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Abstract: DNA repair is a well-covered topic as alteration of genetic integrity underlies many patho-
logical conditions and important transgenerational consequences. Surprisingly, the ploidy status is
rarely considered although the presence of homologous chromosomes dramatically impacts the repair
capacities of cells. This is especially important for the haploid gametes as they must transfer genetic
information to the offspring. An understanding of the different mechanisms monitoring genetic
integrity in this context is, therefore, essential as differences in repair pathways exist that differentiate
the gamete’s role in transgenerational inheritance. Hence, the oocyte must have the most reliable
repair capacity while sperm, produced in large numbers and from many differentiation steps, are
expected to carry de novo variations. This review describes the main DNA repair pathways with a
special emphasis on ploidy. Differences between Saccharomyces cerevisiae and Schizosaccharomyces pombe
are especially useful to this aim as they can maintain a diploid and haploid life cycle respectively.

Keywords: DNA repair; haploid; diploid; gametes; Saccharomyces cerevisiae; Schizosaccharomyces
pombe

1. Introduction

Maintenance of genome integrity is a permanent cell challenge as both intra- and
extracellular conditions can lead to chemical alterations of nucleotides or their sequence.
Proper repair mechanisms have evolved so as to maintain a balance between maintenance of
cellular function and adaptative processes improving fitness. For obvious reasons, germline
cells must be especially proficient at this task as diversity must be transmitted while
maintaining the gametes’ integrity through the many differentiation steps. In addition,
anisogamy, whereby the two sexes produced highly different and specialized haploid
gametes, enhances diversity. Indeed, while diploidy allows gene versions compensation
and error-free repair, haploidy is expected to create more variation as there is no templated
repair for homologous recombination. Ploidy is therefore a key element to consider
for genome plasticity or stability. The following review discusses the DNA repair and
genome maintenance processes linked to the ploidy state by comparing two unicellular
eukaryotes models, yeasts Saccharomyces cerevisiae (S. cerevisiae) and Schizosaccharomyces
pombe (S. pombe), while considering the case of the mammalian gametes.

2. General Consideration Regarding Ploidy States

Since the turn of the century, knowledge regarding the advantages of different ploidy
states has been increasing thanks to the study of lower eukaryotes. Thus, fission and
budding yeasts have proved to be valuable models because they, respectively, represent
the impact of haploid and diploid genomes on evolution and genetic integrity. The ploidy
choice for lifespan appears to be strongly related to the evolution and maintenance of
genetic integrity [1–4]. It is well known that diploidy confers greater fidelity to replication
of both genomic and mitochondrial DNA, in particular, to attenuate single-nucleotide mu-
tations. However, large chromosomal rearrangements or deletions occur more frequently
in the diploid budding yeast impacting cellular fitness. Although there is twice the amount
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of genetic material in diploid cells, therefore statistically twice as many possible muta-
tions [5,6], observations show that there are only 1.4 times more mutations in diploid cells
than in haploid cells [7]. Such a bias is perhaps linked to the faster replication in the haploid
state allowing a much shorter repair time. Errors mainly involve AT or CG transversions
in late replicating genes [8]. In addition to this mutation bias, acquisition of a recessive
mutation that would clearly alter the cell survival or mutation load is reduced by diploidy
because two such similar recessive mutations must happen over both alleles to alter the
phenotype. However, such recessive mutations will be eliminated in the population, a
process coined “heterozygote advantage”.

On the other hand, this would prevent diploid cells from positively adapting to a
changing environment [9]. Diploid cells can nevertheless accumulate heterozygous mu-
tations, creating a pool of sequence variants that can be useful in reaction to a changing
environment, whereas haploid cells either die or survive. Larger chromosome rearrange-
ments in the diploid cells should be explained by the homologous recombination between
chromosomes, which represents the main difference from haploid cells. However, the dele-
tion of RDH54, a protein necessary for recombination between homologous chromosomes,
does not alter the mutation rate of diploid cells [7]. This observation may be reconciled
when considering the fission yeast S. Pombe, which maintains a haploid life cycle. S. pombe
seems to be protected against the instability of the haploid life cycle by spending most
of its time in the G2 phase. Indeed, in the G2 phase, sister chromatids are present allow-
ing error-free repair of Double Strand Break (DSB), Homologous Recombination (HR).
Although the alternative to HR is the error-prone Non-Homologous End-Joining (NHEJ).
S. pombe promotes HR through stalling at the G2 phase. Deletion of NHEJ repair protein
(PKu70Sp or Lig4Sp) displays low sensitivity to DSB-inducing genotoxins, indicating that
even outside the G2 phases, S. pombe may not rely on NHEJ for damage repair. However,
these observations are in contrast to the higher mutation rate observed in haploid cells
compared to diploids. For example, DNA microsatellites are 100 times more stable in
diploid cells [10]. Another example is the higher rate of mutation found in mitochondrial
DNA of haploid cells [7].

One potential explanation is the higher number of mitochondria in diploid cells while
mitochondria often mate, mixing alleles versions, rapidly reducing heteroplasmia. In addi-
tion, polyploid cells evolve faster than haploids, in relation to chromosomal rearrangement
and aberrant condition of polyploid cells [11]. It, therefore, appears that the difference
in the amount of DNA between the ploidy states only partially explains the difference
in the mutation rate. Although haploidy allows a faster evolution, this condition is pro-
tected by some elements preventing excessive genome instability. Similarly, anisogamy in
mammals results in very numerous haploids spermatozoa versus a single diploid ovum
before fertilization. As stated above, genetic stability of the ovum is provided by diploidy
and a complete array of repair systems, while the haploid character of sperm and the
condensed chromatin may provide the proper context for DNA repair errors at the origin
of the well-known male bias in the transmission of de novo mutations. In that sense, the
ovum stands as the guardian of heredity while spermatozoa are providers of diversity.

3. DNA Repair Systems Comparison between S. cerevisiae and Sc. pombe
3.1. Nucleotide Excision Repair
3.1.1. General Mechanism

Nucleotide excision repair (NER) resolves various substrates resulting in structural
alterations of DNA helix (Figure 1) [12]. NER can be divided into two sub-pathways:
transcription-coupled NER (TC-NER) and global-genome NER (GG-NER). Although GG-
NER uses self-assessment of DNA damage, TC-NER uses hindrance of the RNA polymerase
transit to detect bulky adducts (Figure 2). This transcription-coupled mechanism ensures
the elimination of mutations during transcription by the so-called transcriptional mutagen-
esis. Whereas TC-NER is dedicated to transcribed strands of active genes, GG-NER detects
DNA helix disturbing damages in both transcribed and non-transcribed strands [13].
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when TFIIH is recruited. Thanks to its helicases, XPB/XPD, and XPA, TFIIH creates a DNA repair bubble exposing the 
lesion. Then ERCC1-XPF and XPG cleave DNA around the lesion. The gap is then filled by DNA polymerase. In BER, 
glycosylase targets the lesion and cleaves base-deoxyribose glycosidic bounds. When Glycosylase is released from DNA, 
APE1 can now bind to cleave the faulty deoxyribose. DNA polymerase fills the gap and displaces some of the damaged 
strands. The resulting 3′ tail is then removed by FEN1. In MMR the mismatch is targeted by MutS, then recruiting MutL. 
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line), whereas the type of damage is represented for each (middle line). The circles (bottom line) represent known repair
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Excision Repair; MMR: Mismatch Repair).
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Figure 2. DNA base repair pathways. Simplified schematic representation of Nucleotide Excision Repair (NER), Base
Excision Repair (BER), and Mismatch Repair (MMR). Transcription Coupled NER (TC-NER) starts with RNA pol II stalling
in front of a lesion. Then CSB recruits CSA and UVSSA-USP7 allowing the TFIIH docking. Global Genome NER (GG-NER)
is initiated by XPC lesion recognition. Through a cascade of events, TFIIH is recruited. Both NER pathways converge when
TFIIH is recruited. Thanks to its helicases, XPB/XPD, and XPA, TFIIH creates a DNA repair bubble exposing the lesion.
Then ERCC1-XPF and XPG cleave DNA around the lesion. The gap is then filled by DNA polymerase. In BER, glycosylase
targets the lesion and cleaves base-deoxyribose glycosidic bounds. When Glycosylase is released from DNA, APE1 can
now bind to cleave the faulty deoxyribose. DNA polymerase fills the gap and displaces some of the damaged strands.
The resulting 3′ tail is then removed by FEN1. In MMR the mismatch is targeted by MutS, then recruiting MutL. Then an
endonuclease cleaves DNA, and a resection occurs. Finally, polymerase fills the gap and could create a 3′ overhang tail.
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TC-NER is triggered by RNA polymerase blockage. RNA polymerases are exception-
ally processive, and cover between 50 up to 90% of the genome depending on the cell’s
transcriptional state, providing a reliable scanning process for damage. In addition to
bulky adducts, pol II arrest can result from a wide variety of potential hindrances (Figure 1)
including nicks, gaps, abasic sites, collisions with the replication complex, stable DNA-
RNA dimers, or non-B DNA [14]. CSBHs (Cockayne Syndrome B protein) is the first NER
factor to be recruited. When the pol II stops, the CSBHs-pol II interaction becomes stronger
and CSBHs wraps DNA around itself hence decreasing pol II-DNA interaction [15]. Then
CSBHs recruits CSAHs (Cockayne Syndrome A protein) [16] at the lesion site allowing the
docking of UVSSA-USP7Hs. The latter is a ubiquitin ligase complex that activates CSAHs,
in contrast to CSBHs which is ubiquitinated and targeted for degradation [17]. Following
repair, USP7Hs removes ubiquitination of all NER components so they can be recycled.
The second step in TC-NER is done by the transcription factor TFIIHHs, which binds DNA
downstream of pol IIHs and provides an “assessment” of the lesion [18].

