [179,180].

Epigallocatechin 3-gallate (EGCG)

EGCG is a component of tea leaves [181]. EGCG has anti-oxidant properties and may 

prevent autoimmune diseases and cytokine storms [182–186] by blocking downstream 

inflammatory signaling pathways of the transcription factors STAT (signal transducer and 

activator of transcription 1/3) and NF-κB (nuclear factor kappa-light-chain-enhancer of 

activated B cells) [187–190]. EGCG upregulates AMPK activity in a dose-dependent 

manner and suppresses mTOR signaling in hepatoma cells [191]. A computer-based 

study has shown that EGCG is an ATP-competitive inhibitor of Akt/mTOR and enhances 

autophagy by AMPK activation [192–194]. Moreover, EGCG synergistically enhanced 

curcumin’s effects on cancer cells by inducing autophagy through suppression of the Akt/

mTOR signaling pathway [195].

Naringenin

Naringenin is a flavorless flavanone; a predominant flavanone in various herbs and fruits 

including grapefruits, citrus, and tomatoes [196–198]. Naringenin has hepatoprotective, anti-

inflammatory, anti-mutagenic, anti-cancer, and anti-microbial [199–204] effects and may 

control neurological, metabolic, rheumatological, and cardiovascular diseases [205–207]. 

Moreover, naringenin is an inhibitor of endolysosome two-pore channels (TPCs) [208–210]; 

channels involved in SARS-CoV-2 and Ebola virus infections [211–213] as well as the 

ability of HIV-1 protein Tat to escape endolysosomes [214]. Naringenin can induce cancer 

cell death by promoting autophagy and downregulate the Akt/mTOR signaling pathway 

[215–219]. These finding suggest a possible use of naringenin against COVID-19 by 

targeting TPCs and the Akt/mTOR signaling pathway [220–222].

Conclusion

The COVID-19 pandemic is a global disaster with devasting social, behavioral, economic 

and health ramifications. Endolysosomes play important roles in regulating SARS-CoV-2 

infection and thus might be targeted therapeutically against COVID-19.

Relevant to COVID-19, endolysosomes are important regulators of innate immune 

responses and antigen presentation and phytochemicals have purported anti-inflammatory, 

anti-oxidant, and anti-viral properties. These properties might play protective roles in 

blocking SARS-CoV-2 replication and infection at least in part by enhancing endolysosome 

acidification, increasing autophagy, and inhibiting mTOR-signaling pathways. Several 

natural compounds have shown promise in suppressing SARS-CoV-2 infection in humans, 

but these compounds may be toxic at higher concentrations and doses [223–229]. 

Accordingly, a great deal more work is necessary to have confidence that phytochemicals 

can provide therapeutic benefit against SARS-CoV-2 infection and alter positively the 

clinical course of COVID-19.
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Figure 1: 
SARS-CoV-2 enters the cell by endocytosis after first interacting with ACE2 and priming 

by TMPRSS2. During the entry process, the virus escapes from endolysosomes and 

delivers genomic material at replication sites. The virus replicates in double membrane 

autophagosome-like vesicles (DMVs) in the cytosol and induces mTOR sensor for 

exploiting cellular signaling pathways. Natural compounds (phytochemicals; PCs) might 

suppress SARS-CoV-2 and COVID-19 pathogenesis by augmenting endolysosomes and 

autophagy degradation pathways through actions on the mTOR sensor, suppressing 

cytokine storms, and decreasing DMVs formation and viral replication. (Severe acute 

respiratory syndrome coronavirus-2 (SARS-CoV-2), angiotensin-converting enzyme 2 

(ACE2), transmembrane protease, serine 2 (TMPRSS2), double membrane-like vesicles 

(DMVs), cytokine storm (CS), mammalian target of rapamycin (mTOR).
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