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Abstract: Nowadays, location-based services, which include services to identify the location of a
person or an object, have many uses in social life. Though traditional GPS positioning can provide
high quality positioning services in outdoor environments, due to the shielding of buildings and the
interference of indoor environments, researchers and enterprises have paid more attention to how to
perform high precision indoor positioning. There are many indoor positioning technologies, such as
WiFi, Bluetooth, UWB and RFID. RFID positioning technology is favored by researchers because
of its lower cost and higher accuracy. One of the methods that is applied to indoor positioning is
the LANDMARC algorithm, which uses RFID tags and readers to implement an Indoor Positioning
System (IPS). However, the accuracy of the LANDMARC positioning algorithm relies on the density
of reference tags and the performance of RFID readers. In this paper, we introduce the weighted path
length and support vector regression algorithm to improve the positioning precision of LANDMARC.
The results show that the proposed algorithm is effective.
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1. Introduction

In recent years, the rise of the Internet of Things (IoT) has brought great convenience to our
lives [1]. By means of a local network or Internet communication technology, we can connect sensors,
controllers, machines, persons and objects through IoT technology to obtain information, for remote
management, control and services. At present, object location awareness is a very important part of the
IoT’s application, but it cannot obtain this through the traditional satellite and cellular location with
GPS in indoor environments [2,3]. In order to implement indoor positioning, there are many different
technologies, such as WiFi [4], UWB [5], Radio Frequency Identification (RFID) [6], and so on.

RFID is regarded as the key technology to implement IoT [7], and RFID technology can be used
in many fields, such as warehouse asset management, product tracking, supply chain management,
anti-counterfeiting identification, healthcare, and so on. With the development of RFID technology,
RFID indoor positioning has been selected as one of the indoor wireless location technologies, and its
development has been rapid [8]. RFID technology has many advantages for positioning, such as
low cost, lightweight and multiple tag identification. However, there are still some problems to be
solved for RFID indoor positioning [9]. In the following, we mainly review some RFID-based indoor
positioning technologies.

The RFID technology positioning system usually consists of antennas, tags, readers and positioning
algorithms. The following algorithms are among the RFID-based indoor positioning algorithms: Time of
Arrival (TOA), Time Difference of Arrival [10] (TDOA), Angle of Arrival (AOA) and Received Signal
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Strength Indication (RSSI). Compared to TOA and TDOA, the RSSI-based RFID positioning algorithm
does not require a strict synchronization mechanism between the tag and the reader, making it easy to
implement, and its positioning accuracy is within a reasonably acceptable range. The AOA positioning
technology uses the angular position of the received signal to locate the position of the label based on
the angle of arrival of the multiple signals and the triangulation algorithm. However, positioning by
the AOA technique is greatly influenced by the non-line-of-sight effect; therefore, it cannot be applied
to complex indoor environments. In addition, readers equipped with antenna arrays during AOA
positioning are not only resource-intensive, but also costly. Table 1 gives a comparison of the above
indoor positioning algorithms with the fingerprint and reference tag methods.

Table 1. Different indoor positioning algorithm features.

Positioning
Algorithm Accuracy Time

Consumption
Deployment

Cost
Energy

Consumption
Communication
Consumption

Fingerprint High Low High Low Normal
Reference tags Normal High Normal Normal Low

AOA High Normal Normal High High
TOA/TDOA [10] Low Low Normal Low High

Because passive UHF RFID has a low deployment cost and its rationality has been verified, it is
widely used in many areas. Buffi et al. introduced and validated a new phase-based technology for
locating and tracking items moving along a conveyor belt [11], which were equipped with UHF-RFID
tags, and the positioning performance and accuracy were verified in the real conveyor case. The results
showed that centimeter-accurate positioning of tags can be achieved even in very complex multi-path
environments. To overcome the limitations of current RFID systems, Guidi et al. suggested that
RFID and ultra-wideband (UWB) tag technology [12,13] could be used in combination to reduce the
positioning error due to the large bandwidth involved. In the above two references, the authors
conducted in-depth research on the application of backscatter signals in positioning. Arnitz et al.
provided a proof for a UWB-based passive UHF RFID [14] ranging concept, which was very robust to
multipath propagation. Guidi et al. also proposed a specific assignment strategy [15] to simplify the
acquisition of the tag code at the reader side, which verified the feasibility of the excellent real-time
multi-tag positioning. Li et al. analyzed the different multi-path interferences of a needle under the
storage scenario and analyzed the frequency bands suitable for different environments and accuracy
requirements [16].