GG-NER targets larger lesions, typically more than one nucleotide in size, as this
dramatically changes the DNA helix thermodynamics [19]. XPC-Rad23bHs (XPCHs complex,
Xeroderma Pigmentum C protein) is the first complex to bind the DNA lesion. The
XPCHs complex may detect DNA lesions as they create a single strand local transition [20].
Other than the scanning mechanism, alternative recognition mechanisms by XPCHs do
exist [21–24]. XPCHs SUMOylation, and re-ubiquitinoylation, are then required for GG-
NER progression [25,26]. Once activated, XPCHs complex recruits TFIIHHs. TFIIHHs can
help XPCHs to discriminate between lesion types since XPCHs is easily misled by a base
mismatch [27].

TC-NER and GG-NER repair pathways converge once TFIIHHs is recruited. TFIIHHs

core subunits XPBHs and XPDHs create a “repair bubble” of 20-30 nucleotides surrounding
the lesion [28]. A second proofreading process involves XPAHs. XPAHs normally stimulates
the helicase activity of TFIIHHs but can decrease this activity in the presence of a lesion.
XPAHs recruits RECCI-XPFHs [29] a nuclease that will cleave 5′ of the lesion [30]. From
its interaction with the TFIIHHs complex, XPGHs endonuclease can then cleaves 3′ of the
lesion [31,32] and replaces XPCHs. XPGHs plays a structural role in complex with TFIIHHs

but acquires endonuclease activity once ERCC1-XPFHs is recruited by XPAHs 5′ to the
lesion. ERCC1-XPFHs is the first to nick DNA followed by XPGHs [33]. After removal of the
damaged nucleotide, DNA polymerases can fill the gap, while ligase seals the nick.

3.1.2. NER in Yeast

As for mammals, NER in yeasts is divided into two sub-pathways (Figure 2). However,
Sc. pombe NER is less documented as redundancy with UVDER (UV Damage Excision
Repair, see below) leads to phenotypic confusion. In S. cerevisiae, TC-NER is triggered after
RNA polymerase stops, activating either Rad26Sc (CSBHs homolog) or Rpd9Sc, an RNA pol
IISc subunit-specific of budding yeast [34]. Rad26Sc deletion decreases mRNA synthesis,
in agreement with its transcription promoting activity over direct damage repair (8-oxoG,
3-MeA, abasic site) [35]. This may, however, lead to “transcriptional mutagenesis”. If the
lesion creates a major hindrance, Rad26Sc then initiates chromatin remodelling and the
recruitment of NER partners. An alternative TC-NER mechanism involves RNA pol II
subunit Rpb9Sc, which can also recruit the NER machinery. In Sc. pombe, Rhp26Sp (CSBHs

homolog) deletion displays an important increase in UV sensitivity [36], demonstrating
the prominent role of the TC-NER pathway in UV resistance. In S. cerevisiae, GG-NER
starts, with the Rad23-Rad33Sc (Rad23bHs homologs) complex that can transit over DNA
until a UV lesion is encountered. Rad4Sc (XPCHs homolog) is then recruited to initiate
NER [37,38]. While TFIIHSc is already positioned at the lesion in TC-NER, a control step
is needed in GG-NER. This control step uses RPASc (Replication protein A), which binds
intact DNA, and Rad14Sc (XPAHs homolog) which binds damaged DNA [39]. Without such
a control step, NER will abort before the final dual incision [40]. GG-NER in Sc. pombe uses
two XPCHs homologs: Rhp41Sp and Rhp42Sp [41,42]. Whereas Rhp41Sp has a major role in
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Cyclo-Pyrimidine Dimers (CPDs) removal in both transcribed and non-transcribed genes,
Rhp42Sp is only active over non-transcribed genes [41–43]. Following damage detection
by either GG-NER or TC-NER, Rad2Sc/Rad13Sp (XPGHs homologs) then cleaves 3′ of the
lesion, whereas Rad1Sc-Rad10Sc/Rhp16Sp-Swi10Sp (ERCC1-XPFHs homologs) cleave in 5′,
respectively in S. cerevisiae and in Sc. pombe [44–46].

3.2. Base Excision Repair
3.2.1. General Mechanism

Base excision repair (BER) is the DNA damage repair pathway in charge of resolving
chromatin lesions not associated with structural alterations of the DNA helix [47]. BER
mainly recognizes oxidized base (8-oxoG), deaminated base (uracil), and alkylated base
(Figure 1). BER also takes charge of the abasic sites. Apuric or apyrimidic sites (AP) are
indeed the most frequent lesions encountered in a stationary state [48,49]. BER pathway
uses glycosylases which target abnormal bases and cleave β glycosidic bonds between
riboses and bases. Glycosylases are generally evolutionary conserved, from bacteria to
higher eukaryotes [50]. In mitochondria, BER also exists and uses different isoforms,
resulting in the most robust DNA repair in mitochondria [51,52].

Glycosylases are generally small proteins harbouring a unique catalytic domain with
high substrate specificity. Although most of these enzymes have unique glycosylase activity
(monofunctional), some also have β lyase, or β/∆ lyase activities able to cleave in 3′ or 5′P,
or both (bi- trifunctional) [51,52]. Glycosylases first bind the minor groove, inducing a kink
in DNA, then flip the faulty base out of the helix and separate the base from the ribose [53].
Irrespective of their host organism, glycosylases are fast to catalyse the glycosidic bond
cleavage, but then disengage from DNA with much slower kinetics [54,55]. This dual kinetic
mode may therefore hide AP sites, which can lead to apoptosis when reaching a given
threshold. If the glycosylase is monofunctional, AP site-specific endonuclease will assist in
cleaving 3′ of the deoxyribose, and DNA pol will remove the 5′ deoxyribose phosphate
(dRP) during DNA neosynthesis [51,56,57]. On the other hand, if the glycosylase also
possesses a lyase activity, this will result in DNA nicking 5′ to the damaged deoxyribose.
The 3′ dRP is then processed by AP endonuclease, leaving a functional 3′OH, the initiation
site for DNA neosynthesis, and a 5′-diphosphate (5′-PP) thereby facilitating DNA pol
binding (Figure 2) [58]. BER comprises two sub pathways: short and long patch repair.
Either short or long patch repair pathways are used by the cell depending on the lesion size
or the glycosylase involved. One single nucleotide is excised in short patch repair whereas
long patch BER involves two or more nucleotides [59]. The main BER pathway is usually
the short patch as it does not require the replication machinery typical of long patch repair.
The short patch process uses glycosylase, the AP endonuclease, DNA polymerase, and
DNA ligase. Long patch repair is mainly used during replication and uses a glycosylase
and the AP endonuclease, but usually relies on DNA polymerase, PCNA (Proliferating
Cell Nuclear Antigen), flap endonuclease from the replication machinery, as well as DNA
ligase [51]. In a long patch repair pathway, the basic catalytic pocket of DNA polymerase
can contain some ssDNA while the repair synthesis bypasses the lesion site creating a 5′

overhang tail with the old DNA. The Flap endonuclease (mammalian FEN1Hs, S. cerevisiae
Rad27Sc, Sc. pombe Rad2Sp), which possesses a 5′flap endonuclease activity and 5′ to 3′

exonuclease activity, will then remove this 5′ tail [60].

