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Abstract
With the advent of advancements in deep learning approaches, such as deep convolution 
neural network, residual neural network, adversarial network; U-Net architectures are most 
widely utilized in biomedical image segmentation to address the automation in identifi-
cation and detection of the target regions or sub-regions. In recent studies, U-Net based 
approaches have illustrated state-of-the-art performance in different applications for the 
development of computer-aided diagnosis systems for early diagnosis and treatment of dis-
eases such as brain tumor, lung cancer, alzheimer, breast cancer, etc., using various modali-
ties. This article contributes in presenting the success of these approaches by describing 
the U-Net framework, followed by the comprehensive analysis of the U-Net variants by 
performing (1) inter-modality, and (2) intra-modality categorization to establish better 
insights into the associated challenges and solutions. Besides, this article also highlights 
the contribution of U-Net based frameworks in the ongoing pandemic, severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) also known as COVID-19. Finally, the 
strengths and similarities of these U-Net variants are analysed along with the challenges 
involved in biomedical image segmentation to uncover promising future research direc-
tions in this area.
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1  Introduction

Biomedical information technologies have a great importance, particularly in medi-cine 
to solve different problems (Goceri and Songul 2018; Kaya et  al. 2017; Goceri 2016; 
Göçeri et al. 2015; Göçeri 2013), and deep learning-based approaches have been widely 
used recently (Goceri 2021; Göçeri 2020). The evolving medical imaging acquisition 
system (Alexander et al. 2019) has brought the consideration of the research community 
towards the non-invasive practice of disease diagnosis. Every diagnostic procedure involves 
the careful and critical examination of medical scans which represents the complex inte-
rior structure within the body, illustrating the functioning of various organs. With a wide 
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variety of medical imaging such as magnetic resonance imaging (MRI), X-ray, comput-
erized tomography/computerized axial tomography (CT/ CAT), ultrasound (US), positron 
emission tomography (PET), etc., the medical domain has experienced exponential growth 
in the diagnosis practices. Each of these scans varies in the imaging procedure, usecases 
and its average diagnosis duration (Hughes 2019; TMI 2019), as shown in Table 1. For any 
radiologist, analyzing such complex scans is tedious and time consuming, thereby to fill 
this void of complexity, deep learning approaches are well explored to address the auto-
mated assistance in diagnosis procedure, resulting in faster and better practices for monitor, 
cure and treatment of the diseases (Elnakib et al. 2011; Masood et al. 2015; Deepa et al. 
2011; Maintz and Viergever 1998).

Segmentation  (Minaee et  al. 2020) is one such automation task that helps to identify 
and detect the desired regions or objects of interest for the concerned issue. Depending 
on the depth of identifying the classes of objects, segmentation is divided into two lev-
els as semantic and instance. The semantic segmentation (Liu et al. 2019b) segregates the 
objects belonging to different classes, whereas instance segmentation (Chen et al. 2019a) 
goes deeper to also segregate the objects within the common class. With the exhaustive 
analysis (Minaee et al. 2020; Haque and Neubert 2020), it is observed that among the lat-
est advancements to perform segmentation, mostly U-Net (Ronneberger et al. 2015) based 
frameworks are adopted to achieve state-of-the-art segmentation performance which fol-
lows from its symmetrical encoder-decoder structure to extract and reconstruct the feature 
maps.

1.1 � Motivation and contribution

With recent developments in deep learning technologies, there are a lot of review arti-
cles on biomedical image segmentation (BIS) using deep learning. The understanding of 
the available methods is critical for developing computer-aided diagnosis systems; how-
ever, to contribute to this domain as a researcher, one needs to understand the underlying 
mechanics of the methods that make those systems achieve promising results. For instance, 
the work of Zhou et  al. (2019b) explored the comprehensive analysis focused on multi-
modality fusion approaches, whereas Haque and Neubert (2020) reviewed the standard 
deep learning approaches for BIS using different modalities. Table 2 shows the overview 
of some of the survey articles proposed for biomedical image analysis using deep learn-
ing approaches. In contrast to the existing review articles, the present article is intended to 
contribute for an exhaustive analysis of the state-of-the-art modality specific U-Net based 
approaches by performing inter-modality and intra-modality categorization, and establish-
ing better insights of technological solutions for each modality. Furthermore, the present 
article also uncovers general and modality specific challenges to perform biomedical image 
segmentation and make the researchers or readers reap the most benefits from the current 
advancements in U-Net and aid in further contributions towards the research in this area.

1.2 � Review process

The basis of including a research article in this survey is that the article describes the 
research on U-Net based biomedical image segmentation. The articles confirming vivid 
architectures or frameworks are only included if the authors claimed certain advance-
ments or novel contributions, whereas articles with pure discussions are excluded; for-
tunately, such articles are limited and hence will not affect the outcome of this survey. 
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The search for the articles is performed on Google Scholar, which is one of the best aca-
demic search engine (SearchEngines 2020), where relevant articles are identified using 
the search string, SS1 as shown in Table 3. Among the acquired papers, the high qual-
ity journals or conferences are confirmed by analyzing its impact factor (high), h-index 
(high), peer-review process (transparent), indexing (MEDLINE, Elsevier Scopus and 
EMBASE, Clarivate Analytics Web of Science, Science Citation Index, etc.) and sci-
entific rigor. These reputed journals are identified from the ranked list, CORE (CORE 
2020). However, some articles are also included from popular preprint servers such as 
arXiv. With such a huge pool of acquired articles, the most relevant articles are filtered 
with a thorough examination (journal or conference quality, cite score and contribution) 
to include in this survey. These articles are analysed by categorizing it in one of the 
proposed classes and highlighting the architectural design of U-Net variant along with 
the achieved results and further possible improvements to address modality specific seg-
mentation challenges.

1.3 � Research trend in BIS

A comparative literature exploration is conducted on the Google Scholar search engine 
using the search strings, SS2 and SS3, as shown in Table 3. The number of BIS approaches 
without U-Net are acquired by subtracting the number of BIS U-Net articles from the pool 
of BIS articles, to understand the latest trend of research. Fig. 1 illustrates that the latest 
approaches are developed by employing the U-Net framework while experiencing expo-
nential growth every year. In order to analyse such trend, this article aims to provide an 
exhaustive review of the variants of U-Net architectural design developed for segmenta-
tion. It is evident that the U-Net model incorporates the huge potential for further advance-
ments due to its mutable and modular structure that would result in a state-of-the-art diag-
nosis system.

1.4 � Article structure

The remaining portion of the article is divided into several sections, where Sect. 2 presents 
the overview of biomedical image analysis and in Sects.  3,  4 and  5 the comprehensive 
analysis of U-Net variants is presented that covers implementation strategies and advance-
ments. Later, Sect. 6 presents the observations concerned with the current advancements in 

Table 1   Medical imaging approaches for diagnosis

Imaging type Approach Usecase Duration (in min.)

MRI Magnetic fields and 
radio waves

Multiple sclerosis, stroke, tumors, spinal cord 
disorders, etc.

45–60

X-ray Ionizing radiation Fractures, arthritis, osteoporosis, breast 
cancer, etc.

10–15

CT/CAT​ Ionizing radiation Trauma injuries, tumors and cancers, vascular 
and heart diseases, etc.

10–15

US Sound waves Gallbladder illness, breast lumps, genital 
disorder, joint problems, etc.

30–60

PET Radioactive tracer Alzheimer, epilepsy, seizures, parkinsons’ 
disease, etc.

90–120
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U-Net based approaches, followed by the scope and challenges in Sect. 7 and concluding 
remarks in Sect. 8.

2 � Biomedical image analysis

The success of deep learning in image analysis has encouraged biomedical imaging 
researchers to investigate its potential in analyzing various medical modalities to aid clini-
cians in faster diagnosis and treatment of diseases or infections like the ongoing pandemic 
of SARS-CoV-2 (COVID-19). Following the deep learning usecases, the implication of 
classification can ascertain the presence or absence of disease in some modality e.g. the 
ground glass opacification (GGO) in the lungs via CT imaging. Furthermore, in localiza-
tion, normal anatomy can be identified e.g. lungs in the CT or X-ray imaging, and later 
segmentation can generate refined boundaries around the GGOs to understand its impact 
on the anatomical structures for further analysis. Since, segmentation is an extension to 

Table 2   Summary of existing review articles for biomedical image analysis

Author Contribution

Havaei et al. (2016) Reviews CNN based approaches along with the key challenges for brain 
pathology segmentation using MRI such as tumor, lesion, etc.

Razzak et al. (2018) Explores the potential of deep learning based approaches for various medical 
imaging applications across different modalities.

Hesamian et al. (2019) Investigates state-of-the-art deep learning techniques for medical image 
segmentation along with the network training techniques and state-of-the-art 
solutions to the challenges.

Taghanaki et al. (2021) Covers the comprehensive analysis of deep learning approaches in the segmen-
tation of natural and medical images with different categories and applica-
tions.

Zhou et al. (2019b) Explores multi-modality fusion based approaches for medical image segmenta-
tion.

Chen et al. (2020) Reviews deep learning approaches for cardiac image segmentation using ultra-
sound, CT and MRI imaging along with the various techniques to address the 
challenges.

Haque and Neubert (2020) Presents literature survey of deep learning technologies for biomedical image 
segmentation with different modalities.

Lei et al. (2020) Reviews various deep learning models for medical image segmentation with 
supervised and weakly supervised learning aspects.

Renard et al. (2020) Emphasizes the variability and reproducibility of the deep learning approaches 
for medical image segmentation.

Table 3   Search strings to acquire research papers and analyse research trend using GoogleScholar

No. Search string Queried date Year No. of papers

SS1 (U-Net segmentation CT OR X-ray OR PET 
OR US OR MRI)

November 10, 2021 2015-21 32,530

SS2 (biomedical image segmentation) November 10, 2021 2015-21 172,190
SS3 (biomedical image segmentation "U-Net") November 10, 2021 2015-21 38,900
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classification, localization or detection, it offers very rich information about the disease and 
infected regions. With this interest, many architectures have been proposed for the segmen-
tation of the targeted regions from vivid modalities (Haque and Neubert 2020). In addition, 
segmentation is the most widely researched application of deep learning in biomedical 
image analysis  (Litjens et al. 2017), where U-Net based segmentation architectures have 
gained significant popularity to develop computer-aided diagnosis (CAD) systems.

2.1 � Rise of segmentation architectures

Despite the advancements in deep learning, segmentation is still one of the challenging 
tasks due to the varying dimensions, shape and locale of the target tissues. Tradition-
ally, the segmentation process was carried manually by expert clinicians to illuminate the 
regions of interest in the whole volume of samples, thereby it is ideal to automate this 
process for faster diagnosis and treatment. In recent years, various deep learning models 
are developed for BIS that are categorized into manual, semi-automatic and fully auto-
matic approaches (Haque and Neubert 2020). Fig. 2 presents the schematic representation 
of the pipeline of the recent deep learning based segmentation frameworks for biomedi-
cal images, which is divided into data preprocessing (Bhattacharyya 2011), deep learning 
model  (Minaee et al. 2020), and post-processing  (Zhou et al. 2019a; Christ et al. 2016). 
In the data preprocessing stage, the data undergoes a certain set of operations like resize 
and normalization to reduce the intensity variation in the image samples, augmentation 
to generate more training samples for avoiding the class biasness and overfitting prob-
lem, removal of irrelevant artefacts or noise from the data samples, etc. The pre-processed 
data is then fed to train the deep neural segmentation network, where mostly U-Net based 
architectures are deployed. The output of the network undergoes post-processing with 
techniques such as morphological and conditional random field based feature extraction to 
refine the final segmentation results.

