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A novel clustering method is proposed for mammographic mass segmentation on extracted regions of interest (ROIs) by using
deterministic annealing incorporating circular shape function (DACF). The objective function reported in this study uses both
intensity and spatial shape information, and the dominant dissimilarity measure is controlled by two weighting parameters. As a
result, pixels having similar intensity information but located in different regions can be differentiated. Experimental results shows
that, by using DACF, the mass segmentation results in digitized mammograms are improved with optimal mass boundaries, less
number of noisy patches, and computational efficiency. An average probability of segmentation error of 7.18% for well-defined
masses (or 8.06% for ill-defined masses) was obtained by using DACF on MiniMIAS database, with 5.86% (or 5.55%) and 6.14%
(or 5.27%) improvements as compared to the standard DA and fuzzy c-means methods.

1. Introduction

Image segmentation is a process which divides an image
into several meaningful areas such that the segmented image
can be further analyzed and interpreted. A segmentation
algorithm, in a mammographic context, is an algorithm used
to detect something, usually the whole breast or a specific
kind of abnormalities like microcalcifications or masses. In
the digitized mammograms with low contrast, masses are
embedded in various breast tissues with fuzzy margins. This
variability introduces a challenge for breast mass segmenta-
tion and causes the false positive detection rate to increase as
well as decreasing the sensitivity.

In the past decades, a number of image processing
techniques have been developed to segment masses from
their surrounding breast tissues in digitized mammograms,
as reviewed in [1–4]. Among them, clustering methods
are one of the most commonly used techniques for image
segmentation [5] as well as for mass detection and/or
segmentation [4]. Partitioning clustering and hierarchical

clustering are two main approaches to clustering. 𝐾-means
[6] and fuzzy 𝑐-means (FCM) [7] algorithms are widely
used partitioning techniques by the researchers in many real
world applications. For mass segmentation, 𝐾-means has
been used in [8, 9] to generate initial segmentation results
and in [10, 11] to refine an initial detection from adaptive
thresholding. FCMwas also used formass segmentation with
different objectives: while [12] used it to group pixels with
similar grey-level values in the original images, [13] used it
over the set of local features extracted from application of
a multiresolution wavelet transform and Gaussian Markov
random fields analysis. In contrast to 𝐾-means and FCM,
which are sensitive to data initialization and converge to local
optimal solutions, deterministic annealing (DA) clustering
[14] is a global minimisation algorithm by incorporating
randomness into the energy function to be minimized,
such that it is independent of the choice of the initial data
configuration and has the ability to avoid poor local optima.
The DA approach has also been used for mass segmentation
in [15, 16].
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Most clustering algorithms (including 𝐾-means, FCM,
and DA) perform image segmentation directly from the
intensity (or color) space with an intensity filter to enlarge the
difference between normal and abnormal breast tissue. The
processing time is a prominent advantage of these algorithms.
However, the intensity-based methods cannot satisfactorily
outline the boundary of the mass region when the image
contrast and signal noise ratio are low and therefore lead to
poor segmentation results. Markov random field technique
was used in mass segmentation [17] to exploit the spatial
continuity in order to improve the performance of segmen-
tation algorithm. It has the ability to reduce segmentation
error caused by intensity noise; however, the computational
cost is high. Reference [18] proposed a fuzzy clustering
algorithm incorporating an elliptic shape function for lip
image segmentation. The pitfall is that the convergence time
increases as the weighting parameter that controls the spatial
shape information increases.