3.2.2. BER in Yeast

Six DNA glycosylases have been characterized in S. cerevisiae: monofunctionals,
Ung1Sc and Mag1Sc, Mag2Sc; and bifunctionals, Ngt1Sc, Ngt2Sc, and Ogg1Sc. In Sc. Pombe,
monofunctionals, Ung1Sp, Thp1Sp, Mag1Sp, Mag2Sp, and Myh1Sp, and the bifunctional,
Nth1Sp have been characterized (Table 1). Ung1Sc, Ung1Sp, and Thp1Sp are Uracil DNA
Glycosylases (UDG) recognising uracil resulting from cytosine deamination [61]. Thp1Sp

also recognizes T:G or U:G mismatches, but is also known to process 5-fluorouracil, 3,N4-
ethanocytosine and 5-hydroxyuracil [62]. In addition, Thp1Sp recognizes deaminated
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purines (xanthine and oxanine from guanine, hypoxanthine from adenine) [63]. S. cere-
visiae’s Mag1Sc and Mag2Sc are expressed after exposure to alkylating agents [64]. Mag1Sc

is also able to cleave normal bases, usually guanine [65]. In Sc. Pombe, Mag1Sp and Mag2Sp

share 44,8% identity. Although Mag1Sp initiates the alkylation repair, Mag2Sp may also
plays a role in the process [66]. Unlike S. cerevisiae Mag1Sc, deletion of Mag1Sp only slightly
increases alkylating agents’ sensitivity [67]. However, Rad13Sp, Rad16Sp or Rhp51Sp dele-
tion mutants are hypersensitive to alkylation, suggesting an important contribution of
NER or HR to this type of damage in Sc. pombe [67,68]. Although, mutants of both Sc.
pombe BER endonucleases, Apn2Sp or Nth1Sp, are hypersensitive to alkylation, confirming
BER in alkylation repair [69–71]. Surprisingly, Mag1Sp deletion leads to a 3-fold increase
in intrachromosomic recombinations [68], suggesting that HR is somehow involved in
alkylation repair in Sc. pombe. In S. cerevisiae Ntg1Sc is a bifunctional glycosylase located
in the mitochondrion whereas Ntg2Sc is nucleolar. However, only Ntg1Sc is upregulated
during oxidative stress [72]. These enzymes can process a wide variety of the oxidized
pyrimidine and purine lesions [73]. However, Ntg1Sc is the sole enzyme able to resolve
8-oxoG whereas Ogg1Sc processes only Fapy-G and 7,8 dihydro-8-oxoG [74]. Surprisingly,
an Ogg1Sc homolog is not found in Sc. Pombe [75]. Instead, Nth1Sp is in charge of resolving
8-oxoG in a mismatch situation. Nth1Sp seems to process a wide variety of substrates
including 8-hydroxycytosine, thimidineglycol, and 8-hydroxyuracil [76].

Table 1. Table of homologous proteins.

H. sapiens S. cerevisiae S. pombe Functions

TC NER

RNA pol II RNA pol II RNA pol II mRNA synthesis
CSB Rad 26 Rhp 26 Detection of RNA pol II arrest

- Rpd 9 - Part of RNA pol II, detection of arrest
CSA Rad 28 Ckn1 TC-NER protein hub

UVSSA-USP7 - - Ubiquitine ligase

GG NER

XPC Rad4 rhp41, rhp42 Scan to detect damages
Rad23b Rad23 Rhp 23 XPC partner
TFIIH TFIIH TFIIH Transcription factor, check for damage
XPB Rad 25 Ptr 8

Core units of TFIIH (helicases)XPD Rad 3 Rad 15
XPA Rad 14 Rph 14 TFIIH helicases stimulator

ERCCI-XPF Rad 10 Swi 10
Endonuclease complex, cleaves 5′ to damageXPF Rad 1 Rad 16

XPG Rad 2 Rad 13 Endonuclease, cleaves 3′ to damage

BER

UNG Ung 1 Ung 1 Uracil DNA Glycosylase (UDG)

TDG - Thp 1

UDG, T:G, U:G mismatches, 5-fluorouracil,
3,N4-ethanolcytosine, 5-hydroxyuracil,

Xanthine, Oxanine, Hypoxanthine
DNA glycosylase

- Mag 1 Mag 1 Alkylation DNA Glycosylase
- Mag 2 Mag 2

OGG 1 Ogg 1 - 8-oxoG, fapy-G, 7,8-dihydro8oxoG
DNA Glycosylase

NTHL 1 Ntg1/Ntg2 Nth 1
8-oxoG, 8-hydroxycytosine, thimidineglycol,
8-hydroxyuracil DNA Glycosylase, AP site

β lyase
MUTYH - Myh 1 Glycosylase of adenine mismatches

APE1 Apn 2 Apn 2
AP endonucleases- Apn 1 Apn 1

FEN 1 Rad 27 Rad 2 Structure specific endonuclease, cleaves at
ssDNA-dsDNA transition
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Table 1. Cont.

H. sapiens S. cerevisiae S. pombe Functions

MMR

MutS α MutS α MutS α Mismatch detection

MutS β MutS β MutS β Long insertion deletion loops detection,
involved in recombination

MutS γ MutS γ MutS γ Holliday Junction resolvase
MutL α MutL α MutL α MutSα and MutSβ interactor, weakly

endonucleaseMutL β MutL β -
MutL γ MutL γ - MutSγ interactor
EXO 1 EXO 1 EXO 1 Exonuclease
PCNA PCNA PCNA DNA polymerase helicase

UVDER
- - UVE 1 UV damage endonucleases
- - UVDE

Photolyase - Phr1 - CPD specific photolyase
- Mgt1 - O6-MeG, O4-MeT methyl transferase

HR

Mre11/Rad50/Nbs1 Mre11/Rad50/Xrs1 Mre11/Rad50/Nbs1 MRN/X complex, DNA ends detection,
resection initiation

CtIP Sae2 Ctp 1 Endonuclease
RPA RPA Rad 11 Single strand DNA binding protein

Rad 52 Rad 52 Rad 22 Displace RPA to form Rad51 filament

Rad51 Rad 51 Rhp 51 Globular protein forming filaments for
strand invasion

NHEJ

Ku 70/80 YKu 70/80 PKu 70/80 DNA ends detection and protection
DNA-Pkc - - Protein kinase
Artemis - - Endonuclease, DNA ends processing
XRCC4 Nej 1 - DNA ends bridging by filaments formation