Initiated from the sliding window approach by Ciresan et  al. (2012) to classify each 
pixel while also localizing the regions using patch based input, the model outperformed 
in the ISBI 2012 challenge; however, the training was slow because of a large number of 
overlapping patches and also lacked the balance of context and localization accuracy. Long 
et al. (2015) proposed fully convolutional neural network (FCN) for semantic segmenta-
tion, defined on the state-of-the-art classification networks like Alex-Net, VGG-Net and 
Google-Net. This model can process images of arbitrary size and produce the segmentation 
mask of same size by using deconvolution; however, it does not utilize global information 
context and hence generates fuzzy segmentation masks. Later, the U-Net model proposed 
by Ronneberger et al. (2015), consists of FCN along with the contraction-expansion paths 
and skip connections to gradually adapt the long-range affinities. The contraction phase 

Fig. 1   Research trend in biomedical image segmentation per year
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tends to extract high and low level features, whereas the expansion phase follows from 
the features learned in the corresponding contraction phase (skip connections) to recon-
struct the image into the desired dimensions with the help of transposed convolutions or 
upsampling operations. The U-Net model won the ISBI 2015 challenge and outperformed 
its predecessors. Later, a similar approach is proposed by Çiçek et al. (2016) in the three 
dimensional feature space to perform volumetric segmentation of Xenopus kidney and 
achieved promising results. Following from the state-of-the-art potential of the U-Net 
model, many variants have been proposed based on the variation in the convolution and 
pooling operations, skip connections, the arrangement of the components in each layer and 
hybrid approaches that make use of the state-of-the-art deep learning models, to tackle the 
challenges associated with different applications.

2.1.1 � U‑Net

With the sense of segmentation being a classification task where every pixel is classified 
as being part of the target region or background, Ronneberger et  al. (2015) proposed a 
U-Net model to distinguish every pixel, where input is encoded and decoded to produce 
output with the same resolution as input. As shown in Fig. 3, the symmetrical arrangement 
of encoder-decoder blocks efficiently extracts and concatenates multi-scale feature maps, 
where encoded features are propagated to decoder blocks via skip connections and a bot-
tleneck layer.

The encoder block (contraction path) consists of a series of operations involving valid 
3 × 3 convolution followed by a ReLU activation function (as shown in Fig. 4(a)), where 
a 1-pixel border is lost to enable processing of the large images in individual tiles. The 
obtained feature maps from the combination of convolution and ReLU are downsampled 
with the help of max pooling operation, as illustrated in Fig. 4(b). Later, the number of 
feature channels are increased by a factor of 2, following each layer of convolution, acti-
vation and max pooling, while resulting in spatial contraction of the feature maps. The 
extracted feature maps are propagated to decoder block via bottleneck layer that uses cas-
caded convolution layers. The decoder block (expansion path) consists of sequences of up-
convolutions (as shown in Fig. 4(c)) and concatenation with high-resolution features from 
the corresponding encoded layer. The up-convolution operation uses the kernel to map 
each feature vector to the 2 × 2 pixel output window followed by a ReLU activation func-
tion. Finally, the output layer generates a segmentation mask with two channels compris-
ing background and foreground classes. In addition, the authors addressed the challenge to 
segregate the touching or overlapping regions by inserting the background pixels between 

Fig. 2   Schematic representation of deep learning based segmentation architectures
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the objects and assigning an individual loss weight to each pixel. This energy function is 
represented as a pixel-wise weighted cross entropy function as shown in Eq. 1. The authors 
established the state-of-the-art results by winning the ISBI 2015 challenge.

where softmax, pk(x) = exp(ak(x))∕
�

∑K

k�=1
exp(ak� (x))

�

 with activation, ak(x) for channel k 
and pixel x ∈ � with � ∈ ℤ

2 , wc is the weight map, d1 and d2 are the distances to the near-
est and the second nearest boundary pixels, and wo and � are constants.

2.1.2 � Other than U‑Net

U-Net is the most suitable segmentation model in the area of biomedical image analysis 
because of its ability to simultaneously combine high and low level information which 
helps to extract complex features and improve accuracy, respectively. However, there are 
various other deep learning based models that are utilized for segmentation such as FCN 
(Long et  al. 2015), DeepLab (Chen et  al. 2017a), SegNet (Badrinarayanan et  al. 2017), 
mask R-CNN (He et al. 2017), etc.

Long et al. (2015) introduced FCN that has set the foundation of segmentation archi-
tectures across various domains. In contrast to classical CNN models (VGG, ResNet, etc.) 
where fully connected layers are employed to categories an entire image, FCN uses 1 × 1 
convolution layers to perform pixel level classification and generate segmentation mask 
by upsampling the feature maps of the last convolution layer via deconvolution layer. 
However, with this arrangement of operations the generated masks are relatively fuzzy 
and insensitive to the global context information (Minaee et al. 2020). Unlike FCN which 
uses deconvolution to upsample the feature maps, SegNet (Badrinarayanan et al. 2017) is 
designed as a symmetric encoder-decoder structure, where encoder block uses VGG16 

(1)E =
∑

x∈�

(

wc(x) + w0 ⋅ exp

(

−
(d1(x) + d2(x))

2

2�2

))

log(p
𝓁(x)(x))

Fig. 3   U-Net architecture
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network topology for feature extraction and a corresponding decoder block uses max pool-
ing indices that are transferred from encoder to decoder blocks, to generate sparse upsam-
pled feature map without using any training parameters. However, this arrangement of 
operations ignores the pixel adjacent information especially during upsampling of low 
dimensional feature maps. U-Net addresses this issue by transferring the entire feature 
map from encoder to decoder during upsampling, but at the cost of more memory require-
ment; however, it can be neglected due to the significant improvements in the segmentation 
results.

Inspired from the potential of faster R-CNN model (Ren et al. 2015) to perform object 
detection, He et al. (2017) proposed mask R-CNN model to further refine the object bound-
aries for segmentation by first computing the object detection with bounding boxes, pre-
dicting the associated classes and finally computing the binary mask to segment objects. 
Vuola et  al. (2019) analysed mask R-CNN model for nuclei segmentation, where the 
network accurately detected nuclei with bounding boxes but struggles to generate a bet-
ter segmentation mask. Following this, the authors integrated mask R-CNN with U-Net to 
improve the overall segmentation performance.

DeepLab is another family of segmentation models that have improved over the years, 
where each phase of enhancement is named as DeepLabv1  (Chen et  al. 2014), Deep-
Labv2 (Chen et al. 2017a), DeepLabv3 (Chen et al. 2017b) and DeepLabv3+ (Chen et al. 
2018a). DeepLabv1 model uses VGG16 model, where fully connected layers are removed 
and pooling layers are replaced with atrous convolution. DeepLabv2 model address the 
difficulty of the DeepLabv1 model to segment the same objects with different sizes in 
an image by using ResNet101 as the backbone model and atrous spatial pyramid pool-
ing (ASPP) to capture the multi-scale context of the objects in an image. To further refine 
the results, in DeepLabv3 parallel or cascaded atrous convolution block is designed with 
multiple dilation rates to better capture multi-scale context. DeepLabv3+ further extends 
the DeepLabv3 with a decoder block to improve the segmentation results. It uses feature 
maps from the middle layer and the Xception model for segmentation. Moreover, it also 
uses depthwise separable convolutions with ASPP to reduce the training parameters. In 
most of the U-Net variants, these modules are integrated with the network to achieve better 
segmentation results.

Fig. 4   Summary of operations in U-Net. (a) 3 × 3 convolution + ReLU, (b) 2 × 2 max-pooling and (c) 2 × 2 
up-convolution operation
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2.1.3 � Implementation strategies

The implementation strategies of segmentation architectures can be divided into two cat-
egories: 1) training from scratch and 2) training using a pre-trained model (also known 
as transfer learning). In first approach (as shown in Fig. 5(a)), an entire model is trained 
in which training parameters are initialized with Xavier initialization (Glorot and Bengio 
2010) or Kaming initialization  (He et  al. 2015a). Due to which this approach requires a 
large number of labelled data samples to optimize the training parameters and learn the 
desired task. Hence, this approach requires intensive time and effort to develop and train 
the model. In the transfer learning paradigm, as simulated in Fig. 6, a pre-trained model 
(models trained on benchmark datasets such as ImageNet) is utilized as a backbone model 
to train on different data involving similar or different tasks such as object detection and 
image segmentation. As shown in Fig. 5(b) and Fig. 5(c), the transfer learning or domain 
adaptation can be applied in two schemes, either freezing the base model and training the 
later layers for prediction, or semi-freezing the base model, where few high level layers are 
retrained along with the prediction layers. The transfer learning approach typically pro-
duces better results than the random initialization of the training parameters (Garcia-Garcia 
et al. 2018).

2.1.4 � Performance metrics

The performance metrics are the key factors to evaluate and compare the segmentation 
performance of the models. Due to the unavailability of the standard metrics, each system 
requires an appropriate and different selection of metrics that can quantify time, computa-
tional and memory space requirements and overall performance (Fenster and Chiu 2006). 
Table 4 presents the most popular evaluation metrics that are utilized to analyse the perfor-
mance in BIS models. In BIS, mostly the datasets are imbalanced i.e. the number of pixels/
voxels concerning the target region (region of interest) are relatively less than the dark pix-
els/voxels (background region), due to which the metrics such as accuracy, which are best 
suited for a balanced distribution of data samples, are not recommended for BIS evaluation 
of the models. Among the discussed metrics intersection-over-union (IoU or Jaccard index) 
and dice similarity coefficient are the most widely used evaluation metrics in BIS for vari-
ous modalities. More details can be found in the recent review articles (Haque and Neubert 
2020; Minaee et al. 2020).

2.1.5 � Loss functions

The loss functions or objective functions drive the training procedure of the deep learning 
models. For the BIS task, loss functions are tuned to alleviate the above discussed class 
imbalance problem by refining the distributions of the training data. With each dataset 
introducing its complexities and challenges, the loss functions are grouped into four cat-
egories based on the distribution, region, boundary and hybrid  (Ma 2020), as shown in 
Table 5, along with their respective usecases. For ease in representation, the loss functions 
are summarized for the semantic segmentation scenario, where the number of classes is 
limited to two (background and target region). The effect of these loss functions for bio-
medical image segmentation using various modalities over nnU-Net model (Isensee et al. 
2021) is explored by Nasalwai et al. (2021), and also proposed an accelerated tversky loss 
(ATL) function to achieve faster model training or convergence.
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3 � U‑Net variants for medical imaging

The numerous development in medical imaging acquisition systems and deep learning 
technologies have resulted in the rise of usage frequency of modalities for computer-aided 
diagnosis. Despite vanilla U-Net being super-efficient in the ISBI cell tracking challenge, 
there is still a void to fill with improvements in certain aspects. The most apparent prob-
lem in the vanilla U-Net is that the learning may slow down in deeper layers of the U-Net 
model which increases the possibility of the network ignoring the layers representing 
abstract features of the target structure. This slack in the learning process is due to the gen-
eration of diluted gradients in the deeper layers. Another major issue is concerned with the 
localized convolutions which tend to limit the capability of the model to efficiently capture 
global and long-range dependencies. Furthermore, the distinct challenges (discussed in a 
later section) introduced in performing segmentation using different modalities needs to be 
addressed; however, it is not optimal with vanilla U-Net. Following this context, various 
U-Net variants are proposed to improve the segmentation performance across vivid modal-
ities. To establish a better understanding of these variants, the present review performs: 1) 
inter-modality categorization - to show variation in the segmentation approaches across the 
different modalities (X-ray, CT, MRI, PET and ultrasound), and 2) intra-modality categori-
zation - to group each U-Net variant within the same modality based on its most profound 
technical contribution (better U-Nets, attention U-Nets, inception U-Nets and ensemble 
U-Nets), as shown in Fig. 7. Within each modality, a similar type of categorization is per-
formed to better distinguish the type of approaches introduced for each modality. In the 
case where a U-Net variant uses multiple modifications, then based on its most profound 