One of the most famous RFID positioning algorithms is LANDMARC [17]. The LANDMARC
system is a typical reference-tag-based RFID positioning method proposed by a research group of the
Hong Kong University of Science and Technology. By introducing a reference label to assist positioning,
a reference label matrix is arranged in the positioning space; RSSI values of the unknown label and
the reference label are measured; and the nearest neighbor K value algorithm is used for positioning.
However, the number of reference tags is huge. The introduction of a large number of these reference
labels will also require many unnecessary calculations, as well as reduce the positioning accuracy.

Many scholars have proposed many methods to improve the positioning accuracy of the
LANDMARC indoor positioning algorithm. He Xu et al. proposed an algorithm that was based
on the Bayes and kNN [18] algorithm to improve the indoor location accuracy [19]. The result of the
kNN algorithm was greatly influenced by the k value [20]. When the k value was too small, the model
was too complicated, resulting in an over-fitting phenomenon. On the contrary, when the k value was
too large, a great deal of useful information in the training examples would be ignored. Yongjun Zhang
proposed the BPNN-LANDMARC method in [21], which was an improved indoor positioning
algorithm based on the BP neural network. The algorithm reduced the time complexity of prediction,
but the neural network training and tuning were very complicated processes, which required a large
workload. In addition, there have been other improvements based on deep learning [22,23] to improve
position accuracy. In this paper, we will use the Support Vector Regression (SVR) method and weighted
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path length to improve the accuracy of traditional LANDMARC positioning. The advantage is that
the Gaussian-Kalman filter is used to solve the noise, and SVR is used to predict positions and thus
improve the accuracy of positioning compared to the traditional RFID positioning methods.

This paper is structured as follows: Section 1 introduces related research results about indoor position
technology and RFID-based indoor positioning algorithms. Section 2 details the background knowledge
of LANDMARC. Section 3 gives the Gaussian-Kalman filter theorem used in the proposed algorithm.
In Section 4, an indoor positioning algorithm based on SVR is proposed where the Gaussian-Kalman
filter is used to deal with the noise in RSSI signals. Section 5 evaluates the performance of the
Gaussian-Kalman filter and the presented algorithm with other indoor positioning algorithms in the
experiments. Finally, we conclude the paper.

2. Background Knowledge

2.1. Logarithmic Distance Loss Model

In the wireless channel, the distance between the RSSI transmitting antenna (reader’s side) and
the receiving antenna (tag’s side) is generally expressed by the following formula:

PL(d) = PL(d0) + 10n log
(

d
d0

)
+ Xσ(dB) (1)

where d0 is the reference distance, which is usually set as one meter. PL(d) is the path loss of the
wireless signal in free space when the propagation distance is d0. Xσ is usually called shadow fading.
σ is a Gaussian random variable. n is the path loss index. Equation (1) is usually used to estimate the
path loss of the propagation of wireless signals in indoor environments due to obstacles, moving objects
and the antenna directivity between the tag and reader. If we assume that the distance between the
transmitting antenna and the receiving antenna is d and the signal strength value received by the
terminal is set to Pr(d), andω = Pr − PL(d0), then,

Pr(d) = Pr − PL(d0) = ω− 10n log
(

d
d0

)
+ Xσ(dB) (2)

In the indoor positioning algorithm, Equation (2) is a commonly-used wireless channel modeling
method, where n is the path loss index in different environments and σ is the variance.

2.2. The Principle of the LANDMARC Algorithm

The LANDMARC algorithm is a typical scene analysis method, which also is a proactive
calibration algorithm. By introducing the concept of the reference label, it is used as a reference
point to provide positioning constraints. The main advantage of this approach is the replacement of a
large number of expensive RFID readers with additional and less expensive reference tags. The indoor
positioning system using the LANDMARC algorithm helps to locate things by adding a large number
of reference labels. The topological structure of reference labels and the number of nearest labels in
the algorithm are both important factors in determining the positioning accuracy. The main idea of
the LANDMARC algorithm is to find several reference labels with the closest Euclidean distance to
unknown labels, by recording the RSSI values of the labels to be tested and the reference labels and
calculating the Euclidean distance of the electromagnetic features involved.

