
105Gene Regulation and Systems Biology 2016:10

Introduction
Mapping human cell type-specific gene regulatory networks 
is a significant and longstanding challenge due to the large 
number (.1,200) of transcription factors (TFs) and the expan-
siveness of noncoding regions of the genome.1 Expression 
quantitative trait locus (eQTL) studies, in which expression 
single nucleotide polymorphisms (eSNPs) that are statisti-
cally associated with population variation in transcript abun-
dance are systematically mapped, are an increasingly used tool 
for revealing functional regulatory regions in cell types of  
interest.2 The genomic regions that are in linkage disequilib-
rium (LD) with eSNPs include cell type-specific enhancers (and 
other types of cis-regulatory elements) that contain TF bind-
ing sites (TFBS). However, in order to map cell type-specific 
regulatory regions to specific TFs, additional information is 
needed. One approach is to bioinformatically scan–within 
regulatory regions–genomic sequence for matches to known 
TFBS sequence patterns3,4; however, this approach has a sig-
nificant false-positive rate5 and TFBS sequence preferences 
may vary depending on the cellular context.6 Following the 

recent availability of published binding site locations (based 
on chromatin immunoprecipitation-to-tag-sequencing 
[ChIP-seq]) for 133 TFs in various human cell lines through 
the Encyclopedia of DNA Elements (ENCODE) project,7 
we devised a novel method to directly analyze eQTL regula-
tory regions using ChIP-seq-based cellular TFBS measure-
ments. Conceptually, our approach builds on previous efforts 
in which eQTL data were leveraged in motif-based identi-
fication of TFBS8 and in identifying genomic correlates of 
regulatory SNPs.9 We applied the method to search for TF 
regulators using eQTLs from two population studies of human 
monocytes.10,11 Monocytes are innate immune cells that are 
vital in host defense, have important roles in many infec-
tious and chronic inflammatory diseases, and are of research 
interest as models of cellular gene regulatory responses to  
microbial challenge.12–15

We hypothesized that binding sites of monocyte- 
regulating TFs are more enriched within monocyte eQTLs 
than the TFBS that are not monocyte regulators. To inves-
tigate this hypothesis, we ranked ENCODE-profiled TFBS 
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ChIP-seq experiments based on the degrees of overlap of their 
genome-wide binding site profiles (in human cell lines) with  
monocyte eQTLs. We then tested the enrichment of myeloid 
cell-derived data sets in the ranked list and the enrichment 
of known monocyte-regulating TFs in the resulting list of 
TFs. We found that TFs that are known to have regulatory 
functions in monocytes are concentrated toward significant  
P values and are well connected to other candidate monocyte 
TFs in a protein interaction network. Our study uncovered 
two candidate monocyte-regulating TFs, BCLAF1 and 
SIN3A, which are previously known to have functions related 
to immunity.

Results and Discussion
To investigate whether anchoring the analysis of TFs using 
monocyte eQTL data would enable prioritizing TFBS data 
sets by their relevance to monocytes, we ranked the 397 
ChIP-seq-derived TF or cofactor binding site (hereafter, 
“TFBS”) location data sets based on their overlap (as mea-
sured by a z-score of the number of TFBS within the eQTLs; 
z was computed using a background model based on genome-
wide-randomized eQTL placement; “Methods” section) with 
eQTL regions defined by LD with 80,000 monocyte eSNPs. 
Then, for two cell types, a cell type related to monocytes (the 
human myelogenous leukemia cell line K56216) and a neg
ative control cell type (the human embryonic stem cell line 
H1-hESC), we measured the degree to which the data sets 
of the cell types are enriched at low ranks (corresponding to 
high overlap with monocyte eQTLs), using the GSEA sta-
tistical test.17 The ChIP-seq data sets from K562 cells were 

biased toward low ranks (corresponding to high overlap with 
monocyte eQTLs), with a GSEA score E = 0.359 (Fig. 1A; 
E  ≠  0 at P  ,  0.001); by comparison, the ChIP-seq data 
sets from H1-hESC cells were biased toward higher ranks  
(corresponding to low overlap with monocyte eQTLs), with 
E = −0.316 (Fig. 1B). From this analysis, we concluded that 
our method enables the prioritization of cell type-specific 
TFBS data sets based on eQTL data. Next, to investigate the 
power of our method to uncover specific TFs that regulate 
gene expression in a specific cell type, for each TFBS data 
set, we scored the significance of the number of TFBS that 
were within eQTLs using a one-tailed binomial test in which 
the background probability is based on the genome-wide-
randomized background model (“Methods” section). We 
adjusted the 397 resulting P values for multiple hypothesis 
testing and for each of the 133 unique TF types that we ana-
lyzed (Supplementary Table 1), we selected the TFBS ChIP-
seq experiment for that TF that had the largest effect size 
(enrichment ratio) based on the binomial test.a This analysis 
produced a list of 133 TFs that we ranked by adjusted P value 
(Padj) (Supplementary Table  2). We hypothesized that TFs 
that regulate gene expression in monocytes would be biased 
toward low ranks. To test this hypothesis, we reviewed the 
literature in order to compile a list of 71 TFs that are known to 
regulate gene expression in monocytes or monocyte-derived 
immune cells (see Supplementary Table 3), of which 26 TFs 

