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Abstract

Profound knowledge about landscape preferences is of high importance to support deci-

sion-making, in particular, in the context of emerging socio-economic developments to fos-

ter a sustainable spatial development and the maintenance of attractive landscapes. Eye-

tracking experiments are increasingly used to examine how respondents observe land-

scapes, but such studies are very time-consuming and costly. For the first time, this study

explored the potential of using eye-tracking simulation software in a mountain landscape by

(1) identifying the type of information that can be obtained through eye-tracking simulation

and (2) examining how this information contributes to the explanation of landscape prefer-

ences. Based on 78 panoramic landscape photographs, representing major landscape

types of the Central European Alps, this study collected 19 indicators describing the charac-

teristics of the hotspots that were identified by the Visual Attention Software by 3M (3M-

VAS). Indicators included quantitative and spatial information (e.g., number of hotspots,

probabilities of initially viewing the hotspots) as well variables indicating natural and artificial

features within the hotspots (e.g., clouds, lighting conditions, natural and anthropogenic fea-

tures). In addition, we estimated 18 variables describing the photo content and calculated

12 landscape metrics to quantify spatial patterns. Our results indicate that on average 3.3

hotspots were identified per photograph, mostly containing single trees and tree trunks,

buildings and horizon transitions. Using backward stepwise linear regression models, the

hotspot indicators increased the model explanatory power by 24%. Thus, our findings indi-

cate that the analysis of eye-tracking hotspots can support the identification of important ele-

ments and areas of a landscape, but it is limited in explaining preferences across different

landscape types. Future research should therefore focus on specific landscape characteris-

tics such as complexity, structure or visual appearance of specific elements to increase the

depth of information obtained from eye-tracking simulation software.
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Introduction

Appealing landscapes are important for physical and mental well-being [1], providing not only

aesthetic values but also recreational spaces [2]. In particular, mountain landscapes are highly

appreciated by residents and visitors due to their high degree of naturalness, landscape diver-

sity and long vistas, originating from the complex topography, climatic variability and tradi-

tional agricultural use of the landscape [3–6]. Aesthetic quality of such landscapes also

generates economic benefits and pictures of beautiful landscapes are often used for marketing

purposes [7, 8]. However, ongoing landscape changes driven by global change pressures,

mostly resulting in altered agricultural practices [9, 10], also lead to changes in spatial land-

scape patterns and mountain scenery [11]. For example, the abandonment of mountain pas-

tures leads to an increase in forest due to natural forest regrowth [12], which restricts the

viewing depth, reduces landscape diversity and result in less attractive mountain landscapes

[13, 14]. In contrast, the valley bottoms are mostly affected by the intensification of agricultural

use as well as the expansion of settlements and infrastructure [14, 15], increasing the share of

less preferred artificial features and landscape types [16–18], which also induces a decline in

aesthetic landscape values [11, 14]. As such developments are ongoing due to legacy effects

[19, 20] and expected future demand for ecosystem services [14], profound knowledge about

landscape preferences is of high importance to support decision-making in developing effec-

tive strategies for maintaining preferred visual landscape characteristics and fostering positive

benefits for human well-being [11, 21].

Research on landscape perceptions has been evolved over long time [22, 23]. To gather peo-

ple’s preferences, stated-preference approaches such as photo-based surveys or on-site inter-

views are widely applied [4, 24–26]. In particular, photo rating is a standard method that can

capture perceptions of individuals or groups in a reliable way [27]. For this purpose, pan-

oramic photographs are considered useful stimuli to holistically depict the surrounding land-

scape [28, 29], as they are easier to recognize and memorize and therefore the responses are

more adequate and detailed than for standard photographs [30]. To understand and map aes-

thetic landscape values, researchers have related landscape preferences to visual landscape

characteristics and spatial patterns [24, 25, 31–33]. Such studies revealed, for example, that

mean levels of diversity and complexity are generally preferred over highly complex or homo-

geneous patterns [26, 33, 34] or that landscape openness is positively related to landscape pref-

erences, which can be measured through visibility metrics [25]. There is also a growing body

of literature using novel approaches and new data sources such as social media data to identify

landscape preferences and the level of aesthetic value [16, 18, 28, 35, 36].

However, all these approaches do not reveal how respondents observe the landscapes, i.e.,

at which parts they look, how long and in which sequence. Such information can be obtained

in an objective way by eye-tracking experiments, as this technique measures the position and

number of fixations, the fixation duration, the number of saccades and their direction and

velocity as well as the observed horizontal area and the observed vertical area [30, 37, 38].

Although eye-tracking techniques have been used in psychology, marketing, geography, car-

tography and landscape planning already since long time [37, 39–43], they have been applied

in landscape perception research only more recently. For example, eye-tracking experiments

were used to examine landscape perceptions in relation with the level of openness and hetero-

geneity in rural landscapes [30] as well as different levels of urbanization and visual complexity

along a rural-urban gradient [44]. Other studies focused on the beauty of natural environ-

ments, e.g., forests [38, 45–47], underwater reefs [48] or lakescapes [49] as well as visual prefer-

ences in urban environments and urban green spaces, e.g., [33, 50–55]. Eye-tracking

experiments can also support the understanding individual’s perceptions and cognitive
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processes for decision-making related to landscape and ecosystem service planning as shown

for mountain landscapes [21] and forest landscapes [47]. In summary, eye-tracking is a well-

situated approach in context with landscape perception without the language filter [55].