In this paper, we propose a novel clustering algorithm
based on DA approach to overcome the problems of most
existing clustering techniques. In the standard DA clus-
tering [14, 19] for image segmentation, the dissimilarity
measure in the objective function is defined merely based
on Euclidean distances between the image intensity and the
intensity centroids without knowledge of the spatial shape
information. Solely using the intensity or intensity related
information is hard to differentiate pixels with the same
intensity information but located in unconnected regions.
As a result, large number of subregions in the same cluster
that contains a mass may lead to heavy computational load.
Additionally, it is hard to find the fuzzy boundary when
the image contrast is low. To handle these challenges, a
new dissimilarity measure for DA clustering incorporating
a circular shape function (DACF) is proposed. Since both
intensity and spatial information are used in the optimization
process, the DACF algorithm offers two advantages. First,
it is robust against noise and cluster number; that is, pixels
having similar intensity information but located in different
regions can be differentiated, with just two clusters for the
entire images. Second, it is computationally efficient. The
convergence time decreases as the difference between the two
weighting parameters increases. Experimental results have
demonstrated the advantages of the DACF algorithm.

The main contribution of our current work includes
the following: (1) the geometry shape is integrated into the
intensity feature space for mass segmentation in terms of
dynamically fitted circular shape function; (2) the proposed
method can differentiate the pixels with the same intensity
values but located in different (mass and nonmass) regions,
which cannot be achieved by standard clustering methods
like FCM and DA; (3) the proposed method achieves better
segmentation performance than FCM and DA in terms of
segmentation accuracy and computational time; (4) the pro-
posed method is general, which can be integrated into other
segmentation algorithms and applicable for other biomedical
applications.

The rest of this paper is organized as follows. Section 2
briefly reviews the standard DA clustering approach and
derives the formulation and implementation of the proposed

DACF algorithm. The experimental results and related
discussions on real mass images are given qualitatively
and quantitatively in Section 3. The conclusion is given in
Section 4.

2. The Proposed Method

2.1. A Brief Review of Standard Deterministic Annealing
Approach. Suppose there are 𝑙 input vectors x
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Figure 1:The twenty-three ROIs that contain masses with well-defined shape in MiniMIAS database.The two ROIs in mdb132 are processed
independently. Gaussian filter and image equalization are used to phase out noisy points and enhance mass regions.

Alternatively updating (3) and (5) with phase transition
gives the DA algorithm. The DA approach to clustering has
demonstrated to be independent of the data initialization and
has ability to avoid poor local optima, as discussed in [14, 19].

2.2. Deterministic Annealing Clustering Incorporating Circular
Function (DACF). Consider an image with 𝑀 × 𝑁 pixels,
whose locations are denoted by (𝑖, 𝑗), where 𝑖 ∈ [1,𝑀] and
𝑗 ∈ [1,𝑁]. Let us define the new dissimilarity measure 𝑑

𝑘,𝑖,𝑗

of the proposed DACF by
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and 𝑓(𝑘, 𝑖, 𝑗, s) represents the shape information, given by
circular function as
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physical 𝑋-𝑌 coordinate of the center of a mass region. The
dissimilarity measure 𝑑

𝑘,𝑖,𝑗
consists of a measure of the inten-

sity dissimilarity between the (𝑖, 𝑗)th pixel and the centroid
k
𝑘
in the intensity feature space, and the spatial distance

between the pixel (located at (𝑖, 𝑗)) and the center (denoted
by (𝑥
𝑐
, 𝑦
𝑐
)) of the targeted mass region. With the inclusion of

circular shape information, the pixels with similar intensity
but located in disjointed region will be differentiated. The
purpose of the inclusion of the shape function is to obtain a
largemembership for the cluster associated withmass region.
In order to achieve it, theweighting parameter𝛽

𝑘
is defined as

the weight of the spatial distance against the intensity feature.
According to the dissimilarity definition of the Euclidean
distance, the closer a pixel belongs to a cluster, the smaller the
distance is.Therefore, the shape distance between the location
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Figure 2: The fifteen ROIs that contain masses with ill-defined shape in MiniMIAS database. The two ROIs in mdb144 are processed
independently. Gaussian filter and image equalization are used to phase out noisy points and enhance mass regions.

of a pixel and a specific cluster center is small if the pixel
belongs to the cluster; otherwise the distance is larger if it
belongs to other clusters.