a �It is acknowledged that this selection criterion will somewhat bias the Padj values; 
however, we note that the highest Padj among the top 20% of the TFs is less than 10, 
and thus, there is little risk of a false rejection of the null hypothesis assuming the 
binomial test assumptions hold.
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Figure 1. K562 cells are biased toward higher z among ChIP-seq experiments ranked by z-score measure of overlap with human monocyte eQTLs. 
(A) GSEA plot of K562 data sets (E = 0.359) with distribution of overlap z-scores shown above the GSEA plot. (B) GSEA plot of H1-hESC data sets 
(E = −0.316) with distribution of overlap z-scores shown above the GSEA plot (Supplementary Table 1 for a complete list of the 397 ChIP-seq experiments 
whose data were analyzed, including cell type and TF target for each experiment). Horizontal coordinates of the data points show rank (z) for ChIP-seq 
data sets for the indicated cell line, with lowest rank corresponding to highest z. Here, consistent with the definition in the original GSEA study,17 Phit is the 
cumulative density function (CDF) of an indicator function that is 1 for a K562 data set and 0 for a non-K562 data set, and Pmiss is the CDF for an indicator 
function that is 0 for a K562 data set and 1 for a non-K562 data set.
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were among the 133 TFs profiled by ENCODE. We then 
tested for enrichment of the known monocyte-regulating TFs 
at low ranks in the list, using Gene Set Enrichment Analysis 
(GSEA).17 We found that the known monocyte-regulating 
TFs are strongly biased toward low ranks (Fig. 2; E = 0.329; 
P , 0.01).

In order to focus on the most probable monocyte- 
regulating TFs, we selected the top 20% of TFs ranked by Padj 
(Padj # 5 × 10−7). This list (Table 1) includes both 11 known 
monocyte-regulating TFs and 16 novel candidate monocyte-
regulating TFs (NMTFs), which are highly interconnected 
within the protein interaction/coexpression network (Fig. 3). 
The network appears to be enriched for TF pairs that coop-
eratively regulate gene expression (e.g., ELF1–AP1,18 IRF1–
NF-κB,19 YY1–Myc20).

Several of the NMTFs have functions related to immu-
nity or interact with previously identified monocyte-regulating  
TFs, supporting their potential roles in monocyte gene 
regulation. For example, the NMTF with the smallest Padj, 
BCLAF1, is highly expressed in various immune cell types 
(based on data from ImmGen and BioGPS; “Methods” 
section), and it plays a crucial role in signal transduction 
between NF-κB and C/EBPβ (both of which are known to 
regulate gene expression in monocytes) in multiple cell types.22 
Another significant NMTF, SIN3A, plays a role (along 
with the known monocyte-regulating TF, Myc) in a signal-
ing circuit implicated in the pathogenesis of acute myeloid 
leukemia.23 The NMTFs TAF1 and TAF7  may function  
together in monocytes, as they are coexpressed24 and are both 

components of the transcription factor II D (TFIID) complex. 
TAF7 is highly expressed in immune cells and in monocytes in  
particular (ImmGen and BioGPS). The NMTF SP2 (along 
with other known monocyte-regulating TFs, STAT1, STAT3, 
IRF1, and EGR1) is among the top 10 TFs associated with 
response to parasitic infection.25 The NMTF YY1 regulates 
the activity of the promoter of murine IRF3, which plays a key 
role in inflammation and immune response.26

THAP1, ETS1, TR4, and NRF1 have been previously 
identified to have specific immune regulatory functions. 
THAP1 is known to play a role in inducing T-cell apoptosis.27 
STAT3 is a known regulator of ETS1 in inflammation control 
in mouse macrophages.28 In addition, a TR4–CD36 pathway 
is used by mouse miR-133a to regulate lipid accumulation 
in macrophages.29 One general transcription factor, TBP 
whose transcript abundance is thought to be stable in human 
monocytes,30 is also in the top 20%; one possible mechanism 
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Figure 2. TFs with known functions in regulating monocyte gene 
expression have higher levels of TFBS overlap with monocyte eQTLs 
than would be expected by chance. Marks indicate the ranks of TFs with 
known functions in monocyte gene regulation among all TFs ranked by 
eQTL overlap significance (Padj). Solid line indicates the kernel density 
estimate from the ranks of TFs that have known functions in monocyte 
gene regulation (density ratio between peak and lowest density value 
shown is ∼1.57).