XLF Lif 1 Xlfl
DNA ligase IV Dnl 4 Lig 4 DNA ends ligation

Due to its bifunctional activity, Nth1Sp acts upstream of the Apn2Sp AP endonucle-
ase, as it leaves a 3′ protected end, which is removed by the phosphoesterase activity of
Apn2Sp [69]. In fission yeast, Nth1Sp also resolves AP sites resulting from the activity of both
Mag1Sp and Mag2Sp, therefore playing a central role in BER [71]. However, in contrast to
mammals NTHL1Hs, or S. cerevisiae Ntg1Sc, Nth1Sp is seemingly absent from mitochondrion.
Finally, Myh1Sp, is a glycosylase specific to Sc. pombe and in charge of mismatches found
at adenines (A:G, A:8-oxoG, 2-aminopurine:G, 2-aminopurine:A) [77]. Myh1Sp may also
process G:8-oxoG, preventing C:G to G:C transversion [78]. A prominent role for Myh1Sp

is binding to PCNASp and the PCNA-like heterotrimer Rad9Sp/Rad10Sp/Hus1Sp [79,80],
which are involved in DNA lesion checkpoint. After base eviction, the AP site is processed
by the two AP endonucleases found in yeasts. Apn1Sc and Apn2Sc are the two AP endonu-
cleases found in S. cerevisiae although Apn1Sc is responsible for >95% of the total in vivo
activity [81]. Apn1Sc cleaves 5′ to the lesion and possess a 3′ phospho-esterase activity able
to resolve 3′dRP, 3′ phospho-glycolate (3′PGA) or 3′P 3′ dirty ends. Both S. cerevisiae AP
endonucleases are 3′ tyrosyl DNA phospho-esterase with a weak 3′ exonuclease activity so
they can resolve Topo1Sc-DNA adducts [82]. In Sc. pombe, Apn2Sp is the major AP endonu-
clease. Unlike Apn2Sp, Apn1Sp does not need specific subdomains to process PCNASp or
Top3Sp catalytic hindrance, Apn1Sp may represent a proper backup to Apn2Sp at 3′ blocked
end, but to a limited extent as Apn1Sp is present in both nucleus and cytoplasm, unlike
Apn2Sp [83]. Uve1Sp, an UVDER enzyme, may also be involved in the processing of AP
sites [84], especially as it is present in both the nucleus and mitochondrion [85].

3.3. Mismatch Repair
3.3.1. General Mechanism

DNA polymerases can induce from 10−5 to ~10−4 mismatch per base given their own
exonucleolytic proof-reading activity. The mismatch repair (MMR) system increases repair
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fidelity by about ~100–1000 times [86]. The MMR pathway is in charge of mismatches but
also resolves intra-strand loops. The MMR pathway was first described in Escherichia coli
(E. coli) which represented a key model to decipher the sequential events of MMR: MutS
first detects the mismatch, MutL confirms the helix deformation induced by the mismatch
and MutH endonuclease cleaves the faulty base. DNA resection then occurs, followed by
DNA polymerase gap filing and nick sealing by DNA ligase (Figure 2). While eukaryotic
MutS and MutL exist as heterodimers [87,88], the MMR-specific MutH endonuclease
is seemingly absent in eukaryotes and some bacteria. Lesion recognition by MMR is
achieved by two heterodimeric homologs: MutSα and MutSβ. Whereas MutSα is in
charge of small mismatches and helix extrusions of about 1–4 nt in size, MutSβ exclusively
recognizes larger extrusions of 2–10 nt [89]. Loss of MutSβ can easily be compensated for
by MutSα. Lesion recognition by MutSα is indeed prominent in the MMR pathway [90].
Once the MutS complex becomes bound to DNA, it recruits MutLα or MutLβ. During
recombination, MMR proteins act to repair mismatch in DNA heteroduplexes, remove 3′

non-complementary tails produced during resection, and prevent recombination between
divergent sequences. MutLγ and MutLβ have been shown to play a role in meiotic
HR [91]. MutLγ is mainly used during meiotic HR, where MutSγ activates it. In the
mismatch repair, the endonucleolytic cleavage is done over the weakest strand, admitting
the one containing a mismatch, in both 3′ and 5′ flanking the lesion. The mechanism
directing strand selection is still unknown but may involve PCNA, which is still bound
to the neosynthetised strand or may result from hypomethylation of the new strand [92].
Although a eukaryotic MutH has yet to be identified, the human PMS2Hs, part of MutLαHs,
have been shown to possess a latent endonuclease activity. Removing its endonuclease
motif abolishes the mitotic function of MutLαHs [93]. After incision, a fragment of DNA is
excised by Exo1Hs. Resection by Exo1Hs is greatly enhanced by association with MutSαHs

and ATP [94], as it removes only a few nucleotides when acting independently. After
resection, DNA polymerase fills in the gap while DNA ligase ligates the 3′ end to complete
the process. An alternative pathway to MMR involved DNA polymerase, whereby the
faulty strand is displaced during DNA synthesis [95].

3.3.2. MMR in Yeast

In S. cerevisiae, while MutSαSc targets mismatches, MutSβSc is mainly in charge of
long insertion-deletion loops (IDLs), although redundancy exists between both as MutSβSc

may substitute for defective MutSαSc but to a limited extent [96]. MutSαSc initiates repair
of all mismatches except C:C [97]. IDLs are repaired more efficiently than mismatches
as MutS functional redundancy facilitates the repair of small IDLs [98,99]. Sc. pombe
possesses four MutS homologs (Msh1Sp, Msh2Sp, Swi4Sp, Msh6Sp) [100]. MutSαSp (Msh2Sp-
Msh6Sp) is sufficient to support Sc. pombe MMR, regardless of the lesion type. However,
Swi4Sp, likely acting in complex with Msh2Sp, is involved in mating-type switching and
some recombination processes, as demonstrated for MutSβSc in S. cerevisiae [101,102].
Nevertheless, although Sc. pombe MutSβSp is solely implicated in recombination, the MMR
function, typical of the S. cerevisiae MutSβSc, has apparently been lost. The MutSγSc complex
in S. cerevisiae is only expressed during meiosis and is linked to recombination [103,104].
In yeast, MutLγSc is the main Holliday Junctions resolvase [105], symmetrically nicking
Holiday Junctions. MutL homologs in budding yeast includes MutLαSc (Mlh1Sc-Pms1Sc),
MutLβSc (Mlh1Sc-Mlh2Sc) and MutLγSc (Mlh1Sc-Mlh3Sc) [106]. While MutLαSc interacts
with MutSαSc and MutSβSc to process most of MMR, MutLγSc only interacts with MutSγSc

to resolve meiotic crossing-over. Sc. pombe contains only one MutL homolog (Mlh1Sp-
Pms1Sp) [100]. Thus, MutSαSp and MutLαSp should be sufficient for a functional MMR
machinery in fission yeast, as it seems to be the case in Drosophila and Caenorhabditis. In
S. cerevisiae, Exo1Sc mutants were found to be slightly mutagenic, owing to its “error-free
damage bypass” function, as described by Tan et al. [107]. Considering the weak impact of
Exo1Sc deletion, one may surmise that other nucleases may be involved such as Rad27Sc or
from the proofreading activity of DNA polymerases ∆ or εSc [107,108]. In contrast, Exo1Sp
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deletion in Sc. pombe generates a strong mutator phenotype, probably as a result of its role
in GT repeat maintenance in an MMR-independent pathway [109].

A short patch MMR pathway is described in fission yeast and involves the NER
machinery [110]. Indeed, Rhp14Sp, Swi10Sp, Rad13Sp, Rad15Sp, and Rad16Sp are impor-
tant NER effectors components in this short patch repair pathway [111–113]. The NER
machinery may therefore play a broader role and supports MMR pathways in specific
cases. The first clear evidence is the NER requirement for C:C mismatches, which cannot
be repaired by MMR [111,113]. Hence, in the absence of MMR, C:C mismatches are quickly
repaired, so NER seemingly processes such damage with high efficiency. Interestingly, the
NER Rhp14Sp binds to various mismatches with similar affinity to C:C mismatches [112].
Defective NER has also been shown to induce a slight increase in reversion of GT repeats,
suggesting a role for NER in Sc. pombe microsatellites maintenance [112]. Short patch
MMR exists in S. cerevisiae but is seemingly independent of NER [114]. In S. cerevisiae,
NER mutants show an increase in reversion rate but are mainly associated with flanking
nucleotides substitutions, suggesting a more complex mechanism, likely originating from
a bypass by the error-prone DNA pol ζ [115]. In vitro evidence indicated that NER may
also play a role in mismatch repair in other species including drosophila [116,117], E. coli,
and humans [118].