A great disadvantage of real eye-tracking experiments involving individuals is that they are

very time-consuming and costly; studies are therefore often limited by a small sample size and

a convenience sample [50]. To overcome such issues, artificial intelligence applications simu-

lating initial eye-tracking movements on a picture are increasingly used, for example, to test

the visibility of specific elements such as street signs or crosswalks to increase traffic safety

[56–58]. Hollander et al. [54] compared the outcomes between laboratory-based eye-tracking

experiments and those generated by simulation software in the context of urban design per-

ceptions; the results were highly consistent suggesting that simulation results can be used as a

proxy for laboratory-based eye-tracking results. Accordingly, first studies used eye-tracking

simulation software in urban settings, focusing on streetscapes and facades, providing promis-

ing perspectives for urban planning [59–61]. These studies used Visual Attention Software by

3M (3M-VAS), a proprietary artificial intelligence software, which simulates “first glance

vision”. Eye-tracking simulation of the initial fixations can provide information on the pre-

attentive processing of visual components that has taken place [59]. The visual system can

select salient information to guide appropriate responses with survival value. This process ini-

tiates in the retina, where computation of low-level visual features is started, and continues in

the thalamus and the early visual cortical areas [62]. The retina is thereby not only a photore-

ceptor array, but the horizontal interconnectivity between retinal cells also allows a first level

of processing [63]. Neurons at these initial perception level are tuned to react to simple visual

properties, e.g., color opponency, intensity contrast as well as, in the visual cortex, orientation,

direction and velocity of motion, etc. [64]. These visual features are calculated pre-attentively

in a parallel manner producing an initial “saliency map” [65]. Information from the initial,

pre-attentive processing of visual input, which lasts approximately 200–250 ms, is then used to

guide the early deployment of selective attention [66].

However, this technology is not yet sufficiently explored for rural and (semi-)natural envi-

ronments such as mountain landscapes, as it has only been tested in urban settings [59–61]. It

remains unclear, which information that is generated by eye-tracking simulation software can

be useful for explaining landscape preferences and whether this information can enhance

modelling approaches used to estimate aesthetic landscape values [11]. To address this gap,

this study explores the potential of integrating eye-tracking simulation software into research

on landscape preferences, focusing on (1) the type of information that can be obtained through

eye-tracking simulation in mountain landscapes, and (2) how this information can contribute

to the explanation of landscape preferences. Based on previous studies that gathered landscape

preferences using panoramic landscape photographs through surveys as well as studies linking

such preferences to landscape characteristics, this study analyses and integrates for the first

time initial eye-tracking movements generated by 3M-VAS.

Materials and methods

Methodological approach

In the context of previous research on visual perception and visual decision-making [67], most

studies focused on the consumer and his/her visual attend to advertisements, packaging of

products or label design [68], whereas the research object of this study is the landscape. In gen-

eral, attention and interest to visual stimuli are triggered by two groups of factors, which are

top-down and bottom-up attention factors [68]. Top-down factors, or endogenous and goal-

directed attention, were often the focus of interest in landscape research [11, 17, 69]. In line
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with such typical consumer perceptual analyses, landscape analysis uses criteria for explaining

preferences that focus primarily on structural features and visual aspects, knowledge on func-

tional relationships or emotional relationships [26, 34, 70, 71]. Hence, a person’s interests,

emotions and socio-cultural background (i.e., all top-down attentional values) are used as pre-

dictor variables [34, 69, 72]. In contrast, this study aims to also introduce bottom-up factors

into landscape analysis, which are common in consumer analyses. Bottom-up factors, or exog-

enous stimulus-driven attention, are related to involuntary allocation of attention elicited

based on salient features such as luminance and size, coloration and contrasts (e.g., yellow-

blue contrasts, light-shadow), brightness and orientation [68]. These exogenous stimuli are

included in this study by using eye-tracking simulation to improve the prediction of people’s

landscape preferences.

Panoramic landscape photographs were used as stimuli, for which a set of predictor vari-

ables was collected (Fig 1). For this purpose, we used different approaches, including (1) an

eye-tracking simulation to identify and analyze the most important zones of initial eye-track-

ing movements (as bottom-up variables), (2) a photo content analysis to estimate the structural

composition of the photos such as percentage sky, cloud cover, Land Use/Land Cover (LULC)

types, etc. (as top-down variables), and (3) a Geographic Information System (GIS)-based

analysis to measure composition and configuration (i.e., landscape metrics) of the visible land-

scape (as top-down variables).

To spatially structure the photo content analysis as well as to prepare and analyze the data

used in the GIS-based analysis, accounting for the influence of distance on distinguishability/

recognizability of landscape features and LULC types [3, 13, 73], we used four distance zones:

Fig 1. Using eye-tracking simulation and spatial analysis to explain people’s preferences of alpine landscapes, which

were collected via surveys based on panoramic landscape photographs. Photographs from Schirpke et al. [11],

published under the Creative Commons CC BY 4.0 license.

https://doi.org/10.1371/journal.pone.0273519.g001
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1. Surrounding zone (Zone 1; 0–60 m): Individual landscape features can be clearly identified

by the observer [73]

2. Near zone (Zone 2; 0.06–1.5 km): Individual landscape features such as trees or buildings

are clearly discernible.

3. Middle zone (Zone 3; 1.5–10 km): Individual landscape features are not discernible any-

more but different LULC types such as forest, grassland, settlement areas can be clearly

identified.

4. Far zone (Zone 4; 10–50 km). Few major LULC types are distinguishable. A good visibility

outside population centers in is mostly limited to about 40–50 km [74].

The photographs covered a variety of major LULC types of the Central Alps such as settle-

ment areas, arable land, forest, mountain grassland, moors, rivers and lakes, as well as rocky

high-mountain landscapes, partly covered by glaciers (Fig 2).