The expected distortion or objective function of the
DACF incorporating spatial information is then defined as
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where 𝐷 is the distortion measure as in the original DA
method defined by
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We recast the optimization problem as seeking the distri-
bution which minimizes 𝐷 subject to a specified level of
randomness that is measured by Shannon entropy
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Figure 3: Segmentation results by DACF for the twenty-three ROIs in Figure 1, where the pixels in the white region belong to themass cluster,
and pixels in dark region belong to the nonmass cluster.

Minimizing 𝐹 with respect to the probability of 𝑝(k
𝑘
| x
𝑖,𝑗
)

leads to the titled distribution [14, 19]
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Taking the partial derivative on 𝐹 with respect to cluster
center, we have
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It can be seen that the partial derivative of the objective
function with the new dissimilarity measure with respect
to V
𝑘
is identical to that of DA. Hence, the formula for

computing centroids of DACF in the intensity feature space
is the same as in DA; that is,
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Figure 4: Segmentation results by DACF for the fifteen ROIs in Figure 2, where the pixels in the white region belong to the mass cluster, and
pixels in dark region belong to the nonmass cluster.

Substituting (8) into (19), the spatial parameters can be
obtained as
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Alternatively updating 𝑝(k
𝑘
| x
𝑖,𝑗
) and k

𝑘
according to (14)

and (17) as well as 𝑥
𝑐
and 𝑦

𝑐
according to (20) gives the

proposed DACF algorithm.
The titled distribution (14) is the membership of each

pixel belonging to different clusters. Generally, the intensities
of the center part of a mass region are higher than those
locating outside of mass region. For pixels inside a mass
region, the intensity dissimilarity is in dominant position,
while spatial information plays a major role in dissimilarity
measure for pixels outside the mass region. Therefore, the
pixels with the same intensity values but locate in different
positions in an image will be differentiated, which makes
DACF yield better performance for both mass and nonmass
related regions.

3. Experimental Results

Thirty-six mammograms from MiniMIAS database [20]
that contain thirty-nine masses with various backgrounds
(fatty, fatty glandular, and dense-glandular breast tissues)
were examined. The mammograms mdb005, mdb132, and
mdb144 each contain two mass regions. The two masses
in mammogram mdb005 were heavily overlapped, so they
were processed together as a single one. The two mass
regions in mdb132 and mdb144 were processed indepen-
dently. Therefore, thirty-eight regions of interest (ROIs) were
analyzed. Instead of automatic extraction, in this study, the
ROIs were taken from the mammographic image based on
the information provided by the database. The size of each
extracted ROI, as well as the center and radius of each mass
are listed in the appendix at the end of this paper.

According to the information of “class of abnormality”
provided by the database, the thirty-eight ROIswere classified
into two categories: well-defined masses (twenty-three cases)
and ill-defined masses (fifteen cases). The ROIs including
well-definedmasses are illustrated in Figure 1, while the ROIs
including ill-defined masses are shown in Figure 2. Gaussian
filter (kernel size 3 × 3 and standard deviation 1.0) and image
equalization are used to phase out noisy points and enhance
mass regions in the image preprocessing step. In all examples,
we fix the fuzziness degree 𝑚 = 2 for the FCM algorithm,
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Figure 5: Segmentation results by DA for the twenty-three ROIs in Figure 1, where the pixels in the white region belong to the mass cluster,
and pixels in dark region belong to the nonmass cluster.

and the annealing factor alpha = 0.9 for the standard DA and
proposed DACF algorithms.

3.1. Segmentation Results. Three clustering methods of
DACF, DA, and FCM are tested on the twenty-three ROIs
with well-defined masses and fifteen ROIs with ill-defined
masses to show their performance on mammographic mass
segmentation.Thedecision to choose the cluster that contains
mass region is based on the assumption that the suspicious
mass area is brighter than its surrounding breast tissues,
which is valid for most of the real applications [17]. For the
illustration purpose, the clustering results are transformed
into binary images, where pixels with gray value 128 belong
to the suspicious cluster, and pixels with gray value 0 belong
to the nonmass cluster.