Table 1. Top 20% of TFs or cofactors according to Padj for TFBS 
overlap with monocyte eQTLs.

Rank Transcription  
Factor

Entrez  
Gene ID

Padj Ratio

1 HEY1 23462 1.37 × 10−38 1.24

2 BCLAF1 9774 4.10 × 10−35 1.65

3 SIN3A 25942 7.17 × 10−35 1.34

4 TAF1 6872 4.45 × 10−27 1.37

5 GABP/GABPA 2551 3.19 × 10−23 1.40

6 TBP 6908 2.10 × 10−22 1.24

7 GTF2F1 2962 1.97 × 10−21 1.52

8 GATA1 2623 2.91 × 10−18 1.13

9 ELK4 2005 3.07 × 10−17 1.30

10 MXI1 4601 6.11 × 10−17 1.30

11 BCL3 602 3.26 × 10−16 1.59

12 IRF1 3659 1.49 × 10−15 1.18

13 NFKB/NFKB1 4790 8.35 × 10−14 1.14

14 ELF1 1997 2.02 × 10−13 1.14

15 SP2 6668 2.06 × 10−13 1.33

16 NRF1 4899 8.30 × 10−13 1.36

17 GTF2B 2959 1.04 × 10−12 1.40

18 MYC 4609 2.19 × 10−12 1.28

19 YY1 7528 1.53 × 10−11 1.32

20 P300/EP300 2033 2.26 × 10−10 1.62

21 FOS 2353 3.89 × 10−10 1.38

22 THAP1 55145 1.41 × 10−09 1.29

23 ETS1 2113 2.81 × 10−09 1.27

24 E2F4 1874 3.06 × 10−09 1.31

25 TAF7 6879 3.53 × 10−08 1.28

26 TR4/NR2C2 7182 1.03 × 10−07 1.58

27 E2F6 1876 4.15 × 10−07 1.21

Note: Bolded names are TFs that have been previously identified to have 
regulatory functions in monocytes (Supplementary Table 3).
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could be TFIID recruitment to TATA-less promoters by cell 
type-specific regulators.31

Discussion and Conclusions
We have demonstrated an efficient method to identify candidate 
TFs that regulate gene expression in a specific cell type of 
interest, by leveraging publicly available human genome-wide 
location data sets and eQTL data sets. A key advantage of this 
approach is that it can leverage the extensive array of publicly 
accessible ChIP-seq data from the ENCODE project (1,485 
TF ChIP-seq data sets as of the current date). We note that one 
limitation of the approach is that human ChIP-seq data sets 
for many TFs are at present primarily available from cancer-
ous cell lines,7 whose gene regulatory networks may be altered 
compared to noncancerous cells of the same lineage type. Nev-
ertheless, the strong result for enrichment of known monocyte 
TF regulators in the list of TFs ranked using our method sug-
gests that this method is useful to screen for TF regulators for 
noncancerous cell types. Undoubtedly, confirmatory evidence  
regarding a specific function for a candidate TF in a given cell 
type of interest, (such as gene expression as we used in this work), 
would have an important role in avoiding false-positive identi-
fication of a TF due to a cancer cell line-specific artifact.

From our analysis using monocyte eQTL data, we con-
clude that TFs with known functions in regulating gene 
expression in monocytes tend to have binding sites located in 
the vicinity of monocyte eQTLs. Of the NMTFs that were 
identified in our analysis, the two most significant TFs were 
BCLAF1 and SIN3A. As revealed by protein network recon-
struction, the top 20% of TFs identified by our approach are 
highly interconnected. Further targeted experiments would be 
useful to elucidate their specific roles in monocyte gene regu-
lation. The approach is generally applicable to other cell types 

or tissues in that it could be used to identify candidate TFs 
for any cell type or tissue type for which eQTLs have been 
mapped from human population studies.

Methods
Software: We used the R statistical computing software 
(v3.2.2) and Bioconductor (v3.2) packages on OS X 10.11.4.