Preference surveys

We combined the results of three surveys that gathered people’s preferences of Alpine land-

scapes using photo-based questionnaires [13, 17, 75] to cover a high variety of different

Fig 2. Examples of photographs representing 19 different LULC types. Photographs from Schirpke et al. [11],

published under the Creative Commons CC BY 4.0 license.

https://doi.org/10.1371/journal.pone.0273519.g002
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landscapes. To assure comparability of the results [76, 77], all three questionnaires were

designed and structured in a similar way in terms of picture format, rating type, sampling

approach and study area, while partly focusing on different LULC types such as high-moun-

tain landscapes or agricultural landscapes. Moreover, sixteen photographs of third survey [75]

were taken from the two previous surveys [13, 17], i.e., from each survey 8 photographs, to

enable the alignment of the preference scores of all three surveys to the result of Forer et al.

[75]. All questionnaires included 360˚ panorama photographs that were taken at sunny days

during summer at normal eye level (approx. 1.5–1.7 m). The photographs were randomly

arranged in a paper-based questionnaire (A4 landscape orientation, max. 4 photographs on

one page) and printed with high resolution. In two surveys [13, 75], people’s preferences were

assessed by asking the respondents to indicate their preferences on a 10-point Likert scale (1 =

‘least preferred’ to 10 = ‘most preferred’). The other survey [17] used a 5-point Likert scale (1 =

‘least preferred’ to 5 = ‘most preferred’) and the results were rescaled into a 10-point Likert

scale applying linear stretch method [77]. Moreover, questions on socio-demographic infor-

mation such as gender, age, and nationality were collected. The questionnaires were available

in German and/or Italian. All surveys were carried out in the Central Alps between 2011 and

2019, applying a stratified sampling approach to include both residents and visitors, account-

ing for demographics and origin. The first survey [13] comprised 858 respondents, the second

survey [17] 384 respondents and the third survey [75] 967 respondents.

Since all previous analyses demonstrated that differences in the preference scores between

different socio-demographic groups were small [11, 13, 17, 75], mean preference scores were

calculated for all photographs after aligning the rating scale and the preference scores among

the three surveys based on the linear stretch method [77]. From the entire pool of 212 photo-

graphs with at least 15 pictures per LULC type (see Table 2), we selected 78 photographs for

this study, depicting different landscapes taken in different locations (S1 Fig). For each LULC

type in the study area, we chose 4–5 photos to represent the diversity of spatial characteristics

of the different LULC types. The selection followed a stratified sampling approach by step-

wise integrating the following criteria: 1) different land-use intensity, 2) topography (with spe-

cial attention to the slope), and 3) landscape context (see Zoderer et al. [17]). We included

only photos, for which the horizon did not extent over the center of the picture, and which had

a neutral sky (e.g., no threatening cloud atmosphere, no sunrise or sunset, no special sky col-

ors) to reduce potential influence from the appearance of the sky on the preference scores

[78, 79].

Collecting predictor variables

Eye-tracking simulation analysis. We used 3M-VAS (https://vas.3m.com) to analyze ini-

tial eye-tracking movements on the photographs and thus to specifically bring factors affecting

top-down attention into the analysis. The panoramic photographs were already standardized

for the questionnaires and not altered for upload in 3M-VAS, i.e., all images had the same size

(2300x360 pixel) and resolution (300 dpi). 3M-VAS does not provide much information about

quality standards, but there is a limit in ‘nominal’ resolution, under which the system will

warn that it is insufficient, which was not the case for our photographs. We scanned all photo-

graphs, using the category “Other” as the most general and unbiased modality [59]. The analy-

sis report of 3M-VAS always included a heatmap, hotspots, a gaze sequence (most probable

viewing order of the first four points) and a report of visual elements (i.e., edges, intensity, red-

green color contrast, blue-yellow color contrast, faces) that have been used to calculate the

heatmap (Fig 3). The output images of 3M-VAS had all a size of 1024x160 pixel and a resolu-

tion of 96 dpi. The software treats each photograph regardless of the others and results can be
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considered as independent. Whatever limitations may be a common denominator within all

photographs, so they should not influence comparative results.

We used the results of the hotspots analysis to derive different variables for each photograph

(Table 1). First, we extracted primary hotspot characteristics, i.e., quantitative and spatial

information generated by 3M-VAS such as the number of hotspots and probabilities of initially

viewing the hotspots. Then, we also estimated secondary hotspot characteristics, i.e., variables

in relation to the different distance zones as well as natural and artificial features within the

hotspots, e.g., sky, cloud, snowfield/glacier, lighting conditions, specific natural or anthropo-

genic features. This evaluation was carried out for both the top-hotspots (hotspots with the

highest probability of initial eye-tracking per photo) alone, as well as across all hotspots.

Furthermore, we analyzed the contribution of the visual elements (edges, intensity, red-

green color contrast, blue-yellow color contrast, faces; see Fig 3.5) for the hotspots to better

understand the importance of these different elements. For this purpose, we estimated the con-

tribution of the individual elements to the overall probability within the hotspot areas on a

scale of from 0 to 100%, taking into account the share of the area and the combined value lev-

els. For example, if edges took up 50% of the area within a hotspot, intensity had mostly

Fig 3. Output of the 3M-VAS software. (1) Original image, (2) Heatmap indicating the probability that areas are seen

within the first 3–5 seconds, (3) Hotspots derived from the heatmap, specifying the probability that a person will look

somewhere within the hotspot areas within the first 3–5 s), (4): Gaze sequence (most probable viewing order) of the 4

most-likely seen gaze locations, (5) Visual elements (edges, intensity, red-green color contrast, blue-yellow color

contrast, faces), indicating how each of the elements contributes to the overall probability. Photograph by E Tasser.

https://doi.org/10.1371/journal.pone.0273519.g003
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medium to high values (grey to light grey areas), low red-green contrast values (dark grey pat-

terns) and missing blue-yellow contrasts as well as no values for faces (black), such a hotspot

received a value of 50 for edges, 40 for intensity, 5 for red-green color contrast and 0 for blue-

yellow color contrast and faces (see S2 Fig, hotspot no. 3). For each photograph, these values

were averaged over all existing hotspots.