In the experiment, the cluster number is set as two for
DACF and two to six for DA and FCM (in order to get
reasonable results). It is one of the advantages of DACF to
use the fixed cluster number (two in our experiment). The
values of weighting parameter 𝛽

1
= 1/4 (for mass region)

and 𝛽
2
= 10 (for background) were applied to the testing

dataset; the details of the value selection can be found in
the next subsection. Figures 3 and 4 show the segmentation
results by the DACF algorithm for the ROIs in Figures 1 and
2, respectively, where pixels with high intensity (gray value
128) belong to the suspicious cluster. The mass region in each
ROI is identified as the one with the maximum number of
pixels in the suspicious cluster. Figures 5 and 6 show the
segmentation results by DA, and the segmentation results by
FCM are illustrated in Figures 7 and 8, respectively. From
the figures, it can be seen that due to the incorporation of
spherical shape information, pixels belonging to the same
intensity feature cluster while locating in different positions
can be differentiated to certain degrees by DACF. In contrast,
standard DA and FCM failed to differentiate them in most
cases. Additionally, less number of patched regionswas found
in the mass cluster by DACF shown in Figures 3 and 4, as
compared to that of the standard DA shown in Figures 5 and
6 and FCM shown in Figures 7 and 8.

In order to evaluate the segmentation performance, a
quantitative technique was applied to the three clustering
algorithms on mammographic masses. The methods used
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mdb013 mdb063mdb058mdb032mdb030

mdb134 mdb265mdb264mdb144-bmdb144-a

mdb267 mdb314mdb312mdb274mdb271
Figure 6: Segmentation results by DA for the fifteen ROIs in Figure 2, where the pixels in the white region belong to the mass cluster, and
pixels in dark region belong to the nonmass cluster.

to evaluate the quality of image segmentation algorithms
can be broadly classified into two groups, supervised and
unsupervised approaches. Unsupervised evaluation does not
depend on a true segmentation [21], while in supervised
evaluation, the difference between a reference segmentation
and the output of a segmentation algorithm is computed.
(Unsupervised evaluation is stand-alone and objective, which
does not request any user intervention. But we will use
supervised evaluation in our work due to the following: (1)
one of the issues we have to consider is that the unsupervised
method may not perform well in comparison evaluation
produced by different algorithms and in comparing human
versus machine segmentations [22]; (2) another consider-
ation is, in the field of biomedical image analysis, it is
common to use supervised but not unsupervised method for
the evaluation of image segmentation.) This study chose a
supervised evaluation method and the mass boundaries were
given by the physician.The probability of segmentation error
(PSE) is formulated by [23]

PSE = 𝑃 (𝑂) 𝑃 (𝐵 | 𝑂) + 𝑃 (𝐵) 𝑃 (𝑂 | 𝐵) , (21)

where 𝑃(𝑂) and 𝑃(𝐵) are the priori probability of the object
(mass region) or background (nonmass region), respectively.
𝑃(𝐵 | 𝑂) is the probability of classifying objects as
background, and 𝑃(𝑂 | 𝐵) is the probability of classifying
background as object. Suppose the pixel number of the mass

region in the reference segmentation image is 𝑁trueobj and
the pixel number of the mass region in the segmented image
by DACF, DA, or FCM is 𝑁calobj, then the probabilities are
defined as

𝑃 (𝐵 | 𝑂) =

(𝑁trueobj − 𝑅trueobj ∩ 𝑅calobj)

𝑁trueobj
,

𝑃 (𝑂 | 𝐵) =

(𝑁calobj − 𝑅trueobj ∩ 𝑅calobj)