Databases. We obtained 397 TFBS location data files 
(derived from ChIP-seq analysis of 133 TFs in 68 human cell 
lines) from the public repository of the ENCODE project7 
via the University of California Santa Cruz Genome Browser 
portal. Additionally, we obtained data files containing eSNPs 
and associated eQTL P values from online supplementary 
data for two large-cohort monocyte eQTL studies involving 
1,773 unrelated individuals.10,11 We carried out all genome 
analyses using coordinates from the GRCh37/hg19 human 
reference genome assembly. We identified mouse orthologs 
expressed in monocytes and other immune cell types of the 
top TFs using the Immunological Genome (ImmGen) project 
database.32 We used the gene annotation portal, BioGPS,33 
to obtain human microarray-based gene expression measure-
ments for the top-ranked TFs.

eQTL intervals. We mapped genomic intervals con-
taining SNPs that are in LD with each eSNP using the SNP 
Annotation and Proxy (SNAP) tool34 using haplotype data 
from the 1,000 Genomes Project,35 including only SNPs with 
R2 $ 1.0 and distance #10 kbp.

TFBS/eQTL overlap count significance testing. We 
created a set of allowed regions for random eQTL LD block 
placement (for use as our background model for TFBS/eQTL 
overlap counts) by combining peak regions from all 397 TF 
ChIP-seq data sets with the monocyte eQTLs and merging 
together any regions whose edges were within 1.9 kbp of one 

Figure 3. Interaction network of TFs and cofactors identified by overlap analysis with human monocyte eQTLs. (A) Graphical representation of the 
network. Each node represents a TF (Table 1); shading denotes a known role for the TF in monocyte gene regulation (Supplementary Table 3). Edges 
denote interactions or coexpression (“Methods” section) as indicated in the legend. A dashed edge means that the two TFs are predicted (by the 
GeneMANIA database) to physically interact (“predicted interactions”). (B) Hive plot21 representation of the network. TFs are arranged into “source” (red), 
“intermediate” (blue), and “sink” (green) axes based on the graph topology. Edge thickness represents the interaction type (thick arc = physical interaction; 
medium = predicted interaction; thin = coexpression). For example, in the hive plot, NF-κB is identified as an upstream regulator in the monocyte gene 
regulatory network.
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another (selected so that the resulting set of allowed regions 
covered ∼25% of the genome). As a background model for 
the counts of TFBS/eQTL overlaps, we placed all eQTL 
LD blocks into random nonoverlapping locations within the 
set of allowed regions. We carried out 1,000 iterations of the 
LD block randomization. For each TF ChIP-seq data set, 
the count of peak center coordinates that overlapped with an 
eQTL LD block was computed, for both the human eQTL 
LD blocks and (as a background model) 1,000 iterations of 
the randomly placed LD blocks. For each ChIP-seq data set,  
we computed z-scores for the overlap counts using the mean 
and standard deviation of the background model-based counts 
(where z .. 0 indicates that the count of regions of overlap 
between the eQTLs and the ChIP-seq peaks is higher than 
would be expected based on the overlap count distribution of the 
null model where the eQTL LD blocks are randomly placed). 
For scoring the enrichment of cell types among ChIP-seq  
data sets ranked by z (in descending order) as well as scor-
ing the enrichment of monocyte-regulating TFs among TFs 
ranked by adjusted P value (Padj) (in ascending order), we used 
the gene set enrichment analysis (GSEA) statistical test17 with 
P = 0 (unweighted) to obtain an enrichment score (E score). 
For testing cell types among ChIP-seq data sets, a higher 
E score means that the ChIP-seq experiments correspond-
ing to the cell type or TF have lower ranks for their z-scores  
(ie, higher z-scores) than would be expected by chance. For 
testing monocyte-regulating TFs among all TFs ranked by 
Padj, a higher E score means that the monocyte-regulating TFs 
have lower Padj value ranks than would be expected by chance. 
To test for E ≠ 0 significance, we used a permutation-based 
approach36 with at least 1,000 iterations. For filtering TFs, we 
computed the average (over the 1,000 iterations) fraction of 
ChIP-seq peaks whose centers overlap one of the randomly 
placed LD blocks; the probability was used in a one-tailed 
binomial test. We adjusted the binomial P values for multiple 
hypothesis testing using the Benjamini–Hochberg false dis-
covery rate method.37

TF network construction and visualization. We used 
GeneMANIA38 (4/16/2016 release) to construct the inter-
action network for the top 27 TFs (by P value). We used 
Cytoscape39 v3.4.0 for network layout and visualization. We 
used the HiveR R package40 for generating the hive plot.

Supplementary information. The software source code 
for this method is available under a free-software, open-source 
(Apache 2.0) license at github.com/ramseylab/eqtlchiptest.
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