All estimations were performed by one of the authors to avoid uncertainty in the area esti-

mates by different persons. This person first gridded some photographs for own calibration

and then derived the proportions of certain features by the number of grids. This approach

was discussed and determined in advance by the author team.

Photo content analysis. To quantitatively describe the content of the photos, we used

eight indicators (Table 2), which were mainly related to the type of LULC and composition of

Table 1. Variables extracted from the hotspots that were identified by 3M-VAS.

Group Variable Unit Description

Primary hotspot characteristics HP (n) Number of hotspots within the photo (see Fig 3.3)

HParea (%) Total estimated area of the hotspots in the photo

HPmean (%) Mean probability of initially looking at the hotspots, mean across all hotspots

HPmean_w (%) Area weighted mean probability of initial eye-tracking movement, mean of all hotspots

HPmax (%) Probability of initial eye-tracking movement of the hotspot with the highest probability (top-hotspot)

HPmin (%) Probability of initial eye-tracking movement of the hotspot with the lowest probability

HP max_area (%) Estimated area of the top-hotspot

Secondary hotspot

characteristics

HPZ1 (n) Number of hotspots within the surrounding zone (Z1; 0–60 m)

HPZ2 (n) Number of hotspots within the near zone (Z2; 0.06–1.5 km)

HPZ3 (n) Number of hotspots within the middle zone (Z3; 1.5–10 km)

HPZ4 (n) Number of hotspots within the far zone (Z4; 10–50 km)

HP1..n (%) Estimated area of individual LULC types within the hotspots

Sky_HP1..n (%) Estimated area of sky within the hotspots

Cloud_HP1..

n

(%) Estimated area of clouds within the hotspots

Light_HP1..n (%) Estimated area of special lighting phenomena within the hotspots

Snow_HP1..n (%) Estimated area of snow/glacier within the hotspots

Enat_HP 1..n (%) Estimated area of individual natural elements in the foreground within the hotspots (e.g., stones, flowers,

plants)

Eart_HP1..n (%) Estimated area of individual artificial elements in the foreground within the hotspots (e.g., streets, street signs,

cars, fences)

https://doi.org/10.1371/journal.pone.0273519.t001

Table 2. Variables extracted from visual photo content analyses.

Variable Unit Description

Z (n) Number of distance zones in the photo (surrounding zone (0–60 m), near zone (0.06–1.5 km), middle zone (1.5–10 km), far zone (10–50 km)

LULC_P1-n (%) Estimated area of visually well distinguishable LULC types (water bodies, water courses, moors and wetlands, coniferous forest (montane and

subalpine), broad-leaved forest, mixed forest, glaciers and snowfields, pastures (summer pastures), pastures (fodder meadows), orchards and berry

plantations, vineyards, arable lands, urban areas, rural settlement areas) within the photo

Enat_P 1..n (%) Estimated area of clearly recognizable natural elements within photo (e.g., stones, flowers, single plants)

Eart_P 1..n (%) Estimated area of clearly recognizable artificial elements within the photo (e.g. street, street signs, cars, fences)

Sky (%) Estimated area of sky within the photo

Clouds (%) Estimated area of clouds within the sky

Light (%) Estimated area of special lighting conditions within the photo

Open soil (%) Estimated area of open soil cover

https://doi.org/10.1371/journal.pone.0273519.t002
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the photos and which may positively or negatively influence people’s preferences [73, 80]. For

example, natural ecosystems and landscape features are generally preferred over intensively

used ecosystems and artificial elements [16–18]. Therefore, we included the proportion of

LULC types in the photo and estimated the proportion of clearly recognizable human struc-

tures such as roads, paths, fences and signs. Furthermore, the composition of a photo in terms

of position of horizon and appearance of the sky can have positive or negative effects on pref-

erences [78, 79]. Hence, we estimated the proportion of the sky in the photos and the propor-

tion of cloud cover in the sky. In addition, the proportion of areas with special lighting

conditions such as extreme changes in shade and sun or reflections of partial landscapes in a

lake were recorded. This approach was also discussed in advance by the author team, and the

estimates were subsequently performed by only one author.

GIS-based analysis. Landscape characteristics of visible landscape in form of landscape

metrics were obtained from Schirpke et al. [11]. Landscape metrics provide a quantitative

framework to describe spatial landscape pattern, i.e., composition and configuration, which

has also been related to landscape preferences [24–26, 31, 81, 82]. Landscape metrics were cal-

culated based on a mosaic of LULC maps (spatial resolution of about 27.4 x 27.4 m) that

included only the visible area, as some areas on the map may be hidden due to the topography

of mountain landscapes. The visible area up to 50 km [74] seen from the photo location was

identified through viewshed analysis that determines for each cell of the DSM whether it is

within the observer’s line-of-sight or not [83]. Viewhsed analysis was based on digital surface

models (DSM), which had different spatial resolution (S1 Table) for the four distance zones

(see above). We overlaid the visible area with LULC maps with different spatial and thematic

resolution to account for the influence of increasing distance from the photo location on dis-

tinguishability/recognizability of landscape features and different LULC types in terms of per-

ceived size and color [3]. This means that, for example, a berry plantation would be a specific

habitat type in zones 1 (at the observer point) and 2 (near zone), while it would not be distin-

guishable in zones 3 (middle zone) and 4 (far zone), i.e., it is merged with other land cover

types, presenting a separately recognizable area without knowing what exactly it is. Therefore,

LULC maps were selected and prepared according to the four distance zones (S1 Table). After

overlaying the visible area with the LULC maps, we created mosaic of the visible LULC, which

was used to calculate landscape metrics. Non-visible areas were classified as background to

exclude their influence on area-based metrics. Landscape metrics included median of patch

area (AREA_MD), standard deviation in related circumscribing circle distribution (CIR-

CLE_SD), Largest patch index (LPI), modified Simpson’s diversity index (MSIDI), number of

patches (NP), patch richness (PR), i.e., the number of different the LULC types present, patch

density (PD), median of contiguity index (CONTIG_MD), standard deviation shape index

(SHAPE_CV), median of gyration radius (GYRATE_MD) and total area of zones 1 and 2

(TA_1, TA_2). For full details, see Schirpke et al. [11].