3.4. Double Strand Breaks (DSBs) Repair Pathways Selection
3.4.1. DSB Regulation in Mammals

In humans, about 1 double-strand break (DSB) arises in 108 base pairs, so around
10–30 DSBs are generated per cell, per cell cycle, resulting from endogenous or exogenous
factors [119,120]. The two main DSBs repair pathways are Homologous Recombination
(HR) and Non-Homologous End-Joining (NHEJ). These pathways are quite contrasted in
terms of quality and timing of repair during the cell cycle. HR relies on sister chromatids
to repair DNA, providing an almost error-free mechanism. HR is therefore dependent on
the cell cycle, being most active during S-G2 phases. In contrast, NHEJ is an error-prone
system, inducing sequence variations, and is mainly active during G1-G2 phases, although
its components are found during the whole cell cycle [121,122]. Whereas HR needs hours
to complete, NHEJ can repair DSBs within half an hour given the high processivity of its
enzymes [123]. Upon inactivation of NHEJ (mutation of Ku, Lig4, or XRCC4 proteins), HR
becomes the prominent DSBs repair pathway [124]. If sequence homologies however exist
at DSBs ends, other repair pathways may be used such as Single Strand Annealing (SSA),
Micro-homology End-Joining (MMEJ), and an Alternative NHEJ (Alt-NHEJ) pathway. SSA
requires at least a repetition of two nucleotides to be present at both ends of the DSB.
However, the two-nucleotides homology can also be used by MMEJ or alt-NHEJ. MMEJ is
frequently used even though HR proteins are present or in cases of defective HR [125]. A
choice must be made between NHEJ, HR, SSA, MMEJ, and alt-NEHJ (Figure 2). Initially,
the DSB may undergo a direct repair by NHEJ, or resection may occur. If resection is
chosen, then a competition takes place between HR, SSA, MMEJ, and alt-NHEJ depending
on resection size [126–128]. Resection is inhibited either by the NHEJ KuHs binding at DNA
ends or by both the p53 binding protein 1 (53BP1Hs) or the Replication timing regulatory
Factor 1 (RIF1Hs), which are known to be resection antagonists [129]. Many such down
regulators of resection lead to the predominance of NHEJ. If a resection still occurs, a
competition between other repair systems begins. The shift between HR and SSA, MMEJ,
and Alt-NHEJ is dependent on the cell cycle, and particularly the cyclin-dependent kinases
(CDKHs). Indeed, during S or G2 phases, CDKHs can phosphorylate CtIPHs (C-terminal-
binding protein-interacting-protein) thereby facilitating its interaction with BRCA1Hs to
promote HR [130]. In the case of resection, it is done before the S phase and DSB repair will
be achieved by SSA or MMEJ [131]. Although most of the MMEJ promoting factors also
promote SSA repair [132], SSA will be preferred for smaller resection sizes. Alternative
NHEJ also needs a micro-homology of 2–20 nt [133].
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3.4.2. DSB Regulation in Yeast

Yeast regulation of DSBs repair is relatively similar to that of mammals. However, in
this case, the presence of sister chromatid is not the main factor in choosing between HR and
NHEJ. Indeed, HR is regulated through the cell cycle by post-translational modifications,
degradation, and re-localization of its effectors. In S. cerevisiae, some HR genes are even
regulated by the presence of DNA damage itself [134,135]. In contrast, YKu70Sc is mainly
transcribed in early G1 and almost undetectable in the S phase. In post-replicative cells, HR
proteins are downregulated by Clb-CDK-inhibitorsSc or Sic1Sc overexpression [136]. A few
minutes after DSB formation, YKuSc heterodimers and MRX complexes become recruited
independently [137]. MRX complexes are essential to maintain both DNA ends physically
closed and protected [138], whereas YKuSc inhibits DNA end resection [139]. As in mam-
mals, HR-NHEJ balance is determined by resection initiation, with YKuSc competing with
MRX complex and Sae2Sc endonuclease (CtIPHs homolog) [140]. Moreover, MRX is ambiva-
lent regarding YKuSc. It seems to stabilise YKuSc on DSBs, but also destabilising it [141].
In addition, YKuSc dissociation from unrepaired DSBs is dependent on the formation of
the MRX complex, suggesting that the latter can complete the NHEJ repair process [137].
However, YKuSc is able to prevent extensive resections in the absence of either the MRX
complex or Sae2Sc, while the MRX complex is dispensable to initiate HR in the absence
of YKuSc since Exo1Sc will carry out resection [139]. In the particular case of the fission
yeast, despite being a haploid organism, it spends most of its time in the G2 phase, where
sister chromatids are present allowing preferential selection of HR. Thus, in contrast to
mammals, HR is the major DSBs repair pathway in yeast. Unlike NHEJ mutants (PKu70Sp

or lig4Sp mutants), HR mutants were shown to be much more sensitive to genotoxins [142].
However, in G1 synchronised cells, NHEJ is 7 to 10 times more important than in asyn-
chronous cells, and PKu70Sp mutants become far more sensitive to ionising radiations [143].
This demonstrates the primary role of NHEJ in G1 phasis when sister chromatids are
absent although HR remains the predominant DSBs repair pathway in yeast. However,
loss of PKu70Sp increases chromosomal rearrangements from DSBs without changing the
gene conversion ratio, suggesting competition between HR and NHEJ despite the lack of
PKu70Sp [144]. In contrast to S. cerevisiae, MRXSp mutation (deletion of Rad32Sp or Rad50Sp)
does not alter NHEJ activity [145]. Moreover, Rad32-Rad50Sp double mutants are unable to
proceed beyond the S-phase DNA damage checkpoint [146] showing a clear prevalence of
HR. In S. cerevisiae, some proteins become expressed in order to promote HR. The rad55-
Rad57Sc complex is also found to promote HR in S. cerevisiae [147]. In S. pombe, two Rad52Sc

homologs are known: Rad22Sp and Rti1Sp. Rad22Sp is required for mating-type switching
and DNA repair [148] and shares high sequence homology with Rad52Hs [143]. By itself,
Rad22Sp is able to bind DSB. Rti1Sp mutant increases sensitivity to ionising radiations as
much as in Rti1/Rad22Sp [149,150] double mutants. Thus, although NHEJ, SSA, MMEJ,
and Alt-NHEJ do exist in yeast, HR remains the major repair mechanism regardless of the
ploidy state. Details of DSB repair processes are provided in the following sections.

3.5. Homologous Recombination
3.5.1. General Mechanism

The first step in HR is the formation of a single strand 3′ tail by resection from the
original DSB (Figure 3). This initial step is mediated by the Mre11Hs-Rad50Hs-NBS1Hs

(MRNHs) complex and CtIPHs in humans. The 3′ tail resulting from large 5′->3′ DNA
resection is performed by Exo1Hs [151]. The main characteristic of HR is the single strand
invasion over the sister chromatid. Rad51Hs is the RecA bacterial orthologue in eukaryotes
with a DNA-dependent ATPase activity able to form a nucleoprotein-DNA filament [152].
HR proteins form supersized structures containing hundreds to thousands of proteins.
Rad51Hs may bind B-DNA formed by trinucleotide repeats in a single strand 3′ tail. These
triplets could then form Watson-Crick interactions with complementary dsDNA present
in sister chromatids. After ATP hydrolysis, Rad51Hs releases a stabilized triplex DNA. By
competing with Rad51Hs, RPAHs (Replication Protein A) binds to single-stranded DNA
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with high affinity providing protection against nucleases [153]. Strand invasion can lead
to crossover resolution and or to non-crossover resolution (patch) sequence exchange at
Holiday junctions [154].
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3.5.2. HR in Yeast