Fig. 5   Typical approaches for model training

Fig. 6   Illustration of transfer learning approach to adapt to new task
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Table 4   Summary of performance metrics for BIS in terms of number of true positive (TP), true negative 
(TN), false positive (FP) and false negative (FN), predicted mask ( P ) and ground truth ( G ), H(X,Y) is the 
directed AHD from X to Y with d as euclidean distance, Vp and Vg refer to the volumes of generated and 
reference segmentation

Metric Expression

Accuracy A =
(TP+TN)

(TP+TN+FP+FN)

Precision P =
TP

(TP+FP)

Recall R =
(TP)

(TP+FN)

F1-score F1 = 2 ×
(P×R)

(P+R)

Specificity S =
TN

(TN+FP)

Dice similarity coefficient DSC =
2×|P∩G|

|P|+|G|
=

2TP

2TP+FP+FN

Intersection-over-union IoU =
P∩G

P∪G
=

TP

TP+FP+FN

Average Hausdo-rff distance AHD =
1

2

(

H(P,G)

P
+

H(G,P)

G

)

=
1

2

�

1

P

∑

p∈P ming∈G d(p, g) +
1

G

∑

g∈G minp∈P d(p, g)
�

Absolute Volume Difference AVD =
|Vp−Vg|

Vg

× 100

Table 5   Summary of the most widely used loss functions for biomedical image segmentation with respect 
to the predicted mask ( P ) and ground truth mask ( G ), � and � as constants, h is Hausdorff distance and d is 
the operator for Euclidean distance

BCE binary cross-entropy, WCE weighted cross-entropy, BaCE balanced cross-entropy, DSC dice similarity 
coefficient, IoU intersection-over-union, SS sensitivity-specificity, HD Hausdorff distance, SA shape-aware, 
EL exponential-logarithmic

Type Objective functions Usecase

Distribution LBCE = −(glog(p) + (1 − g)log(1 − p)) Balanced distribution of data
LWCE = −(�.glog(p) + (1 − g)log(1 − p)) Skewed dataset
LBaCE = −(�glog(p) + (1 − �)(1 − g)log(1 − p)) Skewed dataset

LFocal =

{

− �(1 − p)� log(p), if g = 1

− (1 − �)(p)� log(1 − p), otherwise

Focuses on hard samples

Region LDSC = 1 −
2gp+1

g+p+1
Widely used for segmentation

LIoU = 1 −
gp

g+p−gp
Widely used for segmentation

LSS = � ∗ sensitivity + (1 − �) ∗ specif icity Focuses to improve true positive rate

LTversky = 1 −
1+gp

1+gp+�(1−g)p+(1−�)g(1−p)
Introduces weights for false predictions

Boundary
LHD =

1

N

∑N

i=0

�

(pi − gi)
2.(h2

pi
+ h2

gi
)
�

Widely used for segmentation

LSA = −
∑

i CE(pi, gi) −
∑

i �id(P,G)CE(pi, gi) Focuses to segment boundaries of the 
regions

Compound LCombo = �LBaCE(g, p) − (1 − �)LDSC(g, p) Leverages features of BaCE and DSC for 
skewed data

LEL = �DSCe
(−ln(LDSC )

� ) + �CE e
(−ln(LCE )

� ) Focuses on less accurate predictions
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enhancement or technical contribution it is added in that category, e.g. RCA-IUnet model 
(Punn and Agarwal 2021b) for breast cancer segmentation using ultrasound imaging, uses 
residual cross-spatial attention and inception convolutions, is categorized as an atten-
tion U-Net variant under ultrasound modality. Each of the intra-modality categories are 
described as follows:

–	 Better U-Nets (BU): This category consists of U-Net models that are better than raw 
U-Net model by slight modifications such as integrating with FCN or SegNet models, 
transfer learning, dense or residual blocks, multi-stage training, multi-tasking, etc.

–	 Attention U-Nets (AU): These are the approaches with variation in the attention mecha-
nism of the feature maps to filter the relevant features such as spatial and channel atten-
tion, mixed attention, non-local attention, etc.

–	 Inception U-Nets (IU): These are the approaches that use multi-scale feature fusion 
strategies to effectively learn the feature representations.

–	 Ensemble U-Nets (EU): These are the approaches that use multiple models or sub-mod-
els with or without the other enhancements to improve the segmentation performance.

Hence, for faster and efficient computer-aided diagnosis practices, the following sections 
present wide varieties of U-Net based approaches for biomedical image segmentation using 
various modalities. Table 6 summarizes the various U-Net variants reviewed in the follow-
ing sections.

3.1 � X‑ray

In radiology, X-ray imaging is utilized as a diagnostic procedure of human bones and tis-
sues. X-ray possesses the properties of penetrability, photographic effect and fluorescence 
effect. Human body tissues vary in density and thickness due to which X-rays are absorbed 
with different degrees, resulting in black and white contrast images (Bercovich and Javitt 

Fig. 7   Categorization scheme for U-Net variants
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2018). The wide and easy availability of X-ray imaging has encouraged the research com-
munity to contribute towards smart diagnosis systems.

3.1.1 � Better U‑Nets

The segmentation of lungs from chest X-ray (CXR) imaging is a crucial step for any CAD 
system. Following this, Rashid et al. (2018) exploits the potential of U-Net model to gener-
ate the segmentation masks of the lungs from CXR images, where the produced masks are 
iteratively refined with post-processing techniques such as flood fill algorithm and mor-
phological operations. Significant improvement is observed as compared to traditional seg-
mentation approaches such as adaptive region growing, edge detection, statistical shape 
models, etc., over multiple datasets. To further improve segmentation performance, Frid-
Adar et  al. (2018a) employed a pre-trained VGG-16 model in the encoder phase, where 
the decoder or the expansion phase uses upsampling and standard convolution opera-
tions sequentially for multi-class segmentation involving anatomical structures like lungs 
field, heart and clavicles in chest X-ray samples. While training, the pre-trained weights 
are fine-tuned to better extract or encode the desired features of the target classes. Unlike 
the approach by Rashid et al. (2018), this model with transfer learning achieved promising 
results without any post-processing overhead. Besides, the authors also analysed the pro-
posed model with multiple loss functions like DSC, IoU, Tversky and BCE, where the use 
of DSC produced the best results.

In another work, Abedalla et  al. (2020) proposed a deep learning framework 2STU-
Net to perform segmentation of pneumothorax (collapsed lung) in the CXR samples. It 
comprises a state-of-the-art residual network (ResNet-34) that is pre-trained on the Ima-
geNet dataset and arranged in the U-Net topology. Similar to the work by Frid-Adar et al. 
(2018a), the encoder is built with ResNet-34 (He et al. 2016a) by removing the last lay-
ers, whereas the decoder follows standard blocks of CNN with upsampling. Initially, the 
data is pre-processed to produce images of dimensions 256 × 256 and 512 × 512 for 2 
stage training scheme and multi-scale feature learning. The ResNet34U-Net is first trained 
with lower resolution images and later the same model is fine-tuned (keeping previously 
learned weights as initial weights) to adapt high resolution images. The authors also uti-
lized stochastic weight averaging (SWA) and test-time augmentation (TTA) techniques to 
improve the test results. The significance of 2 stage training is justified with the faster con-
vergence of the second training stage and better segmentation results, thereby highlight-
ing the effectiveness of multi-scale feature representation learning. However, the overall 
training overhead is increased due to two stage training. Wang et al. (2020a) synthesized a 
CXR dataset annotated with clavicles, anterior ribs, posterior ribs and bones, on which a 
multi-task dense connection U-Net (MDU-Net) is trained for multi-class segmentation. A 
feature separation network is introduced for multi-label segmentation where a pixel value 
is associated with more than one label e.g. the pixels in the overlapped regions of anterior 
and posterior ribs have multiple tags. For every CXR image, multiple masks are generated 
concerning different annotations, thereby multiple networks are trained to generate the cor-
responding mask. The implication of increased training time is addressed with the help of 
transfer learning, where the network uses a pre-trained DenseNet201 (Huang et al. 2017) 
model for feature extraction. However, due to the 2D projection of X-ray imaging, each 
annotated mask also covers features representing other masks categories which may devi-
ate the network from learning the class specific feature representations.



5858	 N. S. Punn, S. Agarwal 

1 3

Ta
bl

e 
6  

S
um

m
ar

y 
of

 p
op

ul
ar

 U
-N

et
 v

ar
ia

nt
s f

or
 B

IS

A
ut

ho
r

U
-N

et
 v

ar
ia

nt
M

od
al

ity
TL

SL
Pr

Po
C

at
eg

or
y

D
es

cr
ip

tio
n

D
on

g 
et

 a
l. 

(2
01

7)
M

od
ifi

ed
 U

-N
et

M
R

I
–

✓
✓

–
B

U
FC

N
 b

as
ed

 U
-N

et
R

as
hi

d 
et

 a
l. 

(2
01

8)
M

od
ifi

ed
 U

-N
et

X
-r

ay
–

✓
✓

✓
B

U
FC

N
 b

as
ed

 U
-N

et
Fr

id
-A

da
r e

t a
l. 

(2
01

8a
)

M
od

ifi
ed

 U
-N

et
X

-r
ay

✓
–

✓
–

B
U

U
-N

et
 w

ith
 p

re
-tr

ai
ne

d 
V

G
G

-1
6 

en
co

de
r

Q
ue

 e
t a

l. 
(2

01
8)

C
ar

di
oX

N
et

 fr
am

ew
or

k
X

-r
ay

–
✓

✓
✓

EU
Tw

o 
pa

ra
lle

l U
-N

et
 m

od
el

s w
ith

 b
in

ar
y 

co
nt

ou
rs

O
kt

ay
 e

t a
l. 

(2
01

8)
A

tte
nt

io
n 

U
-N

et
C

T
–

✓
✓

–
A

U
A

tte
nt

io
n 

sk
ip

-c
on

ne
ct

io
ns

K
oh

l e
t a

l. 
(2

01
8)

Pr
ob

ab
ili

sti
c 

U
-N

et
C

T
–

✓
–

–
EU

U
-N

et
 w

ith
 c

on
di

tio
na

l v
ar

ia
tio

na
l a

ut
oe

nc
od

er
To

ng
 e

t a
l. 

(2
01

8)
Im

pr
ov

ed
 U

-N
et

C
T

–
✓

✓
–

B
U

M
in

i-r
es

id
ua

l c
on

ne
ct

io
ns

 w
ith

in
 e

nc
od

er
-d

ec
od

er
 p

ha
se

s
Ja

ns
se

ns
 e

t a
l. 

(2
01

8)
Tw

o 
st

ag
e 

U
-N

et
 m

od
el

C
T

–
✓

✓
–

EU
3D

 F
C

N
 L

oc
al

iz
at

io
nN

et
 fo

llo
w

ed
 b

y 
Se

gm
en

ta
tio

nN
et

K
um

ar
 e

t a
l. 

(2
01

8)
U

-S
eg

N
et

M
R

I
✓

–
✓

–
B

U
In

te
gr

at
io

n 
of

 sk
ip

 c
on

ne
ct

io
ns

 w
ith

 S
eg

N
et

K
er

m
i e

t a
l. 