Statistical analysis

To explain people’s preferences by independent variables derived through the three different

approaches, we used backward stepwise linear regression models (Fig 1). In particular, we

aimed to identify the influence of the variables obtained from the eye-tracking simulation and

related hotspot analysis. We therefore set up four different models, progressively increasing

the number of predicting variables:

1. In the first regression model, only variables that described primary hotspot characteristics

resulting from the eye-tracking simulation were used as predictors (see, Table 1).
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2. In the second regression model, the secondary hotspot characteristics resulting from the

interpretation regarding distance zones and natural and artificial features were additionally

included to the primary hotspot characteristics (see, Table 1).

3. In the third regression analysis, only the variables extracted by photo content analysis

(Table 2) and landscape metrics from GIS-based landscape analysis (see previous section)

were used as predictors.

4. In the fourth regression analysis, all variables (photo content analysis, landscape metrics, all

variables describing hotspot characteristics) were used to explain preference value disper-

sion (see Schirpke et al. [11, 13]).

In total, 8 primary and 11 secondary hotspot characteristics (Table 1), 18 photo content charac-

teristics (Table 2) as well as 12 landscape metrics were used. Missing values for predictors were

replaced with mean values. To avoid overfitting and facilitate model interpretability, we elimi-

nated unnecessary and collinear predicting variables by a two-step process. First, we screened for

multicollinearity in the predictor set by calculating tolerance and variance inflation factor (VIF)

values for each variable and only included those with a tolerance>0.1 and a variance inflation fac-

tor (VIF)<10. Second, a backward stepwise linear regression routine was applied with the

remaining variables to further reduce the number of variables [84], starting with all variables and

iteratively removing the weaker predicting variables until no further improvement was possible.

Finally, we interpreted the adjusted R2, because it is less affected by overfitting than R2, and thus,

it is easier to assess how much variability the model really ‘explains’ [85]. The difference between

R2 and the adjusted R2 was used as a final estimate of the degree of overfitting.

Validity, quality and significance of the coefficients were determined by analysis of variance

(ANOVA) or t-tests. In addition, we checked the reliability of the regression using the Sha-

piro-Wilk test (residual normality), the Durbin-Watson test (autocorrelation of the variables),

the Breusch-Pagan test (homoscedasticity) and the Tolerance/VIF statistics (multicollinearity

effect). All statistical analyses were performed in SPSS Statistics (IBM SPSS 27).

Results

Landscape preferences

The mean preference values differed significantly between different LULC types (Fig 4, S2 Table).

Lakes and high alpine landscapes with glaciers and snowfields had highest preference values, fol-

lowed by agro-forestry areas such as larch meadows and alpine summer pastures. Alpine grassland,

bare rock landscapes, water courses, broad-leaf forest and semi-open coniferous forests in the subal-

pine belt obtained medium preferences. The lowest preference values received urban areas, perma-

nent crops as orchards and vineyards and dense coniferous forests in the montane belt.

Predictor variables

Characteristics of hotspots. 3M-VAS identified on average 3.3 ± 1.1 (s.d.) hotspots (HP)

per photograph. The mean estimated proportion of hotspots (HParea) was 17.4 ± 6.3% of the

photo area. The mean probability of initially looking at the hotspots (HPmean) was 61.9 ± 6.7%

(area weighted mean: 65.6 ± 7.1%), the probability of initial eye-tracking movement of the

top-hotspot (HPmax) 74.1 ± 10.1% (mean HPmax_area: 7.5 ± 3.0% of the photo area) and the

probability of the lowest hotspot (HPmin) was 50.6 ± 9.4%. With regards to the secondary hot-

spot characteristics, the descriptive analysis of the hotspots indicated elements that were most

likely to be seen within the first 3–5 s (Fig 5). More than 80% of the top-hotspots contained

single trees and tree trunks, more than 70% buildings and horizon transitions, if these contents
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appeared in the photo. These photo contents were viewed first, i.e., a correspondingly high

proportion already occurred in the top hotspots. With a probability of more than 50%, glaciers

or snowfields, rocks, as well as agriculturally used grassland patches were also included in the

top-hotspots. In addition, with longer viewing, i.e., considering all hotspots in the photos, the

probability of alpine grasslands and forests strongly increased. Strong increases in viewing

probability also occurred for mountain peaks, rocks und scree slopes as well as lakes and rivers.

Individual artificial elements (e.g., fences, street signs, cars), individual natural elements (e.g.

plant leaves, single stones), clouds and special light effects (e.g., change of sun and shadow,

reflections in the lake) were much less common.

In general, the highest contribution of the visual elements to the hotspots had edges, fol-

lowed by intensity, red-green color contrast and blue-yellow color contrast, while faces had no

importance for (semi-)natural landscapes (Fig 6). Among the different LULC types, the contri-

butions of the individual elements partly varied. For orchards and berry plantations, orchard

meadows, urban areas, montane coniferous forest as well as glaciers and perpetual snowfields,

edges were most important, but color contrast were below average. On the contrary, edges

were less important particularly for summer pasture, natural grasslands as well as moors and

wetlands, while the contribution of color contrasts was above average for these LULC types.

Photo content and landscape characteristics

The photos differed in terms of content, structure and elements depicted (see S3–S5 Tables).