As in mammals, HR is initiated by resection, which is a two steps process. Initially, a
50–200 nt resection is performed by the MRXSc (Mre11Sc/Rad50Sc/Xrs1Sc) complex and
Sae2Sc in S. cerevisiae, and MRNSp (Mre11/Rad50/Nbs1Sp) complex and Ctp1Sp in Sc.
pombe, which are respectively MRNHs and CtIPHs homologs [155,156]. Then, resection
extends to kilobases through the action of Exo1Sc or Sgs1Sc-Top3Sc-Rmi1Sc (STRSc) complex
with Dna2Sc endonuclease in S. cerevisiae [157]. Exo1Sp is likely the HR exonuclease in Sc.
pombe, but Exo1Sp deletion does not increase sensitivity to ionizing radiation, suggesting
functional redundancy. Exo1Sp-Rad50Sp double mutant displays enhanced sensitivity than
individual mutant, showing distinct activities [156]. After resection, single-strand tails
are coated by RPA homologs (RPASc in S. cerevisiae and Rad11Sp in Sc. pombe) in order to
protect them and prevent untimely Rad51Hs homologs (Rad51Sc in S. cerevisiae and Rhp51Sp

in Sc. pombe) binding [158]. In Sc. pombe, deletion of the Rad11Sp gene is lethal, and
the temperature-sensitive mutant (Rad11-404) shows high sensitivity to genotoxins [159].
In S. cerevisiae, Rad52Sc displaces some RPASc molecules to allow Rad51Sc binding to
ssDNA and to initiate the nucleoprotein filament formation [160]. Rad52Sc can be assisted
by Rad51Sc paralogues, including Rad55Sc-Rad57Sc, which has been shown to stabilize
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Rad51Sc filaments [161]. The ssDNA invasion by Rhp51Sp nucleofilaments, in Sc. pombe,
results from a competition between Rhp51Sp and Rad11Sp for ssDNA binding. Deletion of
the Rhp51Sp gene leads to much higher sensitivity to ionizing radiations [162]. Rph51Sp

binds to ssDNA to form the nucleoprotein filaments in an ATP-dependent manner [163].
As in mammals, the Rad51Sc/Rhp51Sp filament promotes strand invasion to find a DNA
duplex with sufficient homology to form a synapse. Although very complex, the process
can take from 20 to 60 min to complete [164,165]. In Sc. pombe, HR is involved in processing
stalled replication forks [166]. Not surprisingly, mutations of HR proteins lead to alteration
of DNA replication. Moreover, Segurado et al. [167] have shown that DNA replication
is associated with physical interactions and annealing between sister chromatids. Such
structures are not found in Rad22Sp (Rad52Hs homolog), or Rhp51Sp mutants, clearly linking
HR to replication. Finally, Rhp51Sp and Rad22Sp foci induced by fork stalling, result in
chromosomal rearrangements from an increase in recombination activity [168].

3.6. Non-Homologous End-Joining
3.6.1. General Mechanism

In mammals, Non-Homologous End-Joining (NHEJ) is a DSBs repair pathway that
allows direct ligation of DNA ends in an error-prone manner (Figure 3). NHEJ proceeds in
three tightly regulated steps. First Ku70/80Hs heterodimers bind to free DNA ends and act
as protein hubs [169]. DNA-PkcHs (DNA dependant protein kinase catalytic subunit) is
recruited given its high affinity for the Ku-DNA complex [170]. DNA-PkcHs undergo an
auto-phosphorylation that recruits and activates other repair partners [171]. The second
step consists of DNA end processing by the ArtemisHs endonuclease [172]. A third step
involves XRCC4Hs and XLFHs (XRCC4-Like factor or CernunnosHs), which interact together
to form a small filament [173]. This allows interaction between the two DNA ends and the
action of DNA ligase IVHs. These canonical NHEJ proteins are sufficient to repair some
DSBs, but a number of DSBs require more proteins including nucleases, DNA polymerases,
and some functional homologs of XRCC4Hs and XLFHs [174].

3.6.2. NHEJ in Yeast

NHEJ Ku70Hs, Ku80Hs, and lig IVHs homologs are present in both S. cerevisiae (Yku70/
80Sc, Dnl4Sc) and Sc. pombe (Pku70/80Sp, Lig4Sp), but DNA-PKcsHs and ArtemisHs ho-
mologs proteins have yet to be identified. Whereas Sc. pombe only possesses an XRCC4Hs

homolog, Xlf1Sp, S. cerevisiae possesses both XRCC4Hs (Nej1Sc) and XLFHs (Lif1Sc) ho-
mologs [175–180]. In yeasts, MRX is also related to NHEJ, as recently shown in Sc. pombe,
where it seems to play a similar role as ArtemisHs and processes dirty ends before ligation.
This function is enhanced by Sae2Sc/Ctp1Sp (CtIPHs homologs) [178,181,182].

3.7. Single-Strand Annealing
3.7.1. General Mechanism

Single Stranded Annealing (SSA) arises when a DSB is formed between two homolo-
gous regions. Once the repair is completed, the sequence between repeats is lost. Repeats
must be separated by at least 400 bp and up to 15 kbp [183]. The first step in SSA depends
on CtIPHs and Mre11Hs resection (Figure 3). This resection is around 100 nt in length and
could be targeted by MMEJ [184]. Once generated, a 3′ single-strand tail is covered by
RPAHs and Rad51Hs [185]. RPAHs is progressively displaced to allow Rad51Hs filaments
formation. The scanning for strand homology is provided by the activity of Rad52Hs. After
annealing, the two 3′ tails emerging from the hybridized region are targeted by ERCC1Hs-
XPFHs for cleavage with the help of Rad52Hs [186]. Gaps between newly hybridized and
the original dsDNA are then filled by a combination of DNA polymerase and ligase [133].

3.7.2. SSA in Yeast

S. cerevisiae and Sc. pombe SSA involves a similar sequence of events: DNA resection,
annealing, 3′ overhang tail removal by Rad1Sc-Rad10Sc/Rad16Sp-Swi10Sp flap endonucle-
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ases (Figure 3). Sc. pombe SSA is functionally linked to Rad16Sp and Swi10Sp [187], as well
as Rad22Sp but not to Rhp51Sp, suggesting a specific SSA pathway in this model. However,
in Sc. pombe, mutation of Rad16Sp-Swi10Sp results in a very small increase in sensitivity
to ionizing radiations [188,189], suggesting that SSA is not a major repair pathway in this
experimental model.

3.8. Yeast Specific DNA Repair Mechanisms
3.8.1. UV Damage Excision Repair

UV-induced damages can also be resolved by an alternative pathway discovered
in yeast Sc. pombe [190]. Since NER genes deletion, mutants of either Rad16-Swi10Sp,
Rad13Sp, Rad15Sp, or Rad16Sp show unaltered sensitivity to UV, an alternative system
has been proposed and termed “UV Damage Excision Repair” (UVDER) that relies on
the UV Damage Endonuclease, UVDE. UvdeSp enzyme can perform 5′ incision just next
to CPD, 6-4 photoproducts, or to Dewar isomers [191]. In contrast to photolyases or
glycosylases, UvdeSp recognises both CPD and 6–4 photoproducts and may process other
substrates, as it is compatible with a nuclease activity reported over apurinic/apyrimidinic
sites. However, the deletion of UVDE shows a weak increase in sensitivity to chemical
genotoxins [192,193]. In Sc. pombe, the Rad2Sp protein, a homolog of mammalian FEN1Hs

or S. cerevisiae Rad27Sc, could be involved in a related NER alternative pathway. Indeed,
Rad2Sp mutants are far more sensitive to UV than UvdeSp mutants whereas Uvde-Rad2Sp

double mutants are less sensitive than single Rad2Sp mutants [194]. This is compatible with
a mechanism whereby Rad2Sp could help to process UvdeSp nicked DNA, and where the
lack of Rad2Sp leads to a potentially lethal accumulation of UvdeSp-lesions [195]. Whatever
the activation mechanism, UVDER-induced lesions can be repaired by HR through the
activity of both Rhp51Sp and Rad18Sp [196]. Moreover, it has been shown that Exo1Sp

endonuclease may also process UvdeSp nicked intermediates, as Exo1Sp and Exo1-UvdeSp

mutants have similar phenotypes [197].