(2
01

8)
Re

si
du

al
 U

-N
et

M
R

I
–

✓
✓

–
B

U
Re

si
du

al
 b

lo
ck

s b
et

w
ee

n 
tw

o 
co

nv
ol

ut
io

n 
la

ye
rs

C
he

n 
et

 a
l. 

(2
01

8b
)

S3
D

U
-N

et
M

R
I

–
✓

✓
–

IU
U

-N
et

 w
ith

 sp
at

io
te

m
po

ra
l s

ep
ar

ab
le

 c
on

vo
lu

tio
n

B
la

nc
-D

ur
an

d 
et

 a
l. 

(2
01

8)
Va

ni
lla

 3
D

 U
-N

et
PE

T
–

✓
✓

✓
B

U
C

N
N

 b
as

ed
 3

D
 U

-N
et

Zh
ao

 e
t a

l. 
(2

01
8)

3D
 F

C
N

PE
T

–
✓

✓
–

IU
3D

 F
C

N
 m

ul
ti-

m
od

al
 fu

si
on

 n
et

w
or

k
A

lm
aj

al
id

 e
t a

l. 
(2

01
8)

U
-N

et
 +

 S
R

A
D

U
S

–
✓

✓
✓

B
U

B
as

e 
U

-N
et

 w
ith

 sp
ec

kl
e 

re
du

ci
ng

 a
ni

so
tro

pi
c 

di
ffu

si
on

W
an

g 
et

 a
l. 

(2
01

8b
)

cU
-N

et
U

S
–

✓
✓

–
EU

C
la

ss
ifi

ca
tio

n 
an

d 
se

gm
en

ta
tio

n 
U

-N
et

A
lo

m
 e

t a
l. 

(2
01

8)
R

2U
-N

et
M

ul
ti-

m
od

al
ity

–
✓

✓
✓

B
U

Re
cu

rr
en

t R
es

id
ua

l c
on

vo
lu

tio
na

l n
eu

ra
l n

et
w

or
k 

ba
se

d 
on

 U
-N

et
 

(R
2U

-N
et

)
Zh

ou
 e

t a
l. 

(2
01

8a
)

U
N

et
+

+
M

ul
ti-

m
od

al
ity

–
✓

✓
–

B
U

N
es

te
d 

U
-N

et
 m

od
el

Su
br

am
an

ia
n 

et
 a

l. 
(2

01
9)

C
V

C
 fr

am
ew

or
k

X
-r

ay
✓

–
–

–
EU

Tw
o 

pa
ra

lle
l U

-N
et

 m
od

el
s w

ith
 sp

at
ia

l p
rio

rs
 a

nd
 p

re
-tr

ai
ne

d 
N

N
-R

F
Li

 e
t a

l. 
(2

01
9a

)
U

-N
et

 b
as

ed
 fr

am
ew

or
k

X
-r

ay
✓

–
✓

✓
A

U
SE

 a
nd

 re
si

du
al

 b
as

ed
 a

tte
nt

io
n 

C
N

N
D

on
g 

et
 a

l. 
(2

01
9b

)
U

-N
et

-G
A

N
C

T
–

✓
✓

–
EU

U
-N

et
 a

ct
 a

s a
 g

en
er

at
or

 a
nd

 F
C

N
 a

s d
is

cr
im

in
at

or
 n

et
w

or
k

Li
u 

et
 a

l. 
(2

01
9c

)
G

IU
-N

et
C

T
–

✓
✓

✓
EU

D
ee

pe
r U

-N
et

 m
od

el
 w

ith
 g

ra
ph

 c
ut

 a
lg

or
ith

m
M

an
 e

t a
l. 

(2
01

9)
G

A
U

-N
et

C
T

✓
–

✓
–

A
U

D
ef

or
m

ab
le

 g
eo

m
et

ry
-a

w
ar

e 
U

-N
et

 w
ith

 d
ee

p 
Q

 le
ar

ni
ng

Se
o 

et
 a

l. 
(2

01
9)

m
U

-N
et

C
T

–
✓

–
–

A
U

O
bj

ec
t d

ep
en

de
nt

 fi
lte

rs
 in

 sk
ip

 c
on

ne
ct

io
ns

H
ia

sa
 e

t a
l. 

(2
01

9)
B

ay
es

ia
n 

U
-N

et
C

T
–

✓
✓

✓
EU

C
as

ca
de

d 
U

-N
et

 a
nd

 B
ay

es
ia

n 
U

-N
et

 m
od

el
s

So
ng

 e
t a

l. 
(2

01
9)

U
-N

eX
t

C
T

–
✓

✓
–

A
U

U
-N

et
 m

od
el

 w
ith

 a
tte

nt
io

n 
bl

oc
ks

, S
ki

pS
PP

 a
nd

 d
en

se
 c

on
vo

lu
tio

ns



5859Modality specific U‑Net variants for biomedical image…

1 3

Ta
bl

e 
6  

(c
on

tin
ue

d)

A
ut

ho
r

U
-N

et
 v

ar
ia

nt
M

od
al

ity
TL

SL
Pr

Po
C

at
eg

or
y

D
es

cr
ip

tio
n

Ru
nd

o 
et

 a
l. 

(2
01

9)
U

SE
-N

et
M

R
I

–
✓

✓
✓

A
U

U
-N

et
 m

od
el

 w
ith

 th
e 

sq
ue

ez
e-

an
d-

ex
ci

ta
tio

n 
bl

oc
ks

W
an

g 
et

 a
l. 

(2
01

9b
)

M
SU

-N
et

M
R

I
–

✓
✓

–
IU

M
ul

tis
ca

le
 st

at
ist

ic
al

 U
-N

et
D

on
g 

et
 a

l. 
(2

01
9a

)
D

A
U

-N
et

M
R

I
–

✓
-

-
A

U
D

ee
p 

at
te

nt
io

n 
U

-N
et

 w
ith

 d
ee

p 
su

pe
rv

is
io

n
W

an
g 

et
 a

l. 
(2

01
9a

)
3D

 D
SD

-F
C

N
M

R
I

–
✓

✓
✓

EU
3D

 F
C

N
 w

ith
 d

ee
p 

su
pe

rv
is

io
n 

an
d 

gr
ou

p 
di

la
tio

n
G

uo
 e

t a
l. 

(2
01

9)
3D

 D
en

se
 U

-N
et

PE
T

–
✓

✓
–

IU
3D

 U
-N

et
 w

ith
 d

en
se

 c
on

vo
lu

tio
n 

fu
si

on
 b

lo
ck

s
Ya

ng
 e

t a
l. 

(2
01

9)
D

PU
-N

et
U

S
–

✓
✓

–
IU

D
ua

l p
at

h 
U

-N
et

 w
ith

 p
ar

al
le

l m
ul

ti-
br

an
ch

 e
nc

od
in

g 
an

d 
de

co
di

ng
Li

 e
t a

l. 
(2

01
9b

)
D

U
-N

et
U

S
–

✓
✓

✓
B

U
D

en
se

 c
on

vo
lu

tio
n 

U
-N

et
Li

n 
et

 a
l. 

(2
01

9)
SS

U
-N

et
U

S
–

✓
✓

–
A

U
Se

m
an

tic
-e

m
be

dd
in

g 
an

d 
sh

ap
e-

aw
ar

e 
U

-n
et

A
za

d 
et

 a
l. 

(2
01

9)
B

C
D

U
-N

et
M

ul
ti-

m
od

al
ity

–
✓

✓
–

B
U

B
i-d

ire
ct

io
na

l C
on

vL
ST

M
 U

-N
et

 w
ith

 d
en

sl
ey

 c
on

ne
ct

ed
 c

on
vo

lu
-

tio
ns

G
u 

et
 a

l. 
(2

01
9)

C
E-

N
et

M
ul

ti-
m

od
al

ity
✓

-
✓

–
IU

U
-N

et
 b

as
ed

 c
on

te
xt

 e
nc

od
er

 n
et

w
or

k
A

be
da

lla
 e

t a
l. 

(2
02

0)
2S

TU
-N

et
X

-r
ay

✓
-

✓
✓

B
U

Tw
o 

st
ag

e 
U

-N
et

 w
ith

 p
re

-tr
ai

ne
d 

Re
sN

et
-3

4 
m

od
el

Zh
an

g 
et

 a
l. 

(2
02

0a
)

D
EF

U
-N

et
X

-r
ay

-
✓

✓
-

IU
U

-N
et

 w
ith

 e
nc

od
er

 fu
si

on
 o

f d
en

se
 a

nd
 in

ce
pt

io
n 

C
N

N
W

an
g 

et
 a

l. 
(2

02
0a

)
M

D
U

-N
et

X
-r

ay
✓

-
✓

-
B

U
M

ul
ti-

ta
sk

 d
en

se
 c

on
ne

ct
io

n 
U

-N
et

Pa
rk

 e
t a

l. 
(2

02
0)

3D
 U

-N
et

C
T

-
✓

✓
✓

B
U

3D
 U

-N
et

 w
ith

 se
gm

en
ta

tio
n 

er
ro

r c
or

re
ct

io
n

Fa
n 

et
 a

l. 
(2

02
0b

)
M

A
-N

et
C

T
-

✓
✓

-
A

U
U

-N
et

 b
as

ed
 m

ul
ti-

sc
al

e 
at

te
nt

io
n 

m
od

el
D

on
g 

et
 a

l. 
(2

02
0)

D
eU

-N
et

M
R

I
-

✓
✓

-
A

U
3D

 d
ef

or
m

ab
le

 a
tte

nt
io

n 
U

-N
et

Pu
nn

 a
nd

 A
ga

rw
al

 (2
02

0d
)

3D
 in

ce
pt

io
n 

U
-N

et
M

R
I

-
✓

✓
-

EU
3D

 in
ce

pt
io

n 
U

-N
et

 w
ith

 m
od

al
ity

 fu
si

on
Lu

 e
t a

l. 
(2

02
0)

M
od

ifi
ed

 U
-N

et
PE

T
✓

-
-

✓
B

U
U

-N
et

 w
ith

 p
re

-tr
ai

ne
d 

V
G

G
-1

9 
en

co
de

r
Le

un
g 

et
 a

l. 
(2

02
0)

M
od

ifi
ed

 U
-N

et
PE

T
✓

-
✓

-
EU

Ph
ys

ic
s g

ui
de

d 
m

in
im

al
 U

-N
et

 w
ith

 d
ro

po
ut

 re
gu

la
riz

at
io

n
D

un
nh

of
er

 e
t a

l. 
(2

02
0)

Si
am

-U
-N

et
U

S
-

✓
✓

-
EU

U
-N

et
 w

ith
 si

am
es

e 
tra

ck
in

g 
fr

am
ew

or
k

Zh
an

g 
et

 a
l. 