𝑁calobj
,

(22)

where 𝑅trueobj is the region of mass in reference image, and
𝑅calobj is the calculated mass region by DACF, DA, and FCM.
Therefore, 𝑅trueobj ∩ 𝑅calobj represent the number of pixels
in the overlapped mass region between the reference image
and calculated image. The computed PSE for DACF, DA,
and FCM for the ROIs in Figures 1 and 2 are shown in
Tables 1 and 2, respectively. We can see that DACF performs
better than DA and FCM algorithms for almost all the ROIs,
especially for the cases with comparatively low contrast such
as mdb091 and mdb141 for well-defined masses and mdb030
andmdb063 for ill-definedmasses. Numerically, for the well-
defined cases, an average PSE of 7.18% was obtained by using
DACF, as compared to 13.04% and 13.32% by using standard
DA and FCMmethods, respectively; while for the ill-defined
cases, DACF achieved an average PSE of 8.06%, with 5.55%
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mdb001 mdb015mdb012mdb010mdb005mdb002

mdb017 mdb028mdb025mdb023mdb021mdb019

mdb069 mdb141mdb132-bmdb132-amdb091mdb080

mdb142 mdb315mdb290mdb270mdb244
Figure 7: Segmentation results by FCM for the twenty-three ROIs in Figure 1, where the pixels in the white region belong to the mass cluster,
and pixels in dark region belong to the nonmass cluster.

and 5.27% improvement when compared with standard DA
and FCMmethods, respectively.

3.2. Discussions

3.2.1. Weighting Parameter Analysis. The weighting parame-
ter 𝛽 in (6) controls the influence of the geometrical distance
and the intensity feature in the dissimilarity measure. It is
desirable that the membership of a pixel is close to one if
it is located near the center of a mass. For a pixel far away
from the center of the mass, its membership to the cluster
should be close to zero. Suppose that the two clusters inDACF
algorithm are cluster 1 and cluster 2, where cluster 1 represents
the mass region and cluster 2 represents the nonmass region.
For an intensity-based algorithm, like standard DA or FCM,
the membership of a pixel in nonmass region to cluster 1 may
approximately equal one if it has the same intensity value as
the pixels in mass region. In this situation, it is hoped that the
spatial informationwill be dominant in the objective function
of DACF; that is, the weighting parameter of cluster 2 should
be large enough such that the influence of intensity-based
feature is reduced significantly. For the weighting parameter

of cluster 1, it is expected that the 𝛽 value should be small
enough such that the intensity-based feature is dominant in
the objective function.

However, it is difficult to analyze the two weighting
parameters separately since the incorporation of different
values of 𝛽

1
and 𝛽

2
will lead to different dissimilarity mea-

sures. According to the experimental results, we find that the
influence of weighting parameter on the segmentation results
depends on the image content of each ROI. Experimental
results show that better segmentation results are obtained
when the value of 𝛽

1
is smaller than one, and the value of

𝛽
2
is relatively large. In order to illustrate the relationship

between the values of the weighting parameters and the
segmentation results, experiments are carried out on three
ROIs that contain mass with different kinds of backgrounds:
mdb023 with fatty-glandular breast tissues, mdb091 with
fatty breast tissues, and mdb315 with dense-glandular breast
tissues. The segmentation results are shown in Figures 9, 10,
and 11 for each ROI. The PSE is also provided to evaluate
the segmentation results under different values of weighting
parameters. It can be seen from the figures that the values of
𝛽
1
= 1/4 and 𝛽

2
= 10 are optimal values for these three ROIs.
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mdb013 mdb063mdb058mdb032mdb030

mdb267 mdb314mdb312mdb274mdb271

mdb134 mdb265mdb264mdb144-bmdb144-a

Figure 8: Segmentation results by FCM for the fifteen ROIs in Figure 2, where the pixels in the white region belong to the mass cluster, and
pixels in dark region belong to the nonmass cluster.

3.2.2. Convergence Time Analysis. The main parameter that
affects the convergence time inDACF is theweighting param-
eter since the number of clusters was fixed (two clusters were
used).The convergence time here refers to the total CPU time
for clustering. A Duo Core 1.59GHz laptop with MATLAB 8
was used to run the three clustering algorithms. For DA and
FCM, the relative segmentation results were obtained with a
wide range of number of clusters from two to six, in order to
get reasonable results. Table 3 shows the convergence time of
DACF,DA, and FCM for the segmentation results as shown in
Figures 3, 5, and 7, respectively while Table 4 shows the con-
vergence time of DACF, DA, and FCM for the segmentation
results as shown in Figures 4, 6, and 8, respectively. It can be
seen thatDACFhas less convergence time thanDA and FCM,
while FCM runs faster as compared to DA.

