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1  |  INTRODUC TION

Grapes, one of the most widely consumed fruits worldwide, are rich 
in phenolic compounds. These compounds in grapes are involved in 
qualitative and organoleptic characteristics and storability (Zhang 
et al., 2012). Grapes also consist of diverse kinds of phenolics con-
tributing to improved human health (Vauzour et al., 2010; Vislocky & 
Fernandez, 2010; Xia et al., 2010). In view of all the aforementioned 
reasons, augmentation of these compounds is widely taken into con-
sideration. In this regard, elicitation has been shown to be a strategy 
to stimulate the synthesis of these bioactives in fruits (Ruiz- García 
& Gómez- Plaza, 2013). Naturally occurring compounds, mean-
while, have been extensively noticed to enhance phenolic content 
in table grapes, such as abscisic acid (Koyama et al., 2018), salicylic 

acid (Champa et al., 2015; Ranjbaran et al., 2011), brassinolide (Xi 
et al., 2013), and methyl jasmonate (MJ; Portu et al., 2017).

Methyl jasmonate, a signal molecule applied as a chemical elic-
itor, induces plant defense mechanisms, leading to the synthesis 
of secondary metabolites (Beckers & Spoel, 2006). MJ has also 
been shown to affect antioxidant and defense enzymes involved 
in phenolic metabolism, including phenylalanine ammonia lyase 
(PAL), polyphenol oxidase (PPO), and peroxidase (POD) (Belhadj 
et al., 2006). Hence, the effect of MJ application on phenolic content 
and antioxidant activity to different fruits, such as raspberry (Flores 
& del Castillo, 2015), black currant (Flores & Ruiz Del Castillo, 2016), 
sweet cherry (Castillo et al., 2014; Saracoglu et al., 2017), kiwi-
fruit (Öztürk & Yücedağ, 2021), medlar (Ozturk et al., 2019), plum 
(Karaman et al., 2013), apple (Ozturk et al., 2013), and grape wine 
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with PAL and POD activity. Although MJ had little effect on catechin and epicatechin, 
the levels of quercetin and rutin were noticeable. In addition, 5 and 10 mM MJ exerted 
a pronounced effect on transresveratrol content. These data showed that a single 
preharvest application close to the harvest time could be an effective treatment to 
promote the antioxidant properties of the grape.
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(Portu et al., 2015) has been studied. In this context, MJ has most 
often been applied several times at veraison in grapes, which is con-
siderably expensive (Garde- Cerdan et al., 2016; Portu et al., 2016; 
Ruiz- García et al., 2013). It has been shown that the content of 
jasmonates in grape skin decreases along with ripening (Kondo & 
Fukuda, 2001). Likewise, a significant decline in phenolic content 
of grape skin during ripening has been reported (Obreque- Slier 
et al., 2010), which might be associated with the mitigation of jas-
monates in this process. For this reason, the application of jasmona-
tes as a supplement near harvest time could be effective to improve 
berry phenolics.

To our knowledge, little information is available on a single MJ 
treatment as a supplement near harvest time, evaluating the residual 
effects on phenolic metabolism in grapes, especially table grapes, 
after harvest. Therefore, this work aimed to assess the impact of MJ 
in three different concentrations (1, 5, and 10 mM) with control ap-
plied 2 days before harvest on polyphenols and antioxidant capacity 
on the “Thompson Seedless” table grapes.

2  |  MATERIAL AND METHODS

2.1  |  Chemicals

Methyl jasmonate, 2,2'- azino- bis(3- ethylbenzothiazoline- 6- su
lphonic acid) (ABTS), HCl 37%, 2,4,6- Tris (2- pyridyl)- s- triazine 
(TPTZ), DPPH radical (diphenyl- 1- picrylhydrazyl), (+)- catechin, 
(−)- epicatechin, quercetin 3- O- glucoside, and transresvera-
trol were obtained from Sigma- Aldrich (US). L- phenylalanine, 
2- methoxyphenol (Guaiacol), pyrocatechol, iron (III) chloride hexa-
hydrate (FeCl3 (6H2O)), potassium persulfate (K₂S₂O₈), iron (II) sulfate 
heptahydrate (FeSO4 (7H2O)), sodium nitrite, Tween- 80, hydrogen 
peroxide 30%, Folin– Ciocalteu reagent, and polyvinylpolypyrro-
lidone (PVP) were purchased from Merck. Acetonitrile and rutin 
trihydrate were purchased from CHEMSOLUTE and Fluka, respec-
tively. Trifluoroacetic acid (TFA) and methanol (all of HPLC grade) 
were obtained from VWR CHEMICALS. Milli- Q water was acquired 
by SG water apparatus.