(2
02

0b
)

A
U

-N
et

U
S

-
✓

✓
-

A
U

A
tte

nt
io

n 
gu

id
ed

 U
-N

et
 w

ith
 to

ta
l v

ar
ia

tio
n 

re
gu

la
riz

at
io

n
B

yr
a 

et
 a

l. 
(2

02
0a

)
SK

U
-N

et
U

S
-

✓
✓

-
A

U
A

tte
nt

io
n 

ba
se

d 
se

le
ct

iv
e 

ke
rn

el
 U

-N
et

Pu
nn

 a
nd

 A
ga

rw
al

 (2
02

0c
)

IU
-N

et
H

ist
op

at
ho

l-o
gi

ca
l

-
✓

✓
-

IU
In

ce
pt

io
n 

U
-N

et
 m

od
el

 w
ith

 h
yb

rid
 sp

ec
tra

l p
oo

lin
g

Ib
te

ha
z 

an
d 

R
ah

m
an

 (2
02

0)
M

R-
U

N
et

M
ul

ti-
m

od
al

ity
-

✓
✓

-
IU

M
ul

tiR
es

U
N

et
 w

ith
 m

ul
tip

le
 in

ce
pt

io
n 

ba
se

d 
sk

ip
 c

on
ne

ct
io

ns
W

an
g 

et
 a

l. 
(2

02
0b

)
N

L-
U

ne
t

M
ul

ti-
m

od
al

ity
-

✓
-

-
A

U
N

on
-lo

ca
l U

ne
t w

ith
 g

lo
ba

l c
on

te
xt

 a
gg

re
ga

tio
n



5860	 N. S. Punn, S. Agarwal 

1 3

Ta
bl

e 
6  

(c
on

tin
ue

d)

A
ut

ho
r

U
-N

et
 v

ar
ia

nt
M

od
al

ity
TL

SL
Pr

Po
C

at
eg

or
y

D
es

cr
ip

tio
n

X
ia

 e
t a

l. 
(2

02
1)

M
C

-N
et

C
T

-
✓

✓
-

IU
M

ul
ti-

sc
al

e 
co

nt
ex

t e
xt

ra
ct

io
n 

w
ith

 re
si

du
al

 a
tte

nt
io

n
Li

 e
t a

l. 
(2

02
1)

M
SA

-U
ne

t
M

R
I

-
✓

✓
-

A
U

U
-N

et
 w

ith
 d

ua
l b

ra
nc

h 
m

ul
ti-

sc
al

e 
at

te
nt

io
n

Fu
 e

t a
l. 

(2
02

1)
M

SA
M

-N
et

PE
T

-
✓

✓
-

A
U

M
ul

ti-
m

od
al

 sp
at

ia
l a

tte
nt

io
n 

ne
tw

or
k

Pu
nn

 a
nd

 A
ga

rw
al

 (2
02

1b
)

RC
A

-I
U

ne
t

U
S

-
✓

-
-

A
U

Re
si

du
al

 c
ro

ss
-s

pa
tia

l a
tte

nt
io

n 
gu

id
ed

 in
ce

pt
io

n 
U

-N
et

 m
od

el
C

ao
 e

t a
l. 

(2
02

1)
Sw

in
-U

ne
t

M
ul

ti-
m

od
al

ity
✓

-
-

-
EU

U
ne

t-l
ik

e 
pu

re
 tr

an
sf

or
m

er
 n

et
w

or
k

W
an

g 
et

 a
l. 

(2
02

1)
M

TM
-U

ne
t

M
ul

ti-
m

od
al

ity
-

✓
-

-
EU

U
-N

et
 w

ith
 m

ix
ed

 tr
an

sf
or

m
er

 m
od

ul
e

Is
en

se
e 

et
 a

l. 
(2

02
1)

nn
U

-N
et

M
ul

ti-
m

od
al

ity
-

✓
✓

✓
EU

Se
lf-

ad
ap

tin
g 

no
-n

ew
U

-N
et

 F
ra

m
ew

or
k

TL
 tr

an
sf

er
 le

ar
ni

ng
, S

L 
sc

ra
tc

h 
le

ar
ni

ng
, P

r p
re

-p
ro

ce
ss

in
g,

 P
o 

po
st-

pr
oc

es
si

ng



5861Modality specific U‑Net variants for biomedical image…

1 3

3.1.2 � Attention U‑Nets

Motivated by the success of squeeze-and-excitation network (SENet)  (Hu et al. 2018) to 
suppress the irrelevant features, Li et al. (2019a) proposed an attention guided deep learn-
ing framework divided into three components: preprocessing, region of interest (RoI) 
segmentation with transfer learning followed by pneumonia detection model. In the pre-
processing stage, apart from the trivial processes like resizing, the authors synthesized the 
adversarial samples to gain attention of the model towards pneumonia. The pneumonia 
infected area is erased by replacing it with an average pixel value of the image and then 
labelled as non-pneumonia, which helped to distinguish between noise and relevant data. 
To further suppress the background interference, authors adopted the approach proposed 
by Rashid et  al. (2018) to perform the lungs segmentation followed by post-processing 
with conditional random fields. The segmented, original and synthesized images together 
form the training and validation set for the pneumonia segmentation network. The network 
follows SENet design in which SE-ResNet34 is utilized as a backbone architecture. The 
proposed framework tends to learn the pneumonia features effectively and achieves a sig-
nificant reduction in the false positive predictions with an FPR value of 0.19, in contrast to 
mask R-CNN (He et al. 2017) and RetinaNet (Lin et al. 2017) on RSNA challenge; how-
ever, the overall framework relies heavily on the pre-processing and post-processing of 
data, thereby limiting its usability across multiple datasets.

3.1.3 � Inception U‑Nets

In another U-Net variant, Zhang et al. (2020a) proposed a DEFU-Net model that uses 
the fusion of dual encoder models to better extract the spatial features and a stand-
ard decoder network with upsampling. The dual encoder network is equipped with 
a densely connected recurrent convolutional (DCRC) neural network (inspired from 
DenseNet (Huang et al. 2017) and R2U-Net (Alom et al. 2018)) and dilated inception 
convolution neural network (inspired from GoogleNet  (Szegedy et  al. 2015)), where 
the output from each layer is merged by addition operation which is later concatenated 
with the corresponding decoder layer. The DCRC aids in extracting high level features, 
whereas the inception block facilitates to increase the network width and improve the 
horizontal feature representation using various receptive fields with dilated convolu-
tions. The advantage of using dilated convolutions is that it tends to increase the recep-
tive field without changing the number of training parameters (Yu and Koltun 2016). 
The significance of each module of the network is established by achieving considera-
ble improvements over several U-Net variants such as residual U-Net (He et al. 2016b), 
BCDU-Net  (Azad et  al. 2019), R2U-Net and attention R2U-Net  (Alom et  al. 2018), 
etc. with dice score of 0.97 on the chest X-ray dataset.

3.1.4 � Ensemble U‑Nets

With cardiomegaly being one of the most common inherited cardiovascular diseases, 
Que et al. (2018) proposed a CardioXNet framework to identify and localize the car-
diomegaly present in the chest X-ray images. CardioXNet is equipped with two parallel 
U-Net models to generate the segmentation masks for cardiac and thorax respectively, 
that follows typical CNN architecture in contraction and expansion paths. To address 
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the limited availability of the data samples, authors utilized data augmentation strate-
gies such as rotation, zooming, shearing, etc. Due to the possibility of the presence of 
noise in the output masks, post-processing is applied to keep the binary contours that 
represent the largest area. Later, the processed output mask is utilized to compute the 
cardiothoracic ratio defined as CTR = (L + R)∕(T) , where L and R indicates the maxi-
mum distances from the center to the left and right farthest boundaries of the heart 
region, and T is the maximum horizontal distance between the lungs boundaries. The 
CTR​ value is then utilized to determine the cardiomegaly from the generated masks. 
In another approach, Subramanian et al. (2019) proposed an automated system involv-
ing two U-Net models, where the output features are exploited to identify the type 
of central venous catheters (CVC) as peripherally inserted central catheters (PICC), 
internal jugular (IJ), subclavian and Swan-Ganz catheters. The first U-Net model is 
utilized for CVC segmentation by using the exponential logarithmic loss to address the 
class imbalance problem, whereas the other U-Net model tends to extract the anatomi-
cal structures to distinguish the ambiguous classes such as PICC and subclavian lines. 
Clinicians manually annotated the CVCs to obtain the signature spatial priors which 
undergo pixel-wise multiplication with the segmentation output. Later, the produced 
output is fed to the pre-trained neural network random forest (NN-RF) classifier to dis-
tinguish the type of CVC. This hybrid combination of segmentation and classification 
achieved promising results on the NIH database.

3.2 � Computed tomography

Computed tomography imaging is based on the principle of utilizing the series of the sys-
tem of rotating X-rays to develop cross-sectional images or series of slices of bones, blood 
vessels and soft tissues of the body (Bercovich and Javitt 2018). In contrast to plain X-ray 
imaging, CT scans provide rich information with high quality images. This is generally uti-
lized to examine people with serious injuries or diseases like trauma, tumors, pneumonia, 
etc., and also to plan medical, surgical or radiation treatment. Hence, various deep learning 
based approaches are developed for faster diagnosis and treatment using CT imaging.

3.2.1 � Better U‑Nets

Tong et al. (2018) proposed a U-Net framework for lung nodule segmentation, where mini 
residual connections are introduced within the encoder and decoder phases to address the 
vanishing gradient problem. The algorithm initiates with the process of generating the seg-
mentation of lung parenchyma with morphological operations and removal of irrelevant 
features. The segmented lung parenchyma images are divided into 64 × 64 slices along 
with the input images. Finally, the improved U-Net model is trained and validated against 
the preprocessed dataset for segmenting the pulmonary nodules. The authors evaluated the 
approach on LUNA2016 dataset against various models and achieved promising results 
with a dice score of 0.74; however, the samples of pulmonary nodules were very limited 
and the approach also lacked the 3D volumetric analysis. Recently, Park et al. (2020) uti-
lized a 3D U-Net model to segment the lung lobe regions while also addressing the miss-
detection of the lobar fissure. Initially, the volumetric CT scans are preprocessed with 
thresholding to identify lungs parenchyma, and region growing techniques  (Leader et al. 
2003) to separate overlapping left and right lung regions. Later, these lobe segmentations 
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are generated with the help of the 3D U-Net model, where the segmentation results are fur-
ther refined with the upsampling and segmentation error correction. The authors utilized 
CT volumes from multiple centres (hospitals) to evaluate the model performance while 
achieving significant improvements.

3.2.2 � Attention U‑Nets

When the target is the segmentation of the internal organs, then models adopting the atten-
tion mechanism help to focus the network on regions of interest. Oktay et al. (2018) pro-
posed a novel attention gate based U-Net framework to focus on pancreas regions and 
generate the corresponding segmentation masks. The attention approach tends to sup-
press irrelevant features and highlight the prominent features corresponding to the target 
regions. The authors utilized the FCN with U-Net connectivity, where the skip connections 
are loaded with these attention filters. Inspired from the work of Shen et al. (2017), each 
pixel is associated with a gating vector to determine the regions to focus. The incorpora-
tion of this attention mechanism allowed the authors to achieve significant improvements 
in the segmentation results over other approaches. The performance of this model could 
easily be improved by incorporating transfer learning, multi-stage training, etc. To exploit 
the potential of attention mechanism, Seo et al. (2019) proposed a modified U-Net (mU-
Net) framework that addressed the classical problems associated with the standard U-Net 
model concerning skip connection (Han and Ye 2018) and pooling operation (loss of spa-
tial information). In the mU-Net, the standard skip connections are replaced by object-
dependent filters to dynamically filter the feature maps based on the object size, where 
features concerning the small objects are preserved by blocking the deconvolution path and 
in the case of large objects, feature maps indicating boundary information is propagated 
to avoid duplication. The authors verified the effectiveness of adaptive filters to preserve 
the features using the permeation rate while achieving the DSC values of 0.98 and 0.89 on 
the liver and liver-tumor segmentation respectively. The approach could be extended for 
3D volumetric analysis, where computation cost can be addressed by modifying operation 
schemes such as depthwise separable convolution instead of standard convolution. These 
object-dependent filters could easily be integrated with other networks and modalities for 
segmentation.