The following describes the LANDMARC algorithm in mathematical notation.
The method used to find the Euclidean distance to an unknown label in the LANDMARC

algorithm is called the kNN algorithm. It is assumed that the positioning situation contains one reader,
m reference labels and n labels to be tested, where the reader operates in continuous mode. The location
of the tag to be located is calculated based on the actual location of the neighbor reference tags and the
weight values. The signal strength vector of the target label is defined as S = (s1, s2, s3, . . . , sn), and the
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signal strength vector of the reference label is θ = (θ1, θ2, θ3, . . . , θn). The Euclidean distance of the
signal strength between the target label and the reference label is defined as follows:

Ej =

√
n

∑
i=1

(θi − si) j ∈ (1, m) (3)

In Equation (3), E represents the distance between the reference label and the target label.
The smaller the value of E is, the closer the distance between the reference label and the target label is.
For m reference labels, the signal strength level vector E = (E1, E2, E3, . . . , Em), LANDMARC will select
k reference labels with the smallest E value and finally locate the target label by the weight-centroid
algorithm. In this algorithm, if the distance between the reference label and the target label is closer,
the signal strength read by the reader will be closer to the value, and the larger E is, the closer the
distance between the reference label and the target label is.

2.3. Weighted Path Length

The weighted path length compares the RSSI value of the reference tags and the target label
received by each reader and determines k neighboring reference tags according to the signal strength
value of the tag with the positioning tag. These k reference labels can determine a polygon, and the
centroid of this polygon is taken as the position of the target tag; which is as follows:

(x, y) =
k

∑
i=1

wi(xi, yi), wi =

1
E2

i

∑k
i=1

1
E2

i

(4)

The coordinates of the two dimensions of the unknown labels are calculated separately by the
Equation (4), which is the indoor positioning process of the traditional LANDMARC algorithm.

3. Gaussian-Kalman Filter

The RFID system can read much electronic tag information in a short time. However, the reading
RSSI values can be affected by various factors such as indoor temperature, humidity and multipath
effects, so data preprocessing is required.

3.1. Gaussian Filter

For the same tag, due to various aspects of interference, the RSSI value received by the reader has
a small probability of error data and a large probability of accurate data. The Gaussian mathematical
model is used to select the RSSI value of the large probability range as the effective value of the data
sampling and then calculate the average value as the output of the filtering. This method can effectively
reduce the impact of low probability and strong interference on the overall data and improve the
data accuracy.

The RSSI measurement follows the Gaussian distribution of
(
0, σ2), and its probability density

function is shown in Equation (5).

f = f0 +
1

ω
√

π
2

.e−2 (x−xe)2

ω2 (5)

In Equation (5), xe =
1
k .

k
∑

i=1
RSSIi, ω =

√
1

k−1 .
k
∑

i=1
(RSSIi − xe)

2.

Firstly, Gaussian filtering is used to put the RSSI measurement data into the fitting function,
so as to obtain large probability data and then calculate the average of the retained RSSI values,
and the obtained value is the determined RSSI value. However, the calculation volume is too large,
and the anti-interference ability is poor. Therefore, the approximate Gaussian fitting method is used to
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pre-process the data. The baseline and standard deviation are the average of the original measurement
data, which are calculated as in Equation (6), given as:

|RSSIi − xe| < kω (6)

where k can be determined according to the percentage (P) of the data that needs to be retained.
The value of P is calculated using the following Equation (7):

P =
K
N
× 100% (7)

where K is the number of reserved data and N is the total of the sampled data. Obviously, if the P value
is small, it means that there are few samples of the reserved data, which will reduce the authenticity
of the data. Conversely, if the P value is too large, the wrong data may remain. According to the
fluctuation of RSSI, the value of K should be changed appropriately. This will not only increase the
speed of calculation, but also effectively eliminate the mutation of data.

Gaussian fitting can only filter data and does not eliminate data fluctuations. In order to eliminate
the fluctuation of RSSI data and make them a smooth output, the Kalman filter algorithm can be used.
Gaussian filtering can solve the problems of the RSSI value being vulnerable to interference and bad
stability. It can improve the positioning accuracy to a certain extent, but its effect on long-term error
interference such as energy reflection and the multipath effect is not good.