2.2  |  Field treatments and storage

The experiment was carried out at Malayer Grape Research Station 
located in Hamedan, Iran (34º15′49.2′′N, 48º48′09.4′′E), using 
“Thompson Seedless” grapes (Vitis vinifera L.). MJ solution in dif-
ferent concentrations (0, 1, 5, and 10 mM) was prepared in water 
and Tween- 80. All treatments were applied 2 days before harvest 
by spraying on the clusters to run- off. To determine berry matu-
rity, the total soluble solids (TSS) of the grape juice were controlled. 
Commercially matured clusters were picked and transferred imme-
diately to the lab.

After one night precooling, intact berries with homogeneous size 
were selected randomly from the whole part of each bunch. About 

35 clusters were allocated to each treatment. Each replicate was 
kept in perforated plastic clamshell containers at 15°C and 80% RH 
for 6 days in darkness. Twenty healthy berries were selected out of 
each container every day, peeled, and the skin was ground to a pow-
der with liquid nitrogen before keeping at −80°C.

2.3  |  Determination of phenolic content

Extraction of phenolic compounds was performed by the method of 
Li et al. (2015). Briefly, the grape powder was macerated in the ex-
traction solvent including methanol/acetone/water (3.5:3.5:3, v/v/v) 
with 1% (v/v) acetic acid glacial, and centrifuged after shaking for 
30 min in the dark at room temperature (RT). The supernatant was 
applied for phenolic and antioxidant measurements.

Total phenol content (TPC) of the extract was determined as de-
scribed by Slinkard and Singleton (1977) and expressed as mg gallic 
acid equivalent (GAE) per gram fresh weight (fw). Shortly, an aliquot 
of the extract and Folin's reagent were mixed with sodium carbon-
ate, shaken for 90 min, and then the absorbance was read at 765 nm 
by a spectrophotometer (Varian Cary 100 UV- Vis, US).

Total flavonoid content (TFC) of the extract was measured as de-
veloped by Yoo et al. (2008) and expressed as mg rutin equivalent 
(RE) per g fw. In short, an aliquot of the extract was diluted with 
distilled water and mixed with sodium nitrite 5%, aluminum chloride 
10%, and sodium hydroxide. The absorbance of the final solution 
was recorded at 510 nm.

For total tannin content (TTC), the Folin– Denis method was 
followed (Taira, 1995) and expressed as mg tannic acid equivalent 
(TAE) per g fw. Briefly, diluted Folin's reagent 1 N was mixed with 
saturated sodium carbonate, shaken for 60 min, and read spectro-
photometerically at 725 nm.

2.4  |  Determination of antioxidant activity

The antioxidant activity (AA) of the extracts was determined via 
three different methods. DPPH radical scavenging potential was 
measured as proposed by Bertelli et al. (2014). An aliquot of the skin 
extract and/or water (as control) was mixed with DPPH radical solu-
tion, vortex- mixed well, and kept for 30 min at RT in the dark. The 
absorbance was read at 515 nm and the result was expressed as a 
percentage of inhibitory capacity of DPPH radical.

The ABTS assay was carried out following the method developed 
by Szymanowska et al. (2015). For making the ABTS radical solution, 
ABTS 7 mM was mixed with potassium persulfate 2.45 mM (1:1) and 
incubated at RT overnight. The working mixture was diluted to make 
an absorbance of 0.911 at 734 nm. The extract was then mixed with 
ABTS radical solution. Distilled water was considered as a control. 
The ABTS radical scavenging ability of extract was expressed as a 
percentage of inhibitory capacity of ABTS radical.