Song et al. (2019) proposed a U-NeXt model to segment CT images of gallstones, which 
is one of the common and frequently occurring diseases worldwide. The U-NeXt model is 
equipped with the attention up-sampling blocks, spatial pyramid pooling (He et al. 2015b) 
of skip connections (SkipSPP), and multi-scale feature extraction with the series of convo-
lution layers along with the dense connections. The overall architecture design is similar 
to U-Net++ model  (Zhou et al. 2018b) with slight variation in connections, convolution 
and pooling operations. The authors trained and evaluated the model on the proposed data-
set with 5,350 images using deep supervision and reported improvement in IoU by 7% 
over baseline biomedical image segmentation models. However, for complex target struc-
tures, the network produces soft edges in the mask. To address this issue, a deep Q net-
work (DQN) (Mnih et al. 2015) driven approach is proposed by Man et al. (2019) that uses 
deformable U-Net to efficiently generate the segmentation mask of the pancreas from CT 
scans with the extraction of its contextual information and anisotropic features. Initially, 
the 3D volumes are split into axial, coronal and sagittal 2D slices for each of which, DQN-
based deep reinforcement learning (DRL) agents tend to localize the pancreas to form 
RoI slices. These slices are fed to the deformable U-Net models and finally, based on the 



5864	 N. S. Punn, S. Agarwal 

1 3

majority voting scheme 3D segmentation mask is generated. The deformable U-Net (Dai 
et al. 2017) follows standard encoder-decoder architecture, where convolution operations 
are replaced with deformable convolutions (DC). In DC, the regular convolution operation 
is accompanied by another convolution layer to learn 2D offset for each pixel. It leverages 
the deep network’s ability to learn the required receptive field rather than being fixed for 
segmenting the regions having varying geometrical structures. This can also be understood 
as a learnable dilated convolution.

Unlike other U-Net variants that applies multi-scale feature fusion, Fan et al. (2020b) 
recently proposed a multi-scale attention U-Net model that uses a self attention scheme 
for adaptive feature extraction. The self attention design comprises position-wise attention 
block (PAB - installed on bottleneck layer) and multi-scale fusion attention block (MFAB - 
installed on every stage of encoder path), where PAB captures feature interdependencies in 
spatial dimension and MFAB captures the channel dependencies for any feature map. The 
MA-Net is trained and evaluated on the 2017 LiTS challenge and achieved a DSC score of 
0.96 and 0.75 for liver and liver-tumor segmentation respectively. However, the results are 
not as promising as achieved using mU-Net model (Seo et al. 2019).

3.2.3 � Inception U‑Nets

Recently, Xia et  al. (2021) proposed MC-Net that uses a multi-scale context extraction 
module with a context residual attention approach to model the local and global semantic 
information of the target regions using CT imaging and alleviate the problem of not captur-
ing the long-range dependencies by most of the U-Net models. Overall, MC-Net is built 
with a multi-feature extraction module (MIE) to obtain multi-scale feature maps similar to 
inception network (Szegedy et al. 2017), context information extraction (CIE) with parallel 
dilated convolutions and residual attention enabled skip connections. Though the model 
achieved promising results over multiple CT datasets; however, the diversity of multi-scale 
feature extraction is limited to a feature map at a single level, which could be improved by 
considering feature maps across different encoding layers.

3.2.4 � Ensemble U‑Nets

Janssens et al. (2018) proposed a cascaded 3D FCN based deep learning model consist-
ing of “LocalizationNet” and “SegmentationNet” to estimate the bounding box (RoI) and 
generate volumetric segmentation masks of lumbar vertebrae respectively. The Localiza-
tionNet comprises a 3D FCN regression model which is trained to regress the displace-
ment vectors associated with a voxel, representing diagonal corners of the rectangular box. 
The localized information is fed to SegmentationNet comprising an FCN 3D U-Net model 
to produce a segmentation mask for lumbar vertebrae. This two stage approach exhib-
ited significant improvement over the existing approaches but with the overhead compu-
tations of two dedicated models. In the real world scenario, modalities may suffer from 
inherent ambiguities that coagulate the actual nature of the disease. Following this, Kohl 
et al. (2018) introduced a probabilistic U-Net framework that combines the standard U-Net 
model with conditional variational autoencoder (CVAE). For a sample image, CVAE gen-
erates diverse plausible hypotheses from a low-dimensional latent space which are fed to 
U-Net to generate the corresponding segmentation mask. It is shown that the model can 
generate diverse segmentation samples, given the ground-truth delineation from multiple 
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experts. The trained model is evaluated on LIDC-IDRI and Cityscapes datasets which 
outperformed other approaches in reproducing the segmentation probabilities and masks. 
Inspired by this work many other variants have been developed to capture the uncertainties, 
e.g. (Raghu et al. 2019; Baumgartner et al. 2019; Tanno et al. 2019).

Motivated by the success of adversarial techniques, Dong et  al. (2019b) proposed 
a U-Net-GAN framework in which a set of U-Nets is trained as a generator to produce 
organs-at-risk (OARs) segmentation and FCN as a discriminator to distinguish segmented 
masks from the ground-truth masks. The generator and discriminator networks followed 
adversarial training, where each network competes to achieve optimal segmentation masks 
of OARs. The model achieved satisfactory improvements at the cost of heavy computa-
tions and resource requirements, moreover, the model struggles in the presence of complex 
structures. In another work, Liu et  al. (2019c) proposed a liver CT image segmentation 
framework named GIU-Net, inspired by the supervised interactive segmentation approach 
named, graph cut (Boykov and Funka-Lea 2006). The improved U-Net model is designed 
with increased depth to better extract semantic features that are trained to generate the seg-
mentation mask of the liver regions. Later, to further refine the segmentation results, a slice 
covering the maximum liver region is used as an initial slice to generate graph cut energy 
function followed by the maximum flow minimum cut algorithm. The process is then 
repeated for all the slices to generate a complete sequence of precise and stable segmenta-
tion masks with smother boundaries.

In another application, a Bayesian CNN with U-Net model and Monte Carlo (MC) drop-
out is introduced by Hiasa et al. (2019) for automated muscle segmentation from CT imag-
ing for musculoskeletal modelling. The design comprises two cascaded U-Net models, 
where first is standard U-Net that localizes the skin surface and later individual muscles 
(21 muscles) are segmented with Bayesian U-Net (Kendall et al. 2015) that uses MC drop-
out based on the structure-wise uncertainty, predictive structure-wise variance (PSV) and 
predictive dice coefficient (PDC). Besides, the authors employed an active learning method 
to produce segmentation and uncertainty from the unlabeled data, where the high uncer-
tain data are relabeled manually by experts while other data is directly used as training 
data. The authors achieved promising results; however, the data samples were very limited 
which limits the diversity of the model.

3.3 � Magnetic resonance imaging

Magnetic resonance imaging is synthesized by using the principles of nuclear magnetic 
resonance (NMR) (Morris and Slesnick 2018). It is utilized in radiology to visualize the 
anatomy and physiological process of the body organs. It uses a large magnetic field and 
radio waves to create detailed images of organs and tissues within the body. Based on the 
different attenuation values of the tissues e.g. T1-weighted (T1), fluid attenuation inver-
sion recovery (FLAIR), Dixon, etc., the electromagnetic waves emitted from the gradient 
magnetic field is detected using the applied strong magnetic field by which the position and 
type of the nucleus can be drawn inside the object. Unlike the X-rays, CT scans and PET 
scans; MRI scans do not involve the usage of ionizing radiations.

3.3.1 � Better U‑Nets

MRI is mostly utilized in computer-aided diagnosis systems involving brain tumor segmen-
tation. Inspired from the BraTS 2015 challenge, Dong et al. (2017) analysed the potential 
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of FCN based U-Net model for brain tumor segmentation via MRI sequences, where the 
authors achieved significant improvement over the traditional segmentation approaches. 
SegNet is another model that is most widely used for semantic segmentation (Badrinaray-
anan et al. 2017). Following this, Kumar et al. (2018) proposed a hybrid approach, U-Seg-
Net, by integrating skip connections into the base SegNet model. This enabled the model 
to efficiently identify the tissue boundaries concerning the white matter (WM), gray matter 
(GM), and cerebro-spinal fluid (CSF). The authors achieved significant improvement over 
the base SegNet and U-Net models with DSC value of 0.90 on IBSR-18 dataset.

In recent years, to improve the biomedical image segmentation results, multi-modal-
ity fusion (MMF)  (James and Dasarathy 2014) approaches are utilized. The fused scans 
are rich in information and offer multi-dimensional features. In this context, Kermi et al. 
(2018) proposed a modified U-Net model to segment the whole tumor and intra tumor 
regions like enhancing tumor, edema and necrosis affected with high grade glioma (HGG) 
and lower grade glioma (LGG) following from the BraTS 2018 challenge. The authors 
fused the T1, T2, T1c and FLAIR modalities and resized them to form the input feature 
map with rich tumor information. In the modified model, residual blocks (He et al. 2016b) 
are added between two convolution blocks and the max-pooling operation is replaced 
with the strided convolutions  (Ayachi et  al. 2018). The model is trained and evaluated 
with fused modalities to obtain the multi-class segmentation masks. Though the authors 
achieved good results but lacked the 3D volumetric analysis. In another application, skull 
stripping is an essential step to study brain imaging, where Hwang et al. (2019) proposed to 
utilize a standard 3D U-Net model to automate the process of skull stripping (brain extrac-
tion) from T1 MRI scans for faster diagnosis and treatment. The training is carried with 
dice loss and adam optimizer on neurofeedback skull-stripped (NFBS) dataset. The authors 
achieved a dice value of 0.99; however, the comparative study is limited to brain surface 
extractor (BSE) and robust brain extraction (ROBEX) algorithms.

3.3.2 � Attention U‑Nets

With the introduction of modality transformations, Dong et  al. (2019a) proposed a deep 
attention U-Net (DAU-Net) model to automate the process of multi-organ segmentation 
for prostate cancer diagnosis via synthetic MRI, that is generated by processing the com-
puted tomography scans using a cyclic generative adversarial network (CycleGAN) (Zhu 
et al. 2017). Initially, the CycleGAN model is trained to learn CT to MRI transformation 
which tends to add additional soft-tissue information without additional data acquisition 
techniques to produce sMRI data. Later, the sMRI data is used to train 3D DAU-Net model 
which incorporates conventional attention scheme  (Oktay et  al. 2018) and deep supervi-
sion (Wang et al. 2019a) with the U-Net model. The approach is trained and evaluated with 
140 datasets from prostate patients to achieve DSC value of 0.95, 0.87 and 0.89 for seg-
mentation of bladder, prostate and rectum respectively, while also showing improvement 
over using raw CT images.

The prostate cancer diagnosis is another challenging task for which Rundo et al. (2019) 
proposed an automated approach, USE-Net, that uses the U-Net model by incorporating the 
squeeze-and-excitation (SE) blocks (Hu et al. 2018) in skip connections to perform multi-
class segmentation. Similar to the attention scheme (Oktay et al. 2018), the SE blocks tend 
to calibrate the channel-wise correlation while improving the generalization capability of 
the model across multi-institutional datasets. The USE-Net model outperformed its com-
petitors when trained and evaluated on all datasets combined, where for other scenarios 
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(individual dataset and mixed datasets), USE-Net struggled to achieve better results. Dong 
et al. (2020) integrated 3D U-Net model with deformable convolutions (Dai et al. 2017) for 
cardiac MRI segmentation. The deformable U-Net (DeU-Net) includes a temporal deform-
able aggregation module (TDAM) to generate fused feature maps using an offset predic-
tion network. The fused feature maps are then fed to deformable global position attention 
(DGPA) network to map the multi-dimensional contextual information into generalized and 
localized features. The proposed approach outperformed other models to generate efficient 
segmentation masks involving subtle structures. Recently, Li et al. (2021) proposed multi-
scale attention enabled U-Net model (MA-Unet) to segment lumbar spinar using MRI. The 
dual branch multi-scale attention block represents the most relevant feature maps at differ-
ent target scales by using aggregating features obtained from two branches, where the first 
branch works as a multi-scale feature extraction block by using dense connections and the 
second branch uses the channel and spatial attention network to suppress irrelevant infor-
mation. The authors achieved promising results; however, the introduction of MSA block 
across every stage in the entire network results in expensive computation and resources 
which could be reduced by using depthwise separable convolutions.