3.2. Kalman Filter

The basic idea of Kalman filtering: Take the minimum mean square error as the best estimation
principle, using the signal and noise state model, using the observations at the current moment and
the estimates at the previous moment to update the estimation of the state variables, so as to calculate
the current estimated value. Based on the established observation equations and system of equations,
the RSSI value is estimated as the minimum mean square error.

Assume that the RSSI is represented by xk, and the sampled data model can be represented by
a first-order self-recursive equation of a Gaussian white noise sequence. The equation of state and
observation equation are represented by Equations (8) and (9).

Equation of state:
xk = ϕk,k+1.xk−1 + ωk−1 (8)

Observation equation:
yk = xk + vk (9)

where xk is the RSSI value at time k; yk is the observed value of xk at time k; ωk−1 and vk(k ∈ N) are
independent and identically distributed noise sequences; the Gaussian white noise sequence with
the dominant change of ωk−1; vk is the noise during measurement at time k; where ωk−1 ∼ N(0, Q),
vk ∼ N(0, R). Q represents the process excitation noise covariance matrix, and R represents the
observation noise covariance matrix.

The time update equation is shown in Equation (10):{
Pk,k−1 = ϕk,k−1.Pk−1.ϕT

K,K−1 + RωK−1

x̂k+1,k = ϕk+1,k.x̂k
(10)

The measurement update equation is shown in Equation (11):
x̂k = ϕk,k−1.x̂k−1 + Kk.(yk − ϕk,k−1.x̂k−1)

Kk = Pk,k−1.(Pk,k−1 + Rvk)
−1

Pk = (I − Kk).Pk,k−1

(11)
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where Pk,k−1 denotes the prediction mean squared error matrix; x̂k+1 denotes the state of the next step
predictor; x̂k denotes the state estimate; Kk denotes the filter gain matrix; Pk denotes the filter mean
square error matrix.

The advantage of the Kalman filter is that it can reduce the error of RSSI caused by noise
superposition. The stability of filtered RSSI is good, and the Kalman filter is especially suitable
for data processing in target tracking and positioning. The main advantage of the Kalman filtering
algorithm is that it can obtain smooth data output. The implementation of the process prediction and
correction phase is as follows.

The prediction stage is as Equations (12):{
x̂k+1,k = ϕk+1,k.x̂k,k
Qx(k+1,k) = ∅k+1,kQx(k+1,k)∅T

k+1 + ΓT
k+1,kQx(k,k)Γ

T
k+1,k

(12)

The correction stage is as Equations (13):
x̂k+1,k+1 = x̂k+1,k + (L̂k+1 − Bk+1 x̂k+1,k)

Qx(k+1,k+1) = (1− Kk+1Bk+1)Qx(k+1,k)

Kk+1 = Qx(k+1,k)B
T
k+1 +

[
Bk+1Qx(k+1,k)B

T
k+1 + QL(k+1)

] (13)

In the above formula, x̂k,k represents the state estimate of RSSI at time k; x̂k+1,k represents the
next predicted value of RSSI at time K; L̂k+1 represents the prediction of the k + 1 time; Bk+1 denotes
the predictive matrix; Qx(k+1,k) denotes the variance matrix of the prediction error estimate for the
k + 1 moment at k time. Qx(k+1,k+1) represents a variance matrix; Kk+1 represents a gain matrix.
The Gaussian-Kalman filter algorithm flowchart is shown in Figure 1.
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The details of the Gaussian-Kalman filter implementation process are listed as follows:

(1) Initialize parameters n, Q, K, P. n represents the total RSSI data sample; Q represents the lowest
percentage of screening data; K is the screening interval coefficient; and P is the percentage of
data retention.

(2) If P < Q, the K value increases, and the RSSI value is put into Gaussian fitting once again. If P > Q,
the standard deviation σ and the mean xe of the Gaussian parameters are preserved.

(3) Kalman filtering is used to perform the Gaussian fit-filtering of the RSSI value, and the average
value of filtered RSSI is selected as the input of the positioning algorithm to calculate the
positioning result.

4. The Improved SVR-LANDMARC Algorithm

Support vector regression is a regression method that is similar to least squares [24], ridge regression [25]
and gradient descent. Support Vector Machines [26,27] (SVM) also comprise another method that can
support vector regression. Support Vector Regression (SVR) uses the support vector and the Lagrange
multiplier approach for the regression analysis for data. It has many advantages over the least squares
method, which is shown in the following.