3.8.2. Photolyases

In contrast to mammals and fission yeast, budding yeast possesses two unique DNA
repair enzymes: Phr1Sc and Mgt1Sc. Phr1Sc is a DNA photolyase, or a so-called CPD-specific
photolyase [198,199]. It is produced in response to UV-C, or to exposure to alkylating
agents [200]. Phr1Sc is a monomeric protein with two prosthetic residues and uses near-
UV photon (300–500 nm) to split off the cyclobutane ring of CPD, repairing DNA [201].
The second unique enzyme, Mgt1Sc, is a methyltransferase, targeting O6-MeG and O4-
MeT [202]. O6-MeG can mismatch with thymine whereas O4-MeT mismatches with a
guanidine, leading to G:C->A:T and to A:T->G:C transversions. In a suicide reaction,
Mgt1Sc transfers the faulty methyl to its cysteine, leading to its inactivation [202,203].
Despite its repair abilities, Mgt1Sc has a higher affinity for O6-MeG than O4-MeT, resulting
in a bias in repair kinetics.

3.9. Alternative DNA Repair Approaches in Yeast

Despite their evolutionary distance, NER repair systems are relatively similar between
the two yeast models. However, in Sc. pombe, the presence of UVDER conceals certain
phenotypes of NER proteins mutants, suggesting a strong functional redundancy. However,
this is nuanced in the presence of UV, because of S. cerevisiae Phr1Sc photolyase which
processes NER substrates and somewhat hides NER deficient phenotypes. The TC-NER
sub-pathway is also favoured in S. cerevisiae by the Rpb9Sc subunit of RNA polymerase,
allowing rapid identification of RNA pol II arrests leading to redundancy in TC-NER
initiation. On the other hand, Sc. pombe has two homologs of XPCSp (Rhp41Sp and Rhp42Sp).
Although their targets are slightly different, this redundancy seems to indicate the greater
importance of GG-NER.

The case of the BER system is more difficult to compare. Although the general process
is similar, specificity in glycosylases creates subtle differences in processes. Thus, even if Sc.
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pombe has two UDG, against one in S. cerevisiae, it does not have Ogg1Sc. Oddly enough,
Ogg1Hs is in charge of the most common damage, 8-oxoG, in mammals, but this does not
appear to be the case in budding yeast. This useful function is performed by Ntg1Sc/Ntg2Sc

and by Nth1Sp, respectively in S. cerevisiae and Sc. pombe. The redundant NtgSc homologs
in budding yeast are required because of their different subcellular localization and not
to improve repair fidelity. Bifunctional glycosylases seem to be more efficient for cells as
it reduces the number of steps in the BER process. Thus, S. cerevisiae has 3 bifunctional
enzymes, compared to only one in fission yeast. However, Nth1Sp, the bifunctional enzyme
in Sc. pombe, is a key component of BER, apparently acting upstream of AP endonucleases.
Regarding alkylation, although Sc. pombe has two glycosylases dedicated to this task,
Mag1Sc from S. cerevisiae seems much more efficient. Perhaps this is due to the prominent
role of NER and HR in the repair of alkylation in fission yeast. However, in addition
to having a more efficient enzyme, S. cerevisiae has a photolyase, Mgt1Sc, specific to this
damage, and provides a more efficient BER activity in this model. Sc. pombe has one more
enzyme, Myh1Sp, which is in charge of resolving mismatches in front of an adenine. This
may be related to a simpler MMR mechanism in this model. Few differences seem to
emerge regarding AP endonucleases, although abasic sites may require processing from
activation of Uve1Sp, in the Sc. pombe UVDER system to complete BER more efficiently.

As outlined previously, the MMR system in fission yeast seems much simpler consid-
ering that MutSβSp has lost its function in MMR and that MutLαSp is the only homolog of
MutL. This observation was also made in other species, such as Drosophila and Caenorhabdi-
tis, suggesting a lesser role for MMR in maintaining genomic integrity. On the other hand,
Sc. pombe can rely on alternative pathways, for example using NER machinery. However,
this is compensated for by the existence of short patches repair in S. cerevisiae, although it
does not involve the machinery of NER.

The two yeasts respond to UV damage in different ways. Response to UV in S. cerevisiae
is elegant because it uses the energy of the toxic UV, to repair the damage with Phr1Sc

photolyase. This however is too specific to CPDs, as UV can induce other damage such as
6–4 photoproducts and Dewar isomers. Sc. pombe adapted by using the UVDER system
which can recognize all these different substrates. UVDER is so efficient that it compensates
for a defective NER and can support BER in the elimination of abasic sites.

The HR system is predominant in both yeasts and appears to work in similar ways.
However, the STRSc complex confers a greater resection activity to S. cerevisiae. The
filament also appears to be better stabilized by Rad51Sc homologs. In Sc. pombe, stalls of
the replication fork are repaired by HR, so it ensures proper replication in this model.

The NHEJ systems are seemingly different between these two models. In S. cerevisiae,
the MRXSc complex seems very important to NHEJ. Since MRXSc is known to direct
resection, its role in NHEJ is rather unexpected. In S. cerevisiae, MRXSc is used mainly to
process dirty DNA ends, as ArtemisHs does in mammals. This suggests that resection is
important in S. cerevisiae for repairing DSBs regardless of the repair mechanism. Recently,
MRNSp has been shown to influence the NHEJ system in Sc. pombe, albeit with limited
action, as shown by mutants of Rad50Sp, which do not change NHEJ repair capacity. It
is likely that the lesser dependence on MRNSp in Sc. pombe protects against extensive
resection which, in a haploid cell, could be dangerous.

SSA systems of the two yeast models appear to also be different but have been studied
to a much lesser extent. In fact, in Sc. pombe SSA was shown not to rely on Rhp51Sp,
the core protein of HR. However, since SSA does not depend on the presence of sister
chromatids, its regulation is somehow opposite to the activities of HR proteins. An HR-
independent pathway, like SSA, should therefore be more valuable in the haploid fission
yeast. Unfortunately, as the activation of SSA is related to the presence of MRNSp, but this
protein is mostly expressed in the presence of sister chromatid, the moment where SSA
competes with HR, SSA is relegated to a secondary system in fission yeast.
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4. Repair in Human Germ Cells
4.1. Gametes

Most vertebrates are anisogametic whereby gametes from the opposite sex are spe-
cialized and differ in morphology and number. They are therefore expected to respond
differently to DNA damage inducers. This is especially the case for mammalian gametes
where spermatozoa are ex-soma cells produced in large numbers whereas the oocyte is a
resident cell. One additional major difference is the much greater level of DNA compaction
provided by protamines in mature sperm following the eviction of most histones whereas
oocytes maintain histone-based chromatin.

In addition to the greater number of cell divisions required to produce mature sperm,
the peculiar steps of the sperm differentiation program may be more vulnerable to both
exogenous and endogenous DNA damage inducers. For instance, endogenous DNA breaks
may arise from the change in chromatin structure in post-meiotic spermatids coincident
with a decreased DNA repair activity of these cells, whereas oocytes possess a far greater
DNA repair capacity and harbour much fewer DNA breaks.

4.1.1. Spermatozoa

Male gametogenesis is a complex differentiation program producing mature sper-
matozoa from spermatogonia. During meiosis, HR takes place during the late phase of
prophase I. At the beginning of prophase I, programmed DSBs allow parental alleles to
recombine [204]. After meiosis, spermiogenesis undergoes a Golgi phase whereby sper-
matozoa head and axoneme are formed. Then chromatin is remodelled with Transition
Proteins (TP1 and TP2) followed by protamination where histones are replaced by pro-
tamines (PRM1 and PRM2) to achieve the highest level of DNA compaction known to the
eukaryotic world.