The convergence speed of DACF is not affected signifi-
cantly by changing the values of weighting parameters. Basi-
cally, the convergence time decreases or keeps approximately
constant as the difference between the two weighting param-
eters increases. Through experiments, it can be seen that
the relatively higher difference between the two weighting
parameters makes the DACF capable of handling images
with more complicated content. In contrast, to handle this
situation, larger number of clusters has to be used for both
DA and FCM to obtain reasonable segmentation results.

4. Conclusion

The proposed DACF algorithm offers two advantages for
mammographic mass segmentation on extracted ROIs. First,
the segmentation ability is improved. The average PSE by
DACF is much smaller than those by standard DA and FCM.
Additionally, less number of patched regions was found in
mass cluster by using DACF. Second, the convergence time
is reduced. In DACF, the number of clusters is two, and the
optimal segmentation results were obtained by regulating the
weighting parameters, with much less convergence time for
all the thirty-eight cases as compared to those by DA and
FCM. To summarize, DACF is robust against noisy regions
and computationally efficient with a fixed number of clusters.
Unlike classical clustering methods for image segmentation,
the objective function ofDACF contains both intensity-based
information and geometry-based circular shape function as
a means to improve the image data partitions. Experimental
results show that the proposed DACF improved the segmen-
tation performance for mammographic images.

It is noted that one of the major limitations of the pro-
posed method is that the current formulation can only
deal with two clusters. We will investigate the possibility to
incorporate multicircular shape to handle more general cases
in the near future. It is also noted that the current study
determines the weighting parameter 𝛽 through experiments;
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(a) PSE = 20.35 (b) PSE = 6.24 (c) PSE = 1.32 (d) PSE = 4.35

Figure 9: Segmentation results for case mdb023 (with fatty-glandular breast tissues) using DACF with different 𝛽
1
and 𝛽

2
parameters. The

lowest PSE is achieved at 𝛽
1
= 1/4, 𝛽

2
= 10. Top row: binary images after DACF segmentation. Bottom row: overlay images consisting of the

segmented mass boundaries overlayed over the raw input images. (a) 𝛽
1
= 1, 𝛽

2
= 1. (b) 𝛽

1
= 1/2, 𝛽

2
= 5. (c) 𝛽

1
= 1/4, 𝛽

2
= 10. (d) 𝛽

1
= 1/8,

𝛽
2
= 20.

(a) PSE = 21.04 (b) PSE = 8.19 (c) PSE = 2.17 (d) PSE = 3.54

Figure 10: Segmentation results for case mdb091 (with fatty breast tissues) using DACF with different 𝛽
1
and 𝛽

2
parameters. The lowest PSE

is achieved at 𝛽
1
= 1/4, 𝛽

2
= 10. Top row: binary images after DACF segmentation. Bottom row: overlay images consisting of the segmented

mass boundaries overlayed over the raw input images. (a) 𝛽
1
= 1, 𝛽

2
= 1. (b) 𝛽

1
= 1/2, 𝛽

2
= 5. (c) 𝛽

1
= 1/4, 𝛽

2
= 10. (d) 𝛽

1
= 1/8, 𝛽

2
= 20.
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(a) PSE = 21.18 (b) PSE = 4.77 (c) PSE = 2.01 (d) PSE = 6.51

Figure 11: Segmentation results for case mdb315 (with dense-glandular breast tissues) using DACF with different 𝛽
1
and 𝛽

2
parameters. The

lowest PSE is achieved at 𝛽
1
= 1/4, 𝛽

2
= 10. Top row: binary images after DACF segmentation. Bottom row: overlay images consisting of the

segmented mass boundaries overlayed over the raw input images. (a) 𝛽
1
= 1, 𝛽

2
= 1. (b) 𝛽

1
= 1/2, 𝛽

2
= 5. (c) 𝛽

1
= 1/4, 𝛽

2
= 10. (d) 𝛽

1
= 1/8,

𝛽
2
= 20.