1. The least squares method can only be used for linear regression, but not for nonlinear models.
However, support vector regression does not have this limitation.

2. The least squares method does not work well for regression with variables that have multiple
collinearities, while support vector regression can process multicollinearity well.

3. Although support vector regression does not directly exclude the anomaly in the process, it can
make the error caused by the anomalous point smaller.

Regression and classification are, in a sense, essentially the same method. The idea of SVM
classification is to find a plane that allows the support vectors of all two classification sets or all data to
be furthest away from the classification plane. The idea of SVR regression is to find a regression plane
so that all data of a set are closest to it. The following details the SVR principle.

• Principle of SVR

Given training samples D = {(x1, y1), (x2, y2), . . . , (xm, ym)}, yi ∈ R; where xi is the vector of
RSSI values read from the same reader to the same tag and yi is a value in a two-dimensional coordinate
of a reference label (the two values of two-dimensional coordinates are separately fitted). SVR will
learn a model using the following Equation (14).

f (x) = ωTx + b (14)

The goal is to make f (x) as close to the true value y as possible. In Equation (14), ω and b are the
model parameters to be determined. For the sample (x, y), the traditional regression model usually
calculates the loss directly based on the difference between the model output f (x) and the true value y.
The loss is zero only if the predicted value f (x) is exactly the same as the true value y. In contrast, it can
be assumed that support vector regression can tolerate at most ε deviations between predicted value
f (x) and true value y. That is to say, the loss is calculated only if the absolute value of the difference
between f (x) and y is greater than ε. As shown in Figure 2 below, this is equivalent to constructing an
interval with a width of 2ε centered on f (x). If a training sample falls into this interval, it is considered
as being correctly predicted.
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Thus, the SVR problem can be transformed into the following Equation (15):

min
ω,b

1
2
||ω||2 + C

m

∑
i=1

lε( f (xi − yi)) (15)

where C is a regularized constant, ε indicates that the SVR algorithm can tolerate the most ε deviation
between the predicted value f (x) and the real value Y. That is, only when the absolute value of the
difference between the f (x) and the Y is greater than the ε, the loss is calculated. ω is the normal vector
of the SVR algorithm to fit the hyperplane. lε is the ε-insensitive loss function shown in Figure 2.

lε =

{
0, i f |z| ≤ ε;
|z| − ε, otherwise

(16)

In fact, Equation (16) shows the function distance between the regression function and the
coordinate value of one dimension of the reference label of the actual training point. For the loss
function defined in the formula, the meaning of the expression is to allow the model to have a certain
error. All points within the error range are considered as points on the model. Additionally, only
those points on the boundary beyond the error range are the support vectors that determine the model.
Because of the similar flexible boundary in SVM, we introduce slack variable ξi and ξ̂i and consider
the error function (15) as a convex optimization problem.

R(ω, ξi,, ξ̂i) = min
ω,b,ξi,,ξ̂i

1
2
||ω||2 + C

m

∑
i=1

(ξi + ξ̂i) (17)

It is subject to the following Equation (18):

f (xi)− yi ≤ ε + ξi,yi − f (xi) ≤ ε + ξ̂i, ξi ≥ 0, ξ̂i ≥ 0, i = 1, 2, . . . , m. (18)

The larger the C is, the greater the penalty of the data samples is, the difference of which is between
the predicted value and the actual value. Therefore, the choice of parameter C is especially important.
Its value affects the generalization ability of the system. The smaller the value of ε, the higher the
accuracy of the function regression, and the greater the number of support vectors. The greater the
value of ε, the fewer the number of support vectors and the lower the regression accuracy. Therefore,
according to the nature of the sample, choosing reasonable values of C and ε is helpful to increase the
accuracy of model prediction. In Equation (17), both ξi and ξ̂i are larger than zero when the division is
wrong. When the error does not exist, ξi and ξ̂i take zero. At this point, the problem translates into
the problem of minimizing the objective function (17). The first term in (17) makes the fitting function
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flatter, which can improve the generalization ability to predict the coordinates of unknown labels.
The second is to reduce the error. The constant C > 0 indicates the degree of penalty for samples that
exceed the error ε. Lagrange function is introduced to solve the optimization problems of (17) and (18):