3.3.3 � Inception U‑Nets

Chen et al. (2018b) improved the performance of the vanilla 3D U-Net model by adding 
spatiotemporal-separable 3D convolutions (Xie et al. 2018) to form S3DU-Net model. The 
S3D convolution involves two convolution layers i.e. 2D convolution operation to extract 
spatial features and then additional 1D convolution to learn temporal features, furthermore, 
inception  (Szegedy et  al. 2015) and residual connections  (He et  al. 2016a) are added to 
better learn the complex patterns. The S3DU-Net model is trained with dice loss and evalu-
ated on dice coefficient and Hausdorff distance metrics. The authors achieved average dice 
scores of 0.69, 0.84 and 0.78, for enhancing tumor, whole tumor and tumor core respec-
tively on BraTS 2018 challenge. For real-time applications, Wang et al. (2019b) proposed a 
multiscale statistical U-Net (MSU-Net) to segment cardiac regions in MRI. The MSU-Net 
incorporates statistical CNN (SCNN) (Wang et al. 2019c) to fully exploit the temporal and 
contextual information present in various channels of an input image or feature map along 
with the multiscale parallelized data sampling approach. For multi-scale data sampling, 
independent component analysis (ICA) (Wang et al. 2019c) is applied over the patches of 
data to form clusters of canonical form distributions which represent spatio-temporal cor-
relations at coarser scales. This data sampling parallelization tends to speed up the perfor-
mance significantly by 26.8% as compared to the standard U-Net model and achieved an 
increased dice score by 1.6% on ACDC MICCAI 2017 challenge, while also improving 
significantly over state-of-the-art GridNet (Zotti et al. 2018) model.

3.3.4 � Ensemble U‑Nets

Wang et  al. (2019a) proposed a 3D FCN model with deep supervision and group dila-
tion (DSD-FCN model) to address various challenges concerning the automated MRI 
prostate segmentation like inhomogeneous intensity distribution, varying prostate anat-
omy, etc., which makes it hard for manual intervention. The proposed architecture follows 
vanilla U-Net topology in which deep supervision is adopted to learn discriminative fea-
tures, whereas group dilated convolutions tend to acquire multi-scale contextual informa-
tion. The model is trained with the objective function defined as the weighted average of 
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cosine similarity and cross entropy using the manually annotated institutional dataset and 
MICCAI PROMISE12 dataset, where authors achieved the DSC values of 0.86 and 0.88 
respectively. However, this achievement comes at the cost of complex computations due 
to group dilated convolutions (Wang et al. 2018a). Recently, Punn and Agarwal (2020d) 
proposed a 3D U-Net based framework for volumetric brain tumor segmentation. The pro-
posed architecture is divided into three components: 1) multi-modalities fusion - to merge 
the MRI sequences with hierarchical inception convolution blocks, 2) tumor extractor - 
to learn the tumor patterns with 3D inception U-Net model using fused modalities, and 
3) tumor segmenter - to decode the multi-scale extracted features into multi-class tumor 
regions. To achieve a better understanding of the input feature maps, each inception block 
aggregates multi-scale feature representation by using multiple filters equipped with short 
skip connections. With such dedicated components trained using a weighted average of 
dice and IoU loss functions, the authors achieved significant improvement over the existing 
approaches for BraTS 2017 and BraTS 2018 datasets. The increased computations due to 
inception convolution in each module could be reduced by using depthwise separable con-
volutions (Chollet 2017).

3.4 � Positron emission tomography

The positron emission tomography (Ollinger and Fessler 1997) is a widely used imaging 
in various clinical applications like oncology, brain, heart, etc., that helps in visualizing the 
biochemical and physiological reaction processes within the human body. The PET images 
are obtained by injecting a full dose of radioactive tracer or inhalation of gas to meet the 
clinical requirements. However, for minimal harm to human health, low-dose PET imaging 
is adopted to produce high quality imaging (Wang et al. 2018c).

3.4.1 � Better U‑Nets

With the huge success of U-Net in biomedical image segmentation, Blanc-Durand et  al. 
(2018) demonstrated the potential of 3D U-Net model in 18F-fluoro-ethyl-tyrosine ( 18F-
FET) PET lesion detection and segmentation. F-FET PET/CT scans were acquired using a 
dynamic protocol from 37 patients, where the ground-truth segmentation masks were gen-
erated using manual delineation and binary thresholding. The 3D U-Net model comprises 
three stages of encoder and decoder paths with standard convolutions and pooling opera-
tions. The authors achieved a DSC value of 0.79 on training and validation sets. However, 
the results could further be improved by increasing the data size with GAN based data aug-
mentation techniques (Frid-Adar et al. 2018b) and other U-Net based approaches. Recently, 
Lu et  al. (2020) proposed U-Net based automatic tumor segmentation approach in PET 
scans. The authors employed a transfer learning approach, where pre-trained VGG-19 
blocks are added in the encoder phase to address the challenge of limited data availability. 
The authors adopted the DropBlock as a replacement for dropout to effectively regularize 
the convolution blocks. The model is fine-tuned using the Jaccard distance (IoU) as the loss 
function and the performance is validated with 1,309 PET images provided by the Shang-
hai Xinhua hospital (XH), which displayed improvements over the vanilla U-Net model.
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3.4.2 � Attention U‑Nets

The integration of PET and CT modalities offer metabolic and anatomical information 
simultaneously. High contrast in PET scan enables the network to effectively segregate soft 
tissues around the tumor boundaries that are identified using CT imaging with high spatial 
resolution. In this context, Fu et al. (2021) proposed multi-modal spatial attention module 
(MSAM) to segment tumor using PET-CT modalities. The MSAM block can be integrated 
with any U-Net model to leverage the multi-modalities features. Two individual encoder-
decoder models are used, where one model is trained with PET imaging to generate spatial 
attention maps and another model utilizes this attention map at different scales by aggre-
gating with each decoder layer to perform tumor segmentation using CT imaging. These 
PET based multi-scale attention maps guide the CT model towards the areas with high 
tumor likelihood. This approach of cross-modality multi-scale attention achieves promising 
results; however, the performance could further be improved by performing 3D volumetric 
analysis.

3.4.3 � Inception U‑Nets

Zhao et  al. (2018) proposed to utilize the multi-modalities (PET and CT) for computer-
aided cancer diagnosis and treatment with the help of 3D FCN based V-Net  (Milletari 
et  al. 2016) model, which is an extension of the U-Net model for volumetric segmenta-
tion. A feature or intermediate level fusion approach is adopted, where two independent 
sub-segmentation networks are constructed to extract dedicated feature maps from each 
modality and are later fused with the cascaded convolution blocks that follow the V-Net 
model scheme to finally compute the tumor segmentation mask. The proposed framework 
is trained and validated on a limited clinical dataset of 84 patients suffering from lung can-
cer that consists of PET and CT imaging, where a dice value of 0.85 is achieved while 
outperforming other traditional models that use unary modality. In a similar approach, Guo 
et al. (2019) adopted the fusion of PET and CT modalities to segment head and neck can-
cer (HNC) labelled as gross tumor volume (GTV). Due to resources limitations, the images 
are cropped during pre-processing. The authors utilized the modified 3D U-Net model in 
which the convolution blocks in encoder and decoder paths are replaced by dense convolu-
tion blocks (Huang et al. 2017) that aggregates the multi-scale feature maps across various 
levels. The authors trained and evaluated the model on TCIA-HNC dataset, while achiev-
ing the DSC value of 0.73 on the dedicated test set. The performance could be improved by 
analyzing complete 3D volume and obtain better affinities.

3.4.4 � Ensemble U‑Nets

To address the need for a reliable and robust PET based tumor segmentation model, Leung 
et al. (2020) proposed a novel physics guided deep learning based framework comprising 
three dedicated modules that segment each slice of PET volume to generate a complete 
mask. The first module tends to extract the realistic tumors with the available ground-truth 
boundaries via stochastic kernel-density estimation and physics based approach to gener-
ate simulated images. These images are fed to the improved U-Net model in the second 
module, which has minimal convolution and pooling blocks accompanied by dropout lay-
ers to aid in learning the complex features and generate efficient masks. Later, in the third 
module, the network is fine-tuned with delineation provided by the radiologist as surrogate 
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masks to improve the learned features. The proposed framework achieved dice scores of 
0.87 and 0.73 to segment primary tumors on simulated and patient images and outper-
formed several semi-automated approaches. This approach could perform 3D segmentation 
by generating a mask for each slice, but avoids the 3D correlations of the voxels which is 
crucial for real-time applications.

3.5 � Ultrasound

Ultrasound is acoustic energy in the form of waves having a frequency beyond the human 
hearing range. These are generated with the help of piezoelectric crystals which deform 
under the influence of electric field and generate compression waves when an alternating 
voltage is applied. Ultrasonography (Moore and Copel 2011) is an ultrasound based diag-
nostic imaging technique used for visualizing the internal body organs by processing the 
reflected signals. The deep learning technologies aid in diagnosing US imaging to seg-
ments regions of interest like breast mass, pelvic floor levator muscle discontinuity, etc.

3.5.1 � Better U‑Nets

In consideration of breast cancer being the deadliest cancer among women, Almajalid et al. 
(2018) proposed an automatic breast ultrasound (BUS) image segmentation system to aid 
in its diagnosis and treatment. The authors utilized the vanilla U-Net model on the pre-
processed BUS images. The images are preprocessed using the contrast enhancement with 
histogram equalization and noise reduction with speckle reducing anisotropic diffusion 
(SRAD) (Yu and Acton 2002) techniques to improve the image quality. Finally, with the 
assumption of the presence of a single tumor region the authors filtered the false positive 
regions to remove the noisy regions. This assumptions limits the capability of the model 
to generate masks for multiple tumor regions. In this regard, Li et al. (2019b) incorporated 
dense connections in the U-Net model (DenseU-Net) to efficiently segment levator hiatus 
from ultrasound images. The implication of dense connections enabled feature reuse and 
reduction in the trainable parameters. The DenseU-Net model is trained to generate the 
binary segmentation mask which is post-processed with binary thresholding to generate 
mask sharp boundaries, and localized regions are generated with active contour model (Li 
et al. 2016) without compromising the performance of the model.

3.5.2 � Attention U‑Nets

In another application of eyeball segmentation, Lin et  al. (2019) proposed a semantic 
embedding and shape-aware U-Net model (SSU-Net), where the authors employed a signed 
distance field (SDF) instead of a binary mask as the label to learn the shape information. 
In addition, the model is equipped with a semantic embedding module (SEM) to fuse the 
semantic information at coarser levels of the SSU-Net model. The SEM block draws fea-
tures from two low-level stages and one corresponding stage, where lower level features 
are convolved and bilinear interpolation is applied to restore the resolution at the same 
scale. This enabled the network to efficiently identify the ambiguous and discontinuous 
boundaries and achieved better segmentation performance. Due to the low signal to noise 
ratio (SNR) in US imaging, real-time analysis is still a challenging task. Recently, Zhang 
et al. (2020b) proposed a U-Net based deep learning approach to realize the multi-needle 
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segmentation in the 3D transrectal US (TRUS) images of high dose rate (HDR) prostate 
brachytherapy. The U-Net model is loaded with the attention scheme in the skip connec-
tions to address the challenge of identifying the smaller needles, while spatial continuity 
of the needles is maintained with total variation regularization. The model is trained with 
a deep supervision approach, where patches of needle masks are generated to compute the 
cross entropy loss and accordingly optimize the training weights. With the proposed frame-
work, the authors achieved adequate performance gain on multi-needle segmentation for 
prostate brachytherapy.