FRAP assay was performed as followed by Benzie and Strain 
(1996). In brief, the working solution was prepared by mixing acetate 
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buffer (300 mM, pH 3.6), TPTZ 10 mM solution with HCl 40 mM, 
and FeCl3- 6H2O 20 mM (10:1:1 v/v/v). Then, the extract was mixed 
with the working solution and incubated at 37°C in a bain- marie for 
10 min. The absorbance was recorded at 593 nm and the result was 
expressed as the ability to reduce 1 mM equivalent Fe(+2) to Fe(+3) 
per g fw.

2.5  |  Determination of enzyme activity

For enzyme extraction, 400 µg of the frozen sample was suspended 
in extraction solution including phosphate buffer (0.05 M, pH 6.8), 
triton X- 100 (0.05% v/v), 2- mercaptoethanol (5 mM), and PVP (0.1% 
w/v) (Galli et al., 2009). This mixture was centrifuged and the clear 
supernatant was collected as enzyme extract. The whole process 
was carried out at 4°C.

The PAL activity was evaluated according to Zhu et al. (2016). 
Two hundred microliters of the enzyme extract was diluted by 0.2 M 
borate buffer. Then, 0.02 M L- PA was added, and this mixture was 
left to incubate at 37°C. After 30 min, 6 M HCl was added. The ab-
sorbance of the samples was recorded at 290 nm.

The activity of PPO and POD was measured as described by 
Christopoulos and Tsantili (2015), but with slight modifications. For 
the PPO activity assay, the crude extract was diluted with 0.05 M 
phosphate buffer (pH 6.2). Before 2- min incubation at 25°C, cate-
chol solution (0.05 M) was added to this mixture. Finally, the changes 
in absorbance were followed at 420 nm.

The POD activity was analyzed by guaiacol oxidation. The re-
action solution containing the extract, 0.025 M guaiacol (in 0.1 mM 
phosphate buffer, pH 6) and H2O2 0.020 M, was incubated for 2 min 
at 25°C while monitoring the changes in absorbance spectropho-
tometerically at 470 nm.

The activity of the enzyme was expressed as an enzyme unit (the 
enzyme content leading to an increase of 0.001 absorbances at the 
relative wavelength per min under the circumstances described) per 
g fw.

2.6  |  HPLC analysis

Extraction for phenol compositional analysis was performed as fol-
lows: 300 µg of the freeze- dried sample was homogenized by acidi-
fied methanolic solvent (MeOH 85% in water, HCl 0.1%). This mixture 
was sonicated (5°C, 20 min), shaken (1,000 rpm, 10°C, 20 min), mac-
erated (overnight, 4°C), and then centrifuged (10,000 × g, 10 min, 
4°C). The supernatant was filtered by 0.45 µm Q- Max® membrane 
filter and kept at −18◦C for HPLC analysis.

Phenolic compounds were analyzed using an HPLC (Ultimate 
3000, Dionex), equipped with a Corona® CAD® (Charged Aerosol 
Detector), an automatic sampler, and a four- channel pump. The 
injection volume was 10 µl. Separation of compounds was accom-
plished by a 250 × 4.6 mm, 5 µm, RP- 18 column (Hypersil GOLDTM, 

Thermo Scientific, US) adjusted at 30◦C. TFA 0.1% in water (eluent 
A) and acetonitrile (eluent B) were used as mobile phases with a flow 
rate of 1 ml/min. The gradient began with 5% eluent A, reaching 30% 
at 20 min, 40% at 25 min, 100% at 35 min, and 5% at 37– 45 min. 
The compounds were identified according to the retention time and 
their spectra. The amount of phenolic compounds was determined 
by using the corresponding standard curve.

2.7  |  Statistical analysis

Effects of MJ and storage time were determined by ANOVA. 
Significant difference among treatments was assessed according to 
Duncan's multiple tests (p ≤ .05). All analyses were carried out using 
SAS version 9.4 (SAS Institute Inc., Cary, NC, USA). All measure-
ments were performed in triplicate.

3  |  RESULTS AND DISCUSSION

3.1  |  Phytochemical analysis

As seen for total phenol in Figure 1. A, all MJ- treated skins had pre-
dominantly high TPC with respect to the control. Contrary to the 
control which was unchanged over time (ca. 2.4 mg GAE g−1 fw), TPC 
in all of the treated samples followed an increasing pattern till day 5, 
when 5 and 10 mM MJ presented the highest TPC (2.5- fold that of 
control) (Figure 1a). As proposed before, such enhancement of TPC 
could contribute to the activity of biosynthetic enzymes, especially 
PAL, in response to exogenously applied MJ (Wang et al., 2009). In 
another study published by Flores et al. (2015), in accordance with 
our result, postharvest application of a racemic mixture of MJ was 
established to boost TPC and antioxidant activity in treated grapes.