Photos with high-elevated LULC types (e.g., glaciers and rocks, alpine grasslands) were charac-

terized by an above-average number of visible distance zones (Z) and an above-average pro-

portion of sky area (sky) due to the open view. Accordingly, some landscape metrics

(AREA_AM, LPI, PR and GYRATE_MD) were above average compared to photos with less

distance zone due to the presence of higher vegetation, e.g., photos taken within different for-

est types mostly including only one zone. A characteristic of many forest types (especially

Fig 4. Mean preference values (�x�� s:d:, n = 4–5) of different LULC types, ranging from 1 = ‘least preferred’ to 10

= ‘most preferred’ (Likert scale).

https://doi.org/10.1371/journal.pone.0273519.g004
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Fig 5. Examples of identified eye-tracking hotspots by 3M-VAS and the frequency of photos with at least one specific content within the top-hotspots

(HPmax) and all hotspots. Frequencies were calculated considering only those photos containing the specific contents, e.g., number of hotspots with water in

relation to all photos including hotspots with water. Photographs from Schirpke et al. [11], published under the Creative Commons CC BY 4.0 license.

https://doi.org/10.1371/journal.pone.0273519.g005
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mixed and broad-leafed forests) was the low vegetation cover on the forest underground,

caused by the lack of light in these dense forest canopies. In contrast, rural settlement areas

and agricultural landscapes close to settlements were characterized by a high proportion of

artificial elements and a high diversity of different LULC types. The photos including rivers

also included many different LULC types.

Prediction of landscape preferences

To analyze the influence of hotspots on landscape preferences, three regression analyses with

different predictors were performed. The first analysis using only primary hotspot predictors

indicated that neither the area of the hotspots nor the resulting probability values were suitable

to explain landscape preferences (ANOVA p = 0.072; R2 = 0.042; adjust. R2 = 0.029). Adding

the secondary hotspot indicators significantly increased the explanatory value (p = 0.000; R2 =

Fig 6. Contribution of visual elements (edges, intensity, red-green color contrast, blue-yellow color contrast, faces) to the probability that hotspot areas are

seen within the first 3–5 seconds across all LULC types (a), urban LULC types (b), agricultural LULC types (c), forest types (d), alpine LULC types (e) and water

LULC types (f).

https://doi.org/10.1371/journal.pone.0273519.g006
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0.556; adjust. R2 = 0.519; Table 3). There was weak evidence that the proportions of snowfield/

glacier areas (Snow_HP1..n) and the number of hotspots within the far zone of the photo

(HPZ4) had positive effects on the preference value (p = 0.05–0.1), while a moderate evidence

(p = 0.018) was found for the number of hotspots within the photo (HP) with a negative effect.

Very strong evidence was found that the presence of artificial elements (Eart_HP1..n) is nega-

tively associated and the number of hotspots in the near zone (HPZ2) and in the middle zone

(HPZ3) of the photo were positively associated with the preference value (p<0.001).

The third analysis, including all variables from the photo content analysis and the GIS-

based analysis without the hotspot indicators, led to a model explanation of 59% of the vari-

ability in preferences (p = 0.000; R2 = 0.612, adjust. R2 = 0.585), suggesting that these photo

attributes had a lower explanatory value than the hotspot indicators. It shows only a moderate

evidence (p = 0.034) for median of patch area (AREA_MD). The fourth analysis, including all

hotspot indicators as well as all variables from the photo content analysis and the GIS-based

analysis, led to the improvement of the model explanation from 59% of the variability in pref-

erences to 83% (p = 0.000; R2 = 0.873, adjust. R2 = 0.834, see Table 4). There was very weak evi-

dence that the estimated area of the top-hotspot (HPmax_area) decreased landscape preferences.

With moderate evidence, the number of hotspots within the near (HPZ2) and middle zone of

the photo (HPZ3) had positive effects, whereas the number of hotspots within the far zone of

the photo (HPZ4) negatively affected landscape preferences. The data revealed strong evidence

that the probability of initial eye-tracking movement of the hotspot with the lowest probability

(HPmin), the number of zones (Z), the largest patch index (LPI) and the total area of near

zones (TA_2) were positively associated. Furthermore, the increase in the proportion of

broad-leaved forests led to an increase of preferences, whereas an increase of the proportion of

moors and wetlands and of urban areas & rural settlement resulted in a decline of preferences.

Very strong evidence (p<0.001) was found that the proportion of sky and water bodies &

water courses, the proportion of mixed forests and larch meadows as well as the proportion of

open soil were positively associated with the preference value, while the proportion of arable

land was negatively associated with the preference value. Differently to the results of the sec-

ond regression analysis (Table 3), there was no evidence for snowfield/glacier area

(Snow_HP1..n).

Discussion

Characteristics of the hotspot analysis derived from eye-tracking simulation. The iden-

tified hotspots mostly contained single trees and tree trunks, buildings and horizon transitions,

which corroborates the results of other studies [86, 87]. Other elements such as glaciers, snow-

fields and rocks were also often included in the hotspots, representing all elements with a high

Table 3. Result of the backward stepwise linear regression, including only eye-tracking predictors with tolerance>0.1 and variance inflation factor (VIF)<10 dur-

ing collinearity diagnostics. Only variables with p<0.1 are shown.