DACF resultDACF resultDACF result

ROI position 3ROI position 2ROI position 1

Figure 12: The proposed DACF successfully segments the mass with different ROI shifting, though the final results may be a bit different.
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DACF resultDACF resultDACF result

ROI size 1 ROI size 2 ROI size 3

Figure 13: The proposed DACF successfully segments the mass with different ROI size, though the final results may be a bit different.

though it works for all the tested cases in this paper, a
numerical solution is desirable to improve the intelligence of
the proposed method. There is a need to verify the efficiency
of the proposed method by performing evaluations on other
mammographic image sets, such as the DDSM database [24].
These will be the subjects of our future research on mam-
mographic mass segmentation. What is more, it is worthy to
mention that the proposed approach is general, whichmay be
applicable for other biomedical applications like left ventricle
segmentation from cardiac magnetic resonance images. We
will also investigate this topic in our future research work.

Appendix

Table 5 lists the related information for each extracted ROIs,
that is, the size of ROI, the center of the ROI/mass, and the
radius of the mass. (In our implementation, we extract the
ROI in terms of a square, with the center identical to the
center of mass and the width determined by ROI size. In the
case of mdb144-a, ROI center is not identical to mass center
since the latter is too close to image border. As demonstrated

in Figures 12 and 13, DACF segmentation results are only
slightly affected by the shifting and size of the extracted ROI.)
The latter two are used for the reference segmentation.
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Table 1: The probability of segmentation error (PSE) by DACF,
DA, and FCM on twenty-three ROIs with well-defined masses in
Figure 1.

Image PSE of DACF PSE of DA PSE of FCM
(%) (%) (%)

mdb001 4.87 11.70 12.12
mdb002 28.88 32.58 32.15
mdb005 3.40 6.94 6.27
mdb010 2.61 9.33 8.2
mdb012 8.43 12.97 12.49
mdb015 5.18 7.30 6.83
mdb017 6.38 16.00 17.03
mdb019 9.48 19.17 17.50
mdb021 6.71 11.21 10.46
mdb023 1.31 4.58 3.33
mdb025 4.65 3.65 4.79
mdb028 4.47 6.42 6.20
mdb069 7.42 11.12 12.34
mdb080 2.57 12.32 15.61
mdb091 2.17 7.69 10.51
mdb132-a 4.25 7.75 10.12
mdb132-b 5.16 7.92 8.67
mdb141 3.67 18.55 17.93
mdb142 1.68 4.81 5.79
mdb244 17.25 29.69 30.36
mdb270 21.45 29.67 32.87
mdb290 10.99 12.20 12.19
mdb315 2.24 16.25 12.62
Average of PSE 7.18 13.04 13.32

Table 2:The probability of segmentation error (PSE) by DACF, DA,
and FCM on fifteen ROIs with ill-defined masses in Figure 2.

Image PSE of DACF PSE of DA PSE of FCM
(%) (%) (%)

mdb013 3.67 7.16 9.03
mdb030 9.05 27.63 25.84
mdb032 7.74 10.70 10.64
mdb058 3.15 5.43 7.76
mdb063 2.23 15.90 12.48
mdb134 9.34 8.94 8.11
mdb144-a 14.08 14.10 14.51
mdb144-b 2.47 4.42 4.54
mdb264 6.78 8.55 9.53
mdb265 18.83 26.57 26.58
mdb267 10.51 18.32 15.57
mdb271 8.15 12.70 12.49
mdb274 11.76 19.87 20.15
mdb312 5.93 16.33 9.12
mdb314 7.23 11.77 13.56
Average of PSE 8.06 13.61 13.33

Table 3: The convergence time of DACF, DA, and FCM for the
segmentation results in Figures 3, 5, and 7, respectively.