In the case of flavonoids, on the first day of sampling, MJ skins, 
in a concentration- dependent manner, had higher TFC relative to the 
control, where 10 mM MJ (0.2 mg RE g−1 fw) contained the high-
est flavonoid (Figure 1b). Despite the MJ treatment, TFC increased 
along with storage in the treated and no treated skins; the difference 
is that TFC in the control skin reached the maximum 1 day earlier 
(day 4) than those of treated ones (day 5). As can be seen (Figure 1b), 
10 mM MJ (0.35 mg RE g−1 fw) appreciably showed higher TFC with 
respect to the other concentrations and control (1.75- fold higher 
than control). Osturk et al. (2015) investigated the effect of MJ pre-
harvest application on TFC in Japanese plum (Ozturk et al., 2015). 
Likewise, flavonoid accumulation after preharvest MJ treatment 
has already been reported in grapes (Ruiz- Garcia et al., 2012), 
blackberries (Wang et al., 2008), and blueberries (Percival & 
MacKenzie, 2007). Increased phenolics during the short storage, 
which has previously been noticed in grapes (Maurer et al., 2017), 
could be a resultant organic acid decomposition providing carbons 
needed for phenolic formation (Kalt et al., 1999). In the present 
study, however, all samples subsequently experienced a reduction 
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at the end of storage, which was slower for those of control than 
treated skins. The reversal of trend in TPC and TFC during storage 
in both treated and control berries after 5 days may be owing to the 
degradation and oxidation process backed by PPO and POD (Huang 
et al., 2015).

In terms of tannin, no significant differences were found when 
treated and control skin was evaluated during the storage time 
(data not shown). One of the important attributes of ripe table 
grapes is tannin- related astringency. Condensed tannins are com-
monly comprised of catechin and epicatechin monomers, and the 
complex structure resulted from these compounds and proantho-
cyanidins (Zucker, 1983). Due to their effect on the tannin con-
tent in wines, comprehensive studies have been done on wine 
grapes (Gawel et al., 2001). In contrast, astringency is an unde-
sirable feature in table grapes (Dokoozlian, 2000). Therefore, our 
result suggested that taste of the berries might not be affected by 
MJ after harvest. Moreover, following a clone- dependent man-
ner, it has been proposed that other phenolics could be favored 
at the expense of tannins (Portu et al., 2015). In this regard, our 
results showed that preharvest application of MJ increased flavo-
noid content, while no significant change was detected for tannin 
content.

3.2  |  Antioxidant analysis

As presented in Figure 2. A, DPPH scavenging activity of the skins 
increased over time for all samples. Nevertheless, control sam-
ples experienced the maximum value earlier (day 3) relative to the 
treated samples (day 5). On the other hand, except day 3, control 
samples had less AA than treated ones, especially on day 5, when 
5 mM MJ obtained the highest DPPH scavenging activity (1.5- fold 
higher than control) (Figure 2a).

As regards ABTS assay, AA of all samples showed an increas-
ing trend throughout storage time, although treated berries showed 
noticeably higher AA compared with the control from the first day 
of storage until the end (Figure 2b). This increasing trend is in accor-
dance with TPC.

As regards FRAP assay, 10 mM MJ depicted higher AA than the 
other treatments and control on the first day of measurement. With 
the progress of time, the AA of 1 and 5 mM was distinct from that of 
control. Notwithstanding the treatment, similar to the ABTS assay, 
AA of all samples increased during storage (Figure 2c).