L =
1
2
||ω||2 + C

m

∑
i=1

(
ξi + ξ̂i

)
−

m

∑
i=1

αi[ξi + ε− yi + f (xi)]−
m

∑
i=1

α̂i
[
ξ̂i + ε− yi + f (xi)

]
−

m

∑
i=1

(
ξiγi + ξ̂iγ̂i

)
(19)

where αi, α̂i ≥ 0, γi, γ̂i ≥ 0, L is the Lagrange function and i = 1, 2, . . . , m. Find the function L to
minimize ω, b, ξi, ξ̂i and maximize αi, α̂i, γi, γ̂i, and bring them into the Lagrange function to get the
dual form, so as to maximize the value of the function.

W(αi, α̂i) =
1
2

m

∑
i=1,j=1

(αi − α̂i)
(
αj − α̂j

)(
xi ∗ xj

)
+

m

∑
i=1

(αi − α̂i)yj −
m

∑
j=1

(
αj − α̂j

)
ε (20)

subject to, 
m
∑

i=1
(αi − α̂i) = 0

0 ≤ αi, α̂i ≤ C
(21)

Solving (20), (21) is also a problem for solving quadratic programming. According to the Kuhn–
Tucker theorem, the following conclusions are drawn at the saddle point.

α̂i
[
ξ̂i + ε− yi + f (xi)

]
= 0 αi[ξi + ε− yi + f (xi)] = 0ξiγi = 0 ξ̂iγ̂i = 0 (22)

It is obtained αi ∗ α̂i = 0, that is to say, αi, α̂i cannot be zero at the same time, which can also be
drawn as below.

(C− αi)ξi = 0 (C− α̂i)ξ̂i = 0 (23)

From Equation (23), it can be concluded that | f (xi)− yi| may be larger than ε when αi = C or
α̂i = C, and its corresponding xi is called the boundary support vector. It corresponds to the dotted
line in Figure 2. When α̂i ∈ (0, C), | f (xi)− yi| = ε, that is, ξi = 0, ξ̂i = 0, the corresponding xi is called
the support vector. It corresponds to the data points in Figure 2 falling on the ε band. When αi = 0,
α̂i = 0, the corresponding xi is a non-support vector, corresponding to the points in the ε-band in
Figure 2, which do not contribute to ω. Therefore, the larger ε, the smaller the number of support
vectors. For the standard support vector, b can be obtained from Equation (24) if 0 < αi < C(α̂i = 0)
and ξi = 0.

b = yi − ∑
xj∈SV

(αi − α̂i)xi ∗ xj − ε (24)

The values of b are generally calculated for all standard support vectors, and then averaged,
that is:

b =
1

NNSV

 ∑
0<αi<C

[yi − ∑
xj∈SV

(αi − α̂i)K(xi, xj)− ε] + ∑
0<α̂i<C

[yi − ∑
xj∈SV

(αi − α̂i)K(xi, xj)− ε]

 (25)

Therefore, sample point (xi, yi) can be used to find the linear fit function as the following formula:

f (xi) = ω× x + b =
m

∑
i=1

(αi − α̂i)xi.x + b (26)

Then, the more reasonable model in the positioning environment is obtained by training the
reference label. The trained model can predict unknown labels.
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5. Experiment Results and Performance Evaluation

In this paper, we conducted a series of experiments to verify the improvement of the positioning
accuracy by the SVR algorithm. The original LANDMARC algorithm, SA-SVR-LANDMARC [28] and
the BPNN-LANDMARC algorithm were compared respectively for 100 trials.

5.1. Experimental Environment

The reader used in this paper is Impinj, R420, which supports ISO 18000-6C, output power:
10–32.5 dBm adjustable power. The sensitivity of the receiving antenna is adjustable. The minimum
value can reach −82 dBm. The tag is an UHF tag that supports the UHF Gen2 protocol with the feature
of the full angle reading of the signal. The size of the tag is 25 mm× 25 mm× 0.1 mm. They are usually
used in cargo tracking, access control management, warehousing management, etc. The maximum
input power of each radio frequency antenna is 34 dBm; the maximum insertion loss is 1.3 dB; and the
minimum return loss is 24 dB. According to [29], the RFID antenna model used in our experiments is
that the antenna of the RFID reader has a circular shape.