Variables Non standardized coefficient Standardized coefficient Beta T Sig. Collinearity statistics

Regression coefficient B SD Tolerance VIF

(Constant) 6.810 .373 18.259 .000

HP (n) -.288 .119 -.215 -2.415 .018 .788 1.269

Snow_HP1..n (%) .035 .019 .150 1.824 .072 .926 1.080

Eart_HP1..n (%) -.048 .009 -.429 -5.286 .000 .951 1.051

HPZ2 (n) .729 .125 .495 5.852 .000 .873 1.146

HPZ3 (n) .646 .144 .400 4.497 .000 .790 1.266

HPZ4 (n) .458 .244 .156 1.878 .065 .902 1.108

https://doi.org/10.1371/journal.pone.0273519.t003
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degree of naturalness, which are generally preferred over artificial elements [26, 33, 47]. In

contrast to other studies [47, 86], single artificial elements (e.g., fences, street signs, cars) or

individual natural elements (e.g., plant leaves, single stones) were hardly tracked in our study,

which may be because certain elements such as benches are more in the focus of people’s inter-

ests and therefore more recognized in real eye-tracking experiments [87]. It has to be remem-

bered that 3M-VAS only tracks initial fixations, which reflect information gathered pre-

attentively, so such cognitive parameters are not within its reach; assuming the claimed num-

ber of 92% accuracy is correct, our result should not differ to those that would be recorded

with real eye-tracking of early glances. This contrasts with longer recording periods of the

studies mentioned above (120 s acquisition period for image exploration [47] and monitoring

during the complete 3 m 50 s of the video presentation [38]). Further information from real

eye-tracking experiments, such as fixation count and duration, is currently not implement in

3M-VAS, but such variables may provide important insights, for example, into people’s diffi-

culty in extracting information or interpreting a landscape [30]. Nevertheless, our findings on

the importance of the underlying visual elements for the hotspots indicate that edges have the

highest contribution to the hotspots in (semi-)natural landscapes, while color contrasts are less

important, which is, for example, in contrast to consumer science related to packaging, label

design and advertisements [68]. Furthermore, clouds, special light and color effects (e.g., lumi-

nance, change of sun and shadow, reflections in the lake, edge contrast) were less important in

our study. Although such low-level image properties can influence people’s perceptions [43],

people usually focus on the foreground and central zones instead of areas with the highest

image salience [28, 88].

Landscape preferences can depend on the quality and distribution of the "interesting"

objects [33, 55, 86], but frequently viewed elements indirectly contribute to the perception

Table 4. Result of the backward stepwise linear regression, including landscape metrics, photo content indictors and hotspot predictors with tolerance>0.1 and

variance inflation factor (VIF)<10 during collinearity diagnostics. Only variables with p<0.1 are shown.

Variables Non standardized coefficient Standardized coefficient Beta T Sig. Collinearity statistics

Regression coefficient B SD Tolerance VIF

(Konstante) 3.767 .521 7.234 .000

HPmax_area (%) -.048 .026 -.104 -1.877 .066 .698 1.432

HPmin (%) .023 .008 .153 2.841 .006 .738 1.354

Eart_HP1..n (%) -.046 .006 -.419 -7.691 .000 .726 1.378

HPZ2 (n) .221 .097 .150 2.277 .026 .497 2.012

HPZ3 (n) .198 .098 .123 2.015 .048 .582 1.717

HPZ4 (n) -.406 .173 -.138 -2.345 .022 .619 1.614

Z (n) .332 .112 .246 2.955 .004 .311 3.212

Sky (%) .031 .007 .267 4.719 .000 .674 1.484

LPI .025 .008 .215 3.037 .004 .432 2.317

TA_2 .000 .000 .203 2.942 .005 .452 2.211

Water bodies & water courses (%) .040 .009 .218 4.195 .000 .795 1.257

Moors and wetlands (%) -.030 .008 -.192 -3.524 .001 .724 1.381

Broad-leaved forests (%) .013 .004 .191 3.093 .003 .563 1.776

Mixed forests (%) .018 .004 .255 4.213 .000 .589 1.697

Agro-forestry areas (larch meadows) (%) .025 .004 .338 5.652 .000 .603 1.658

Arable lands (%) -.028 .005 -.305 -5.673 .000 .743 1.346

Urban areas & rural settlement areas (%) -.017 .006 -.149 -2.871 .006 .803 1.246

Open soil (%) .031 .007 .267 4.719 .000 .674 1.484

https://doi.org/10.1371/journal.pone.0273519.t004
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process, as the observer forms an opinion about these hotspots. For example, Cottet et al.

(2018) found that observers mentioned the same objects that were in the hotspots when

describing their motivations for judging a landscape. However, the selection of hotspots is sig-

nificantly influenced by the type of search. During an active search, for example, visual saliency

plays only a minor role, as the search for and the viewing of elements are mainly controlled by

cognitive factors [89]. In the case of a passive search, a different process is assumed, although

there is not yet sufficient evidence for this.

Potential of eye-tracking simulation in landscape preference research

Adding the hotspot indicators increased the model explanatory power by 24%, which con-

firmed the results of another study by Wang et al. [90]. This increase may be explained by the

relationships between fixation count and duration with landscape complexity, i.e., higher fixa-

tion counts but lower fixation duration with a higher level of landscape complexity [33, 47,

91]. In line with Li et al. [51], our results also indicate that the frequency of artificial elements

led to a statistically significant reduction in preferences. Furthermore, eye-tracking on the

level of cultivation (i.e., degree of abandonment/stage of succession, presence of weeds, type/

frequency of management) and on the status and condition of human-made structures (status

and maintenance of structures such as fences and farm buildings) can provide important

information to evaluate stewardship [43].