These findings support the fact that MJ- treated grape extract 
limits the effectiveness of free radicals in oxidative reactions (Flores 
et al., 2013). Similar to the present results, it has been previously 

F I G U R E  1  Effect of preharvest methyl jasmonate treatment on TPC (a) and TFC (b) of grape berry skin during storage. Values are the 
mean ± standard error of three replicates
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shown that pre-  and postharvest application of MJ on apple (Ozturk 
et al., 2015), Chinese bayberry (Wang et al., 2009), and table grape 
(Jiang et al., 2015) leads to an increment of AA in fruits through-
out storage. Flores and Ruiz Del Castillo (2016), after using different 
concentrations of MJ before harvest, found that higher scavenging 
activity of MJ- treated blackcurrants was due most likely to higher 
levels of flavonoids. This finding could be explained by the presence 
of the hydroxyl groups in flavonoids enabling them to neutralize free 
radical activity (De León et al., 2013; Martínez- Flórez et al., 2002). 
For this reason, enhanced AA of MJ- treated grapes might contribute 
to higher flavonoid content observed in this work.

In addition, it has already been indicated that the antioxidant 
potential of horticultural products is associated with phenolic con-
tent (Heredia & Cisneros- Zevallos, 2009; Saracoglu et al., 2017). 
Advocating for this idea, AA in our study followed the same trend 
as phenolic content did during storage. The amplifying effect of 
MJ on enzymes involved in the phenylpropanoid pathway has been 
well documented (Kim et al., 2006; Repka et al., 2004). However, 

Saracoglu et al. (2017) demonstrated that preharvest application of 
10 mM MJ at 3 weeks before harvest time resulted in a reduction in 
phenolic content and AA of sweet cherry fruits, and indicated that 
the effect of MJ on polyphenols might be changed with the time of 
treatment.

With high levels of AA, these findings in our study suggest en-
hanced remedial potential of MJ- treated grapes, when compared 
with the control.

3.3  |  Enzyme analysis

Changes in PAL activity were significant over storage time 
(p < .0001). The effect of MJ on PAL activity can be detected from 
day 3, being higher in 1 mM MJ than others. Regardless of treat-
ment, in all of the samples, PAL activity increased throughout stor-
age up to day 5 and then decreased. Berries treated with 5 mM MJ 
showed a slight decrease at the end and had higher PAL activity in 
comparison with other treatments and control. However, the effect 
of MJ was not significant on PAL activity (p = 0.6281) (Table 1).

In spite of MJ treatment, the PPO activity in all samples, treated 
and untreated ones, with an initial decrease started to increase over 
time and, finally, at the end of storage, declined. Until day 4, grapes 
treated with 10 mM MJ represented a higher PPO activity relative to 
other treatments and control. On days 5 and 6, berries treated with 
1 and 5 mM MJ had lower PPO activity compared with 10 mM MJ 
and especially with control. Although enzyme activity declined at 
the end of storage, 10 mM MJ and control still were higher than 
other treatments (Table 1).

Surprisingly, MJ treatment led to a noticeably higher POD ac-
tivity with respect to control; however, all samples presented an in-
creasing trend during storage (Table 1).

PAL has already been well known to be an initial enzyme in the 
biosynthesis of phenols (Pina & Errea, 2008). According to the lit-
erature, PAL activity can be stimulated upon different stress con-
ditions (Dixon & Paiva, 1995). Besides grapes, increased activity 
of PAL after following MJ treatment has already been reported in 
guava, blackberry, and radish sprout (González- Aguilar et al., 2004; 
Kim et al., 2006; S. Y. Wang et al., 2008), all of which were coincident 
with our results. A similar result has been observed in an in vitro 
study where MJ induced PAL and other enzymes involved in the 
biosynthesis pathway (Belhadj et al., 2008). Flores and del Castillo 
(2014) observed an increase in flavonoid content of MJ- treated 
raspberries; they attributed this induction to the effect of MJ on 
PAL activity. Therefore, high levels of TFC of treated berries in the 
present study could be elucidated by the elevated activity of PAL. In 
contrast, JA treatment hindered the expression of PAL and 4Cl in the 
biosynthesis pathway (Jacobo- Velázquez et al., 2015).

It seems that most of the studies carried out on the effect of 
MJ on PPO and POD have been about browning. It has been shown 
that such defense enzymes catalyze hydroxylation and oxidation of 
phenolic compounds, resulting in tissue browning (Christopoulos & 
Tsantili, 2015; Teoh et al., 2016).