The communication frequency between the reader and labels is between 920 MHz and 926 MHz.
The feeder line is used to connect the reader and the antenna and plays the role of the data transmitter.
The reader is connected to the router through WiFi. Users can operate through the computer, and the
database server is installed on a personal computer. The labels are placed as shown in Figure 3 with a
distance of approximately 60 cm between each adjacent reference label in each row. Figure 4 is the
whole placement scenario of the device.

Sensors 2018, 18, x 10 of 15 

 

5. Experiment Results and Performance Evaluation 

In this paper, we conducted a series of experiments to verify the improvement of the positioning 
accuracy by the SVR algorithm. The original LANDMARC algorithm, SA-SVR-LANDMARC [28] and 
the BPNN-LANDMARC algorithm were compared respectively for 100 trials. 

5.1. Experimental Environment 

The reader used in this paper is Impinj, R420, which supports ISO 18000-6C, output power: 10–
32.5 dBm adjustable power. The sensitivity of the receiving antenna is adjustable. The minimum 
value can reach −82 dBm. The tag is an UHF tag that supports the UHF Gen2 protocol with the feature 
of the full angle reading of the signal. The size of the tag is 25 mm × 25 mm × 0.1 mm. They are usually 
used in cargo tracking, access control management, warehousing management, etc. The maximum 
input power of each radio frequency antenna is 34 dBm; the maximum insertion loss is 1.3 dB; and 
the minimum return loss is 24 dB. According to [29], the RFID antenna model used in our experiments 
is that the antenna of the RFID reader has a circular shape. 

The communication frequency between the reader and labels is between 920 MHz and 926 MHz. 
The feeder line is used to connect the reader and the antenna and plays the role of the data transmitter. 
The reader is connected to the router through WiFi. Users can operate through the computer, and the 
database server is installed on a personal computer. The labels are placed as shown in Figure 3 with 
a distance of approximately 60 cm between each adjacent reference label in each row. Figure 4 is the 
whole placement scenario of the device. 

 
Figure 3. Part of the experimental environment. 

Figure 5 is a block diagram of the RFID information acquisition module. The monitored area is 
an area composed of four antennas of the same specification, and a number of the reference labels 
and target labels are deployed inside the area. When starting to collect RFID information, the user 
can control the reader through the database server, and the reader sends an instruction to the antenna 
to transmit the electromagnetic wave to the monitoring area. After the tag receives the 
electromagnetic wave, the tag transmits its own information (including RFID antenna coding, RFID 
tag ID number, RSSI value, phase value, etc.) fed back to the reader through the antenna to be stored 
in the database to complete the data acquisition. The server reads the real-time electromagnetic 
information (mainly the signal strength value) from the database and completes the positioning of 
the unknown label through several specific algorithms in this experiment. 

Figure 3. Part of the experimental environment.

Figure 5 is a block diagram of the RFID information acquisition module. The monitored area is an
area composed of four antennas of the same specification, and a number of the reference labels and
target labels are deployed inside the area. When starting to collect RFID information, the user can
control the reader through the database server, and the reader sends an instruction to the antenna to
transmit the electromagnetic wave to the monitoring area. After the tag receives the electromagnetic
wave, the tag transmits its own information (including RFID antenna coding, RFID tag ID number,
RSSI value, phase value, etc.) fed back to the reader through the antenna to be stored in the database to
complete the data acquisition. The server reads the real-time electromagnetic information (mainly the
signal strength value) from the database and completes the positioning of the unknown label through
several specific algorithms in this experiment.
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5.2. Results of the Gaussian-Kalman Filter for RSSI

The RSSI value processing of this experiment environment is shown in Figure 5. We selected one
of the antennas to read the electronic signal from the reference tag in the positioning scene to verify the
effect of Gaussian-Kalman filtering. In this experiment, 100 RSSI values of the same reference tag were
read, and Q = 90% was set. Gaussian-Kalman filtering data processing was as shown in Figure 6.
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From Figure 6, we can see that the Gaussian fitting method is used to eliminate unstable RSSI
values, and then, the Kalman filter balances the noise fluctuations of the data and achieves accurate
and smooth data output.