Image DACF (sec) DA (sec) FCM (sec)
mdb001 2.78 14.77 9.62
mdb002 0.72 3.27 2.74
mdb005 0.62 2.35 2.19
mdb010 0.58 1.90 1.52
mdb012 0.47 2.37 1.98
mdb015 0.48 2.51 1.84
mdb017 0.48 3.05 2.27
mdb019 0.41 2.10 1.71
mdb021 0.41 5.55 1.07
mdb023 0.67 1.85 1.66
mdb025 0.84 3.35 2.05
mdb028 0.72 3.29 2.63
mdb069 0.58 2.01 1.57
mdb080 0.53 3.90 1.49
mdb091 0.33 1.76 0.53
mdb132-a 0.25 0.82 0.60
mdb132-b 0.31 0.68 0.49
mdb141 0.72 2.80 2.83
mdb142 0.50 2.30 1.26
mdb244 0.39 3.96 1.23
mdb270 0.31 1.43 0.95
mdb290 0.58 3.88 2.43
mdb315 2.06 11.85 7.98

Table 4: The convergence time of DACF, DA, and FCM for the
segmentation results in Figures 4, 6, and 8, respectively.

Image DACF (sec) DA (sec) FCM (sec)
mdb013 0.42 3.79 1.11
mdb030 1.33 3.43 1.42
mdb032 0.39 4.21 1.85
mdb058 0.25 1.93 1.19
mdb063 0.41 2.23 1.22
mdb134 0.42 2.51 1.87
mdb144-a 0.37 1.48 0.94
mdb144-b 0.33 1.15 1.69
mdb264 0.50 1.45 1.07
mdb265 0.41 1.71 1.78
mdb267 0.59 0.79 1.09
mdb271 0.55 1.49 1.86
mdb274 0.66 1.71 2.91
mdb312 0.50 1.24 0.97
mdb314 0.31 2.09 1.40

Su Yi from IHPC A∗STAR, Singapore, for his valuable help
for the modifications of this paper.
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Table 5: The related information for each extracted ROI.

Image ROI size ROI/mass center Mass radius Image ROI size ROI/mass center Mass radius
(well-defined) (pixel) (𝑥, 𝑦) (pixel) (ill-defined) (pixel) (𝑥, 𝑦) (pixel)
mdb001 200 (535, 599) 131 mdb013 100 (667, 659) 31
mdb002 100 (522, 744) 69 mdb030 100 (322, 348) 43
mdb005 100 (488, 873) 45 mdb032 100 (388, 282) 49
mdb010 100 (525, 599) 33 mdb058 100 (318, 665) 27
mdb012 100 (471, 566) 40 mdb063 100 (546, 561) 33
mdb015 100 (595, 160) 45 mdb134 100 (469, 296) 49
mdb017 100 (547, 451) 48 mdb144-a∗ 80 (233, 30) 29
mdb019 100 (653, 547) 49 mdb144-b 100 (313, 484) 27
mdb021 100 (493, 899) 49 mdb264 100 (596, 593) 36
mdb023 100 (538, 343) 29 mdb265 100 (593, 526) 60
mdb025 120 (674, 581) 52 mdb267 100 (793, 543) 56
mdb028 120 (338, 710) 56 mdb271 120 (784, 754) 68
mdb069 100 (462, 618) 44 mdb274 120 (127, 519) 61
mdb080 100 (432, 875) 20 mdb312 80 (240, 761) 20
mdb091 80 (680, 530) 20 mdb314 100 (518, 833) 39
mdb132-a 80 (252, 236) 26
mdb132-b 80 (335, 258) 18
mdb141 100 (470, 265) 29
mdb142 100 (347, 388) 26
mdb244 100 (466, 457) 52
mdb270 80 (356, 79) 36
mdb290 100 (337, 671) 45
mdb315 200 (516, 577) 62
∗In the case of mdb144-a, ROI center is not identical to mass center since the latter is too close to image border.
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