F I G U R E  2  Effect of preharvest methyl jasmonate treatments 
on AA according to the DPPH (a), ABTS (b), and FRAP (c) of grape 
skin during storage. Values are the mean ± standard error of three 
replicates
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An increment in enzyme activity during storage might be due to a 
de novo increase in the activity of enzyme precursors. It also can be 
attributed to the regeneration of enzymes over time (Christopoulos 
& Tsantili, 2015). Reduction in such enzymes observed at the end 
of storage brings about ROS accumulation which cause damage to 
DNA and RNA, and also peroxidation of membrane followed by early 
senescence (Hodges et al., 2004).

Similar to the result presented here, it has been demonstrated 
that JA and MJ activate the stress response paths and consequently 
induce PPO and POD activity (Boughton et al., 2006).

3.4  |  HPLC analysis

For a better understanding of the phenolic composition and their 
metabolism, a detailed study was carried out through HPLC. Results 
of phenolic analysis are presented in Table 2.

According to ANOVA, catechin content was not affected signifi-
cantly upon MJ treatment during storage (data not presented), which 
is inconsistent with the result of Portu et al. (2017) who found no dif-
ference between control and MJ- treated grapes in the catechin and 
epicatechin content even when applying a precursor, phenylalanine. 
Furthermore, no response of such monomeric procyanidins to MJ 
treatment was detected in the “Fuji” apple (Rudell et al., 2002). As 

also with epicatechin, in the present study, the absence of difference 
between treatments and control was denoted. What is more, atten-
uation of the epicatechin was brought about by the highest dose of 
MJ (10 mM). The negative effect of MJ, as previously reported by 
Rudell et al. (2002), can be elucidated by MJ- induced PPO activity 
(Masia et al., 1998). Concomitant with this result, Portu et al. (2015) 
demonstrated that foliar application of MJ had no effect on flava-
nols in grape berries and the wine made from them. In this vein, as 
mentioned earlier, flavonol biosynthesis enzymes could be activated 
instead of those for flavanol synthesis, which is clone dependent 
(Ruiz- García et al., 2013). It should be noted that this explanation is 
in accordance with the result of tannin content.

Table 2 depicts the analysis of grapes from different MJ treat-
ments and control on their quercetin content. As seen, compared 
with the control, all MJ grapes had higher quercetin content 
throughout storage until day 4, especially 10 mM MJ, being 1.5- fold 
higher than control at day 4. Contrary to the other concentrations, 
1 mM MJ- treated skin had still higher quercetin content at day 5. At 
the end of the storage, however, no significant difference was de-
tected between treatments and control. Of note, the effect of MJ on 
rutin content was somehow different, so that all MJ treatments had 
higher rutin values during storage relative to the control. In contrast 
to the control remaining low and constant, MJ grapes reached a peak 
on different days. As can be seen in Table 2, the residual effect of MJ 

TA B L E  1  Changes in PAL, PPO, and POD activity (U g−1 fw.min) in the skin treated with preharvest methyl jasmonate during storage