In spermatozoa, DNA damages, strand breakage, or base alteration may result from
(1) Faulty compaction/protamination of DNA [205]; (2) Abortive apoptosis, or “anastasis”,
in late spermiogenesis [206]; (3) Oxidative stress [207]; (4) Persistence of enzymatic DNA
breaks induce during chromatin remodelling. The contribution of each to sperm DNA
damages is still unknown but it becomes clear that an elevated number of DNA breaks is
associated with male infertility [208] or with impaired development of the early embryo.
Chromatin remodelling in spermatids leads to the replacement of 90–95% of histones by
protamines [209]. During the eviction of histones, it is assumed that free DNA super-
coils are formed that can be eliminated by the action of topoisomerases [210]. Potential
hindrance of topoisomerases catalytic cycle in this context may lead to SSBs in the case
of topoisomerase I, or DSBs in the case of a topoisomerase II activity. A possibility also
exists that mechanical breaks resulting from the major chromatin remodelling can also be
created. Protamination itself can induce damage [211,212] as the PRM1/PRM2 ratio can
impact proper DNA packaging [209,211,213]. We, however, generated evidence that DSBs
were indeed generated during this process in the whole cell population and harbour a
3′ OH so is consistent with endonuclease digestion. In this haploid context, only direct
end ligation repair mechanisms such as NHEJ are expected [214]. Although apoptosis was
shown to maintain the germ cell vs Sertoli cell ratio [215,216], canonical apoptosis may not
be responsible for the transient DNA breaks shown in spermatids as these are observed in
100% of spermatids. This could represent an “apoptosis-like” reversible mechanism that is
reminiscent of “anastasis”, or the recovery from apoptosis described recently [217]. Various
degrees of recovery, or repairs, would then modulate the persistence of DNA breaks in the
mature sperm. At other spermatogenesis steps, DSBs could be linked to the altered balance
of anti and pro-apoptotic factors through different steps of spermatogenesis [218] and to the
compartmentalisation of the mitochondria which prevents nucleus-organelles exchanges.
Reactive oxygen species (ROS) are a common source of DNA damage. ROS create abasic
sites, base modifications, inter-strand crosslinking, and both single and double-strand
breaks. However, ROS are essential for some sperm functions including capacitation or
acrosome formation and are produced in the sperm mitochondria [219,220]. Sperm and
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white blood cells are the main sources of ROS in semen. Sperm cells are very sensitive
to ROS because of their high content in unsaturated fatty acids and their weak DNA re-
pair activity [207,219]. Antioxidants appear to balance a high level of ROS [221], for this
purpose, seminal fluid possesses catalases, superoxide dismutases, and glutathione perox-
idases and is rich in vitamins C, E, A, lactoferrin, and Q10. Ultimately, prostasomes can
decrease the release of ROS from leukocytes [222]. The relevance of ROS in male infertility
is emphasized as 20 to 88% of sub-fertile men show an elevated level of ROS [223].

So far, evidence of NER, BER, SSA, MMR, HR, and NHEJ DNA repair processes has
been reported during spermatogenesis.

Important variations in NER activity were reported throughout spermatogenesis.
For instance, spermatogonia were shown to be more sensitive to UV than meiotic or
post-meiotic cells [224]. 6–4 photoproducts repair activity is also reduced significantly in
post-meiotic round spermatids and during aging [224]. This may be linked to a decrease
in NER protein expression [225]. Various levels of GG- or TC-NER also exist as 16.8% of
CPD are removed from transcribed Scp1 gene within 16 h in rat spermatocytes [226], while
50% of CPD are removed from Dhfr and Dazl transcribed genes in spermatogonia [224].
However, spermatogonia can repair both active and inactive genes on both strands, in
contrast to meiotic cells where transcribed genes are repaired. TC-NER is lower in round
spermatids than in spermatogonia. These differences may reflect the greater mitotic
activity of spermatogonia, and the fact that they are lying outside of the blood-testis
barrier and so are potentially more exposed to genotoxins. Chromatin compaction during
spermiogenesis may also adversely impact NER [227] as chromatin access is known to
hinder NER. NER is therefore present at all stages of the male germ cells differentiation
albeit with various efficiency.

OGG1Hs glycosylase is the only BER factor found in spermatozoa and recognizes
8-oxoG [219]. However, as none of the AP endonucleases exist in spermatozoa, AP sites
will likely be processed during the first zygotic mitosis [219].

HR is known for its primary role during meiosis but is also important for DSBs and
inter-strand lesions repair in spermatogonia. Outside of meiosis, HR acts in the S and G2
phases of the cell cycle, when sister chromatids are present. HR is obviously absent in
haploid spermatids but resumes in the diploid zygote.

In male germ cells, some canonical components of NHEJ are missing resulting in
an alternative NHEJ pathway [228]. For instance, Ku70Hs and 53BP1Hs are not expressed
therefore preventing the DNA-PKcHs pathway. PARP-1Hs and XRCC1Hs are however
expressed in elongating spermatids supporting alt-NHEJ pathway as described by Ahmed
et al. [228]. PARP-1Hs may bind to DSB as a catalytic homodimer bringing together both
DNA ends. Then, PARP-1Hs may recruit the XRCC1Hsc/DNA ligase IIIHs complex at the
DSB site to complete the end-joining.

4.1.2. Oocyte

Since a limited number of oocytes can be retrieved, the DNA damage response in this
gamete is studied to a lesser extent. DNA damages arise mainly during the active life of
oocytes in prenatal stages, before prophase I arrest, and during recovery from pre-ovulatory
meiosis [229].

From the primary oocyte stage to meiosis II and ovulation, oocytes can actively
repair DNA [230]. During oogenesis, repair genes are overexpressed, and their mRNA are
accumulated to be used in the zygote [231]. NER, BER, MMR, HR or NHEJ repair pathways
have been described in oocytes from humans to mice [231–234]. Proper DNA repair
machinery must operate as oocytes undergo chromatin remodelling during fertilisation and
early steps of a zygote. Oocytes are diploid cells, that possess homologous chromosomes
until meiosis II that arises after fertilisation. Thus, the oocyte is virtually never haploid.
The oocyte becomes transiently haploid between meiosis II end and the fusion of parental
genomes (syngamy). Thus, following meiosis II, only NHEJ should operate as shown in
mice [235], although variations exist between species as rodent oocytes have better DNA
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repair abilities than primate ones [232]. The repair capacity of the oocyte and mRNA levels
for repair proteins also decreases with female age [236]. After fertilisation, syngamy is a
critical step since (1) Chromatids from each parent exist in different cellular compartments;
(2) Chromatin undergoes major remodelling associated with demethylation; (3) Male
derived chromatids are repaired by the oocyte DNA repair machinery [237].

As for spermatogenesis, ROS are produced during oogenesis. ROS production is
necessary for folliculogenesis, oocyte maturation, ovulation, and luteal function [238].
Maturation and ovulation are linked to inflammatory processes, characterized by high ROS
production [239]. Unlike sperm, oocytes are more resistant to ROS due to an environment
rich in antioxidants in the follicular fluid [240]. However, ROS imbalance in the female tract
decreases fertility and oocyte quality [241]. In addition to its impact on genetic integrity,
oxidative stress is known to alter microtubule function and spindle morphology leading to
aneuploidy [242].

In contrast to spermatozoa, OGG1Hs glycosylase is only weakly expressed in oocytes,
as 8-oxoG damages are not present in spermatozoa after fertilization [243]. In many aspects,
the early zygote may still be considered as an oocyte since only mRNAs for the oocyte are
used up until the 4-cell stage [244]. This “zygotic oocyte” is in charge of repairing DNA
damages in spermatozoa but may be overloaded if DNA damages occur in more than 8%
of the nucleotide genome amount [245,246].

Both the number and the nature of DNA breaks are of concern for fertility. Whereas
SSBs are easily repaired as in somatic cells, DSBs can overload the DNA repair capacity
of the oocyte. After fertilisation, the persistence of DSBs in spermatozoa will delay DNA
replication or can even be lethal for the zygote [247]. Finally, DSBs are mainly repaired by
NHEJ during zygote [214], as for somatic cells.

5. Conclusions

Ploidy is a key element to consider in the regulation of DNA repair systems. In
view of the aforementioned details about the two yeast models, it seems that species can
however adapt their uses of DNA repair systems to overcome the weaknesses of either
haploidy or diploidy. Thus, many redundancies exist within and between DNA repair
systems that are linked together into a complex and integrated overarching regulatory
mechanism that ensures the maintenance of genomic integrity regardless of the ploidy
state. This may of course represent a functional bias for a single-cell organism as they
are solely responsible to generate genetically intact progeny. In fact, major differences in
repair efficiency between diploid and haploid cells are mainly observed among mammalian
metazoan gametes. Hence, unlike oocytes, mature sperm clearly lacks proper DNA repair
activity. However, the many replication/differentiation steps, change in DNA topology and
highly condensed and specialized chromatin structure observed during spermatogenesis
offers an appropriate context to generate adaptative variations.
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