Our findings indicate that the analysis of eye-tracking hotspots can support the identifica-

tion of important elements and areas of a landscape, but they do not reveal people’s prefer-

ences, which are largely determined by general landscape characteristics [25, 30, 33, 55]. This

is not surprising, given the pre-attentive nature of the processing that guides the deployment

of initial attention; this deployment is based on the presence of certain features, and can have a

survival value, regardless of whether the stimulus is eventually judged as positive or not, on a

conscious level. A more detailed discussion about the correlation of visual organization to

3M-VAS results for artificial structures has been done by Lavdas et al. [59]. With regard to

landscape preferences, specific characteristics such as naturalness of LULC types and land-

scape complexity [33, 55] are more important, i.e., lakes, glaciers and semi-natural agro-for-

estry areas such as larch meadows and alpine summer pastures higher preference values than

urban areas, permanent crops and dense coniferous forests. Furthermore, the degree of open-

ness, vegetation composition, viewing depth, visibility and heterogeneity significantly influ-

ence landscape preferences [25, 30, 92]. Eye-tracking studies indicate less fixation on

homogeneous landscapes due to their rather unvaried character and are perceived as more

restorative [55], whereas heterogeneous landscapes are more ‘entertaining’, which explains its

stronger visual exploration [30]. Accordingly, landscape complexity (colors, textures, shapes,

physical dimensions of elements, topography, and structures) plays an important role for

describing visual character [38], but studies generally do not agree on its effect on people’s

preferences. For example, some studies indicate that landscapes with a medium level of com-

plexity are preferred over monotonous or highly complex landscapes [33, 34]. In contrast,

Kaplan et al. [93] postulated a linear relationship between landscape complexity and prefer-

ence. The type of organization that this complexity follows seems to be a key factor, as there is

accumulating data supporting the notion of preferential perception of fractally based patterns,

i.e., patterns based on an ordered geometrical structure with an hierarchy of scales [94–96].

Future research directions

As discussed above, the assessment of the characteristics of different LULC types with eye-

tracking simulation software has several constraints, in particular, with regard to explaining
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landscape preferences. Nevertheless, deeper insights into relationships between the landscape

and human preferences may be obtained by pointing at specific landscape characteristics, for

which differences can be revealed based on fixation count rather than duration. For example,

different levels of landscape complexity have been compared in urban green spaces [33], but

this may be applied also in more natural environments to identify the importance of color con-

trasts, shape variations, spatial arrangement of landscape elements and landscape structure.

Here, the use of purposively altered photographs or digitally designed landscapes can be useful

in real-world decision-making situations [97, 98]. An integration of eye-tracking simulation,

especially in the phase of feasibility studies, may support the evaluation of negative impacts on

landscape perceptions in addition to studies on economic, social and ecological effects.

Impacts may originate, for example, from new infrastructure such as wind turbines and photo-

voltaic panels to increase energy production from renewable resources [99]. It could be tested

with eye-tracking simulation software, which colors or shapes of such infrastructure will be

less visible (i.e., by reducing edges and color contrasts). Another example of application may

be the evaluation of measures to improve the attractiveness of agricultural landscapes by add-

ing flowering stripes that increase color contrasts [4, 100]. In particular, in the planning and

development of commercial and residential areas, different stakeholder groups as well as

experts from various disciplines such as ecologists and psychologists should be involved in the

evaluation of different scenarios, as interventions have effects far beyond sectoral boundaries.

Hence, the evaluation of different scenarios by eye-tracking simulation may provide important

information for decision-making and landscape planning. However, an operational use should

be facilitated by providing numerical outputs of the 3M-VAS software (i.e., our proposed pri-

mary hotspot characteristics and mean values for underlying visual elements) or an automa-

tized post-processing.

Finally, differences between groups with differing socio-cultural characteristics such as gen-

der, age, social and social and cultural background have been widely discussed in research on

landscape preferences [4, 17, 24, 25, 34], but only few eye-tracking studies have addressed such

differences. For example, studies found gender-related differences, as women seem to follow

more often a systematic strategy and look at the landscape more intensively and with longer

fixation times than men [37]. Accordingly, the increase in pupil diameter indicates a more

intensive processing of memories of women, while men tend to get a quick overview of the

landscape [101]. Another study related eye movements to human behavior, indicating that the

level of nature relatedness could explain whether individuals looked more likely at trees than

buildings [102]. The extent to which socio-cultural differences affect people’s preferences and

perceptions should be a focus of future eye-tracking studies, as it provides an objective method

to identify differences in people’s perceptions.

Supporting information

S1 Fig. Location of the 78 panoramic photographs in the Central European Alps. Data

sources: EEA (2016; 2019) and OpenStreetMap (https://www.openstreetmap.org).

(TIF)

S2 Fig. Contribution of visual elements to the overall probability that areas are seen within

the first 3–5 seconds. The yellow circles indicate the hotspots identified in 3M-VAS, which

were used for estimating the importance of each visual element within each hotspot on a scale

of from 0 to 100%. For example, for hotspot no. 3, edges take up 50% of the area, intensity has

mostly medium to high values (grey to light grey areas), red-green contrast values are low

(dark grey patterns) and blue-yellow contrasts as well as no values for faces (black) are missing.

Estimated contributions are 50% for edges, 40% for intensity, 5% for red-green color contrast
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and 0% for blue-yellow color contrast and faces.

(TIF)

S1 Table. Input data for GIS-based landscape analysis according to Schirpke et al. (2021).

(PDF)

S2 Table. Mean preference values of 19 LULC types derived from three surveys as indicated

by Schirpke et al. (2021).

(PDF)

S3 Table. Visual photo content indicator values (mean; min-max) for photos mainly cov-

ered by different LULC types.

(PDF)

S4 Table. Estimated area of visually well distinguishable LULC types (mean; min-max)

within the photos. LULC 1: water bodies & courses (%); LULC 2: glaciers and snowfields (%);

LULC 3: Rocks, screen slopes; LULC 4: moors and wetlands (%); LULC 5: coniferous forests

(subalpine) (%); LULC 6: coniferous forests (montane) (%); LULC 7: mixed forests (%); LULC

8: broad-leaved forests (%); LULC 9: grasslands (alpine grasslands, summer pastures) (%);

LULC 10: pastures (fodder meadows) (%); LULC 11: orchards and berry plantations (%);

LULC 12: vineyards (%); LULC 13: arable lands (%); LULC 14: rural settlement areas (%);

LULC 15: urban areas (%).

(PDF)

S5 Table. Landscape metrics (mean; min-max) for photos mainly covered by different

LULC types.

(PDF)
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