Storage time (day) Control 1 mM 5 mM 10 mM

PAL

1 130.00 ± 18.93 b- e 112.50 ± 7.22 de 116.25 ± 2.17 de 137.50 ± 15.88 a- e

2 129.69 ± 4.51 b- e 140.25 ± 11.69 a- e 109.38 ± 1.80 e 118.75 ± 10.83 c- e

3 131.25 ± 3.61 b- e 156.25 ± 18.04 a- e 131.25 ± 10.83 b- e 116.25 ± 15.35 de

4 139.06 ± 6.31 a- e 162.50 ± 14.43 a- e 150.00 ± 7.22 a- e 156.25 ± 8.86 a- e

5 175.00 ± 50.52 a- d 193.75 ± 3.61 a 191.67 ± 49.12 ab 187.50 ± 18.04 ab

6 120.83 ± 12.28 c- e 120.83 ± 11.02 c- e 179.17 ± 20.48 a- c 105.00 ± 5.77 e

PPO

1 15.63 ± 1.80 e- h 18.42 ± 4.04 c- h 18.75 ± 3.61 c- h 18.33 ± 1.86 c- h

2 13.58 ± 1.30 gh 16.67 ± 2.60 e- h 15.42 ± 1.82 e- h 18.08 ± 1.20 c- h

3 13.63 ± 0.62 gh 19.75 ± 0.58 c- g 14.58 ± 2.09 f- h 19.67 ± 1.45 c- g

4 17.38 ± 1.34 d- h 22.38 ± 1.52 b- e 23.75 ± 1.44 a- d 20.83 ± 1.45 c- f

5 24.69 ± 1.62 a- c 18.75 ± 3.61 c- h 29.69 ± 2.71 a 28.50 ± 2.08 ab

6 12.50 ± 1.15 hr 12.83 ± 2.17 gh 17.69 ± 0.61 d- h 16.96 ± 1.67 d- h

POD

1 12.50 ± 1.30 jk 26.25 ± 1.44 e- h 26.92 ± 1.62 e- h 27.75 ± 1.59 e- h

2 16.25 ± 1.73 i- k 32.08 ± 1.74 c- g 31.88 ± 3.25 c- g 26.04 ± 1.99 e- h

3 23.44 ± 0.90 g- i 33.33 ± 1.82 c- f 37.33 ± 1.74 b- d 35.42 ± 1.50 b- e

4 25.00 ± 3.61 f- i 33.28 ± 3.70 c- f 37.50 ± 4.02 b- d 40.63 ± 1.08 a- c

5 30.50 ± 0.29 d- g 43.75 ± 7.22 ab 49.38 ± 1.80 a 47.50 ± 1.44 a

6 9.38 ± 1.80 k 26.58 ± 3.94 e- h 20.00 ± 5.73 hr- j 19.08 ± 1.74 hr- j

Note: Values are the mean ± standard error of three replicates. Different lowercase letters indicate significant difference at p < .05 according to 
Duncan test.
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on rutin was kept until the end of storage. In general, higher flavonol 
content was obtained from grapes that had been exposed to MJ.

Preceding experiments on grapes have demonstrated that ap-
plication of MJ could increase some individual flavonols; however, 
total flavonol was not influenced (Portu et al., 2016; Ruiz- Garcia 
et al., 2012). Flores and Ruiz Del Castillo (2016), by contrast, indi-
cated that preharvest application of 0.2 µM MJ resulted in an in-
crease in total flavonol, although individual flavonols were not 
affected during storage.

It has previously been reported that spray application of MJ 
on raspberries and blackcurrants caused quercetin accumulation 
(Flores & del Castillo, 2015). Since flavonol synthesis follows phen-
ylpropanoid pathway, it is deemed that MJ- induced PAL activity af-
fects the accumulation of flavonols (Flores & del Castillo, 2014).

Results for resveratrol analysis are illustrated in Table 2. 
Surprisingly, only a trace of the content of resveratrol was detected 

in the skin and remained unchanged during the whole storage. 
This phenomenon was previously explained by Garrido and Borges 
(2013). These authors stated that resveratrol content is depleted 
along with maturity. Alleviation of resveratrol content from veraison 
to maturity contributed to the competition between two biosynthe-
sis pathways triggered by CHS and STS (Jeandet et al., 1995). As 
can be seen, at day 1 after harvest, resveratrol content enhanced 
two-  to threefold by 10 mM MJ treatment. Five and ten millimeter 
MJ showed an increasing trend during storage (1.7-  and 3.7- fold for 
5 and 10 mM MJ, respectively). However, the values in 10 mM MJ 
were much higher than those in 5 mM, indicating that 10 mM was far 
more effective than other doses. In contrast, resveratrol decreased 
in 1 mM MJ and disappeared on day 3, suggesting a short- term ef-
fect of a low dose of MJ.

The enhanced transresveratrol level was previously reported 
for grapes treated with MJ at veraison and 1 week later (Portu 

TA B L E  2  Changes in epicatechin, rutin, quercetin, and resveratrol content (mg/g fw) in the skin treated with preharvest methyl jasmonate 
during storage