5.3. Experimental Results and Analysis

There are many ways to evaluate regression algorithms. Conventional methods include mean
square error, mean absolute error, root mean square error, normalized root-mean-square deviation,
and so on. This paper uses a more generic root mean square error to compare experimental results.
This method is also commonly used in machine learning to measure the performance and characteristics
of a regression model. The root mean square error is defined as follows:

RMSE =

√
1
n

n

∑
i=1

[(ŷi − yi)
2 + (x̂i − xi)

2] (27)

where ŷi and x̂i are experimental values and yi and xi are actual values. In indoor environments,
yi and xi represent the actual physical position, while ŷi and x̂i represent the experimental position,
which are obtained by using our proposed algorithm. Because the coordinates of the two dimensions
are predicted separately using SVR, there are two terms in the formula. In essence, the root mean
square in the two-dimensional plane is the distance between two points, and the root mean square
error can visually see the distance between the predicted position and the actual position.

In this paper, 100 experiments were repeated for each of the four algorithms, and 400 experimental
data were obtained. The experimental results are shown in Table 2. The original LANDMARC
algorithm has the largest root-mean-square error of 35.532 cm. The SA-SVR-LANDMARC algorithm
has achieved a positioning accuracy of 27.226 cm. The BPNN-LANDMARC algorithm has achieved
an improvement in positioning accuracy with a root mean square error of 26.936 cm. The proposed
SVR-LANDMARC algorithm has the smallest positioning error, which is 20.243 cm.
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Table 2. Comparisons of SVR-LANDMARC with different positioning methods.

Position Methods Root Mean Square Error (cm)

LANDMARC [17] 35.532
SA-SVR-LANDMARC [28] 27.226

BP-LANDMARC [21] 26.936
SVR-LANDMARC 20.243

According to different classifications of the algorithm, the mapping error distance distribution
map is shown in Figure 7. As can be seen from the figure, the position error results predicted by the
SVR-LANDMARC indoor positioning technology are mainly distributed in 20–30 cm with a ratio of
47%; the error results predicted by the BPNN-LANDMARC indoor positioning technology are mainly
distributed in 20–40 cm, The proportions of 20–30 cm and 30–40 cm were almost the same, at 32%
and 31% respectively; the error length predicted by SA-SVR-LANDMARC is mainly distributed in
30–40 cm with a ratio of 34%. The SVR-based indoor positioning technology proposed in this paper
has shown great improvement compared to BPNN-LANDMARC, SA-SVR-LANDMARC and the
original LANDMARC. This is because the Gaussian-Kalman method can reduce the influence of some
abnormal RSSI signals and make the signals smoother.
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According to [29], the distance for reference tags was 1 m, but the root mean square error of
positioning estimation was about 45 cm, while the root mean square error of our algorithm was
about 20 cm, whereas the tag distance was 60 cm. Our positioning algorithm had nearly a 26%
improvement in positioning accuracy compared to the SA-SVR-LANDMARC algorithm. In addition,
in the SA-SVR-LANDMARC algorithm, four readers were used for indoor positioning, while our
method used just one reader and four antennas. SA-SVR-LANDMARC used four readers to locate a
6 × 6 area. In our algorithm, just one reader was used to monitor a 3.6× 3.6 area, which greatly reduced
the use of the reader and thus reduced the system’s cost. Compared to the SA-SVR-LANDMARC
technology in [29], although we used more reference tags, using less readers will also reduce the cost
of deployment.



Sensors 2018, 18, 1504 14 of 15

6. Conclusions

In this paper, a novel indoor positioning technology based on the SVR algorithm is proposed.
Compared with the BPNN-LANDMARC, LANDMARC and SVR-LANDMARC algorithms, the prediction
error distance is smaller. The accuracy of RFID-based indoor positioning can be improved by using the
SVR algorithm and the Gaussian-Kalman filter. The Gaussian-Kalman filter has been used to solve the
noise, and the SVR has been used to improve the accuracy of positioning. The proposed algorithm is
very effective and suitable to be used for indoor location-based services, i.e., book searching in a library,
locating patients in a hospital, finding trapped people in a burning building, finding an individual’s
luggage without removing it from a vehicle or aircraft at an airport and reminding passengers about
their flights and boarding gates so that they do not miss their flights or delay departures. However,
the effective deployment of antennas and tags is also an important research direction in indoor
positioning. How to reduce the use of tags without reducing the positioning accuracy is also a major
research topic in our future work.
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