Storage time (day) Control 1 mM 5 mM 10 mM

Epicatechin

1 0.417 ± 0.00 b- f 0.362 ± 0.02 f 0.448 ± 0.02 a- d 0.379 ± 0.00 ef

2 0.447 ± 0.03 a- d 0.419 ± 0.02 a- f 0.476 ± 0.01 a- c 0.396 ± 0.02 d- f

3 0.412 ± 0.02 c- f 0.444 ± 0.03 a- e 0.465 ± 0.04 a- c 0.409 ± 0.02 c- f

4 0.464 ± 0.01 a- d 0.478 ± 0.05 a- c 0.464 ± 0.01 a- d 0.428 ± 0.01 a- f

5 0.487 ± 0.00 a 0.485 ± 0.02 ab 0.487 ± 0.00 a 0.446 ± 0.02 a- d

6 0.477 ± 0.01 a- c 0.453 ± 0.01 a- d 0.484 ± 0.00 ab 0.455 ± 0.02 a- d

Rutin

1 0.444 ± 0.07 abc 0.478 ± 0.04 abc 0.491 ± 0.01 abc 0.475 ± 0.06 abc

2 0.404 ± 0.06 bc 0.511 ± 0.04 abc 0.455 ± 0.00 abc 0.490 ± 0.08 abc

3 0.392 ± 0.01 bc 0.508 ± 0.06 abc 0.456 ± 0.02 abc 0.555 ± 0.01 ab

4 0.380 ± 0.10 c 0.559 ± 0.06 ab 0.504 ± 0.08 abc 0.452 ± 0.04 abc

5 0.367 ± 0.04 c 0.491 ± 0.04 abc 0.582 ± 0.01 a 0.477 ± 0.02 abc

6 0.380 ± 0.01 c 0.446 ± 0.07 abc 0.513 ± 0.04 abc 0.493 ± 0.03 abc

Quercetin

1 3.068 ± 0.43 d 3.878 ± 0.40 a- d 3.362 ± 0.04 cd 4.275 ± 0.44 a- d

2 3.384 ± 0.45 cd 3.902 ± 0.29 a- d 3.908 ± 0.22 a- d 4.592 ± 0.54 a- c

3 3.016 ± 0.26 d 3.880 ± 0.46 a- d 3.747 ± 0.30 a- d 4.845 ± 0.85 ab

4 3.266 ± 0.27 d 4.042 ± 0.02 a- d 3.799 ± 0.08 a- d 5.064 ± 0.56 a

5 4.139 ± 0.32 a- d 4.657 ± 0.56 a- c 4.034 ± 0.00 a- d 4.242 ± 0.34 a- d

6 3.528 ± 0.41 b- d 3.513 ± 0.12 cd 3.870 ± 0.20 a- d 3.804 ± 0.30 a- d

Resveratrol

1 nd 0.244 ± 0.05 ef 0.188 ± 0.02 ef 0.795 ± 0.10 cd

2 nd 0.144 ± 0.02 f 0.259 ± 0.07 ef 1.003 ± 0.02 bc

3 nd nd 0.240 ± 0.07 ef 0.966 ± 0.21 bc

4 nd nd 0.408 ± 0.03 e 1.174 ± 0.08 ab

5 nd nd 0.704 ± 0.14 d 1.335 ± 0.21 a

6 nd nd 0.664 ± 0.10 d 1.376 ± 0.08 a

Note: Values are the mean ± standard error of three replicates. Different lowercase letters indicate significant difference at p < .05 according to 
Duncan test.
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et al., 2016). Furthermore, other results from preharvest treatment 
in different ways, either bunch or foliar application, also confirmed 
the inducing effect of MJ on stilbene content in both berries and 
wine (Fernandez- Marin et al., 2014; Portu et al., 2015). Based on 
these findings, resveratrol biosynthesis is believed to be stimulated 
by the MJ- activated STS gene that encodes STS, a pivotal enzyme in-
volved in resveratrol synthesis (Xu et al., 2015). Similar results were 
also reported through in vitro studies under MJ application (Belhadj 
et al., 2008; Tassoni et al., 2005). However, further investigation into 
this research area is warranted.

4  |  CONCLUSION

The present study showed that a single MJ treatment close to the 
harvest increased phenolic contents during short- term storage. The 
effectiveness of the dose depended on the factor evaluated, but 
10 mM MJ was more efficient in most factors examined. It seems 
that this role was accomplished by induction of antioxidant enzymes 
and the expression of their respective genes, therefore leading to the 
promoted nutritional values and the decreased oxidative detriment. 
These findings suggest that the application of MJ in this way could 
be a useful method for enhancing health- promoting compounds.
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