Byra et  al. (2020a) proposed a selective kernel U-Net (SKU-Net) model for breast 
mass segmentation in US imaging while also addressing the challenge of variable breast 
mass size and image properties. In SKU-Net, each convolution layer of the U-Net model 
is replaced by an SK block, that tends to dynamically adapt the receptive field. Similar 
to the concept of dual path U-Net (Yang et al. 2019), the SK module (Li et al. 2019c) is 
designed using two branches, where one uses dilated convolutions and other is without 
dilation to generate feature maps. Later, these features are merged and global average pool-
ing, followed by FC layer and sigmoid activation is applied to construct attention coef-
ficients for each channel in the feature map. With this approach, authors achieved signifi-
cant improvement over the vanilla U-Net model across multiple datasets. In another work, 
Punn and Agarwal (2021b) proposed residual cross-spatial attention (CSA) block in the 
skip connections of inception U-Net model (Punn and Agarwal 2020c) to further improve 
the segmentation performance. The authors validated the performance of the model with 
breast cancer segmentation using ultrasound imaging. In contrast to standard attention 
(Oktay et al. 2018), the CSA block uses multi-level encoded feature maps to obtain better 
spatial correlation and develop spatial attention feature maps that are concatenated with 
corresponding decoder block to reconstruct the multi-scale spatial information. To address 
computational and memory challenges model uses depth-wise separable convolutions. The 
model achieved promising results on multiple US datasets and establishes scope for further 
utilization of this model across different modalities.

3.5.3 � Inception U‑Nets

In another approach, Yang et al. (2019) proposed a dual path U-Net model for segmenta-
tion of lumen and media-adventitia from the IntraVascular UltraSound (IVUS) scans to aid 
in cardiovascular diseases diagnosis. Due to the limited availability of the data samples, the 
DPU-Net is trained with the real-time augmentor that generates and integrates three types 
of artefacts: bifurcation, side vessel, and shadow, and other common augmentation opera-
tions with training images. In contrast to vanilla U-Net, DPU-Net involves multi-branch 
parallel encoding and decoding operations, where feature maps are extracted and recon-
structed with different kernel sizes at the same hierarchical level to address the challenge of 
a large variation in shape and size of lumen or media region. With this network-in-network 
architecture and real-time augmentation approach, the authors achieved Jaccard measure 
(IoU) of 0.87 and 0.90 on 40 MHz and 20 MHz frames respectively from IVUS dataset.

3.5.4 � Ensemble U‑Nets

Wang et al. (2018b) proposed a multi-feature guided CNN model for classification and seg-
mentation of the bone surfaces in the US scans. The US images are initially processed with 
a pre-enhancing (PE) net to synthesize a US scan that highlights the bone surface, by using 
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a B-mode US scan and three filtered image features, including local phase tensor image 
(LPT), local phase bone image (LB) and bone shadow enhanced image (BPE). The fea-
ture enriched images are then used by a classification embedded U-Net model (cU-Net) to 
produce the segmentation mask and identify the type of the bone surface. This multi-task 
deep learning framework achieved promising segmentation and classification results with 
F1-score of 0.96 and 0.90 on SonixTouch and Clarius C3 datasets respectively. In another 
application area, Dunnhofer et al. (2020) emphasized on the tracking of knee femoral con-
dyle cartilage during ultrasound guided invasive procedures. The Siam-U-Net model com-
bines the potential of the U-Net model with siamese framework (Gomariz et al. 2019) for 
tracking the cartilage in the real-time ultrasound sequences. In Siam-U-Net two encoder 
blocks are adopted which are fed with resized-cropped US sequences named as, searching 
area and target cartilage. After five blocks of encoding layers, the acquired feature maps of 
two inputs are cross-correlated using convolution operation applied to searching area fea-
ture maps with target embedding as a filter, which results in localizing the implicit position 
of the cartilage in the searching area slice. Later, the slice is reconstructed in the decoder 
phase to generate the segmentation mask of the cartilage. The Siam-U-Net model achieved 
an average dice score of 0.70 with significant improvement over other approaches. How-
ever, the results could further be improved by expanding the dimension of the model into 
3D space for considering the neighbouring voxels correlation.

4 � Other U‑Net variants and imaging

In this section, various U-Net variants are presented that are introduced as the biomedi-
cal image segmentation networks, where each model acts as a generic architecture that is 
trained and evaluated on multiple/different modalities.

4.1 � Better U‑Nets

In the growing phase of biomedical image segmentation, Alom et al. (2018) integrated the 
potential of multiple state-of-the-art deep learning models such as recurrent CNN (Mikolov 
et al. 2011), residual CNN (He et al. 2016a) and U-Net to form RU-Net and R2U-Net for 
BIS. In the RU-Net model, the standard convolution and up-convolution units are improved 
by incorporating recurrent convolutional layers (RCL), whereas in R2U-Net both RCL 
and residual units are added. These models are trained and evaluated on three different 
modalities such as retina blood vessel segmentation (DRIVE, STARE, and CHASH-DB1 
datasets), skin cancer segmentation (ISIC 2017 Challenge), and lung segmentation (KDSB 
2017 challenge). Zhou et al. (2018a) proposed a nested U-Net architecture, U-Net++, to 
narrow down the gap between the encoded and decoded feature maps. In contrast to the 
U-Net model, U-Net++ model follows convolutions on dense and nested skip connec-
tions to effectively capture the coarser details. Furthermore, a deep supervision approach is 
adopted to prune the model based on the loss (combined binary cross entropy and dice coef-
ficient) estimated at different semantic levels. The performance of the model is validated 
with multiple datasets involving KDSB18, ASU-Mayo, MICCAI 2018 LiTS Challenge and 
LIDC-IDRI, while outperforming other models. Azad et al. (2019) proposed another exten-
sion of U-Net, where bi-directional ConvLSTM (BConvLSTM) with densely connected 
convolutions (BCDU-Net) is introduced for BIS. The skip connections are equipped with 
BConvLSTM (Song et al. 2018) to concatenate the feature maps between the encoded layer 
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and the corresponding decoded layer. Furthermore, the dense connections are added at the 
bottleneck layer to extract and propagate features with minimal parameters. The authors 
achieved promising results across DRIVE, ISIC 2018 and LUNA datasets.

4.2 � Inception U‑Nets

Gu et al. (2019) addressed the loss of spatial information while using the strided convolu-
tions and pooling in U-Net with context-encoder network (CE-Net) to capture and preserve 
the information flow for BIS. In CE-Net the encoder unit is loaded with pre-trained ResNet 
blocks, the bottleneck layer (context extractor) includes dense atrous convolution (DAC) 
and residual multi-kernel pooling (RMP) blocks, and decoder block follows consecutive 
convolution and deconvolution blocks. The DAC module combines the design of Incep-
tion-ResNet-V2 model and atrous or dilated convolution, whereas RMP generates stacked 
feature maps followed from the pooling operations with varying window sizes to effec-
tively model the target feature representations. This arrangement of operations achieved 
promising results on multiple modalities.

For histopathological image segmentation, Punn and Agarwal (2020c) proposed an incep-
tion U-Net model where standard convolution layers are replaced by inception blocks that 
consist of parallel convolutions of varying filter sizes and a hybrid pooling operation. The 
hybrid pooling operation draws the potential feature maps from the spectral domain via Hart-
ley transform (Zhang and Ma 2018) to preserve more spatial information and spatial domain 
with the help of max pooling to aim for sharp features, by using the 1 × 1 convolution. The 
authors achieved significant improvement over other models using KDSB18 dataset with less 
number of parameters. Ibtehaz and Rahman (2020) proposed another extension of the U-Net 
model as MultiResU-Net, where the convolution operations are replaced with MultiRes blocks 
in encoder-decoder paths, and Res path is added in the bottleneck layer. Inspired from the 
inception and residual model, the MultiRes blocks are built using stacked convolutions with a 
succession of 3 × 3 filters, and a residual 1 × 1 convolution connection is added. The Res path 
tends to propagate the feature maps from the encoder phase to decoder phase with the series 
of residual convolution blocks. The model is evaluated on different datasets covering fluores-
cence images, ISBI-2012, ISIC-2017, CVC-ClinicDB and BraTS17.

4.3 � Attention U‑Nets

In most of the U-Net models, the long-range dependencies are gradually acquired with local 
convolutions which limit the overall efficiency and effectiveness of the model. Inspired from 
the transformer models (Vaswani et al. 2017), Wang et al. (2020b) proposed non-local Unet 
(NL-Unet) that comprises of self attention based global context aggregation module to extract 
full context information which can be easily integrated with feature extraction and reconstruc-
tion operation in any U-Net model. The traditional spatial (Oktay et  al. 2018) and channel 
attention (Hu et al. 2018) mechanisms lack to establish correlations with different targets and 
features, due to which non-local attention based models exhibit potential to perform better in 
biomedical image segmentation.
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4.4 � Ensemble U‑Nets

With the immense application of U-Net model in the medical domain, Isensee et al. (2021) 
proposed a self-adapting framework, no-newU-Net (nnU-Net) to establish the generalized 
architecture and training mechanism for vivid modalities, inspired by the medical segmen-
tation decathlon (MSD) challenge. The nnU-Net framework comprises an ensemble of 2D 
U-Net, 3D U-Net and 3D U-Net cascade, along with an automated pipeline to adapt the 
requirements of the dataset such as preprocessing, data augmentation and post-processing. 
The model achieved state-of-the-art segmentation results without manual intervention for dif-
ferent modalities in the medical segmentation decathlon challenge.

With the recent success of transformer models in sequence-to-sequence modelling (Vas-
wani et al. 2017), it has also been integrated with U-Net for medical image segmentation and 
has achieved satisfactory results. In vanilla U-Net, there is limited learning of global context 
information due to the local convolutions and hence, it cannot capture long-range dependen-
cies. To address this challenge, Cao et al. (2021) proposed Swin-Unet which is a Unet-like 
pure transformer architecture. This model uses Swin transformer (Liu et al. 2021) with shifted 
windows as the encoder for feature extraction and patch-expanding Swin transformer for resto-
ration of image resolution. In similar context, to further improve the performance, Wang et al. 
(2021) introduced a mixed transformer module (MTM) in U-Net that refined the self attention 
mechanism by simultaneously obtaining intra- and inter-correlations while using local-global 
Gaussian-weighted self attention (LGG-SA) and external attention, respectively. These MTM 
blocks are arranged in U-Net topology for medical image segmentation. Though these models 
achieved better results; however, rely on large-scale pre-training and have high computational 
complexity.

5 � U‑Net in COVID‑19 diagnosis

The ongoing pandemic of the severe acute respiratory syndrome - coronavirus (SARS-
CoV-2) also known as COVID-19 has brought the worldwide crisis along with the ram-
pant loss of lives. This contagious virus initiated from Wuhan, the People’s Republic of 
China in December 2019 and till November 17, 2021, have caused 254,174,536 infections 
and 5,112,325 deaths worldwide (Hopkins 2020). Currently, the most reliable COVID-19 
diagnosis approach follows the reverse-transcriptase polymerase chain reaction (RT-PCR) 
testing; however, it is time consuming and less sensitive to identify the virus at the early 
stages.

With the advancements in the technology and data acquisition systems (Agarwal et al. 
2020; Shi et  al. 2020), deep learning based approaches are developed to assist in the 
COVID-19 diagnosis with the help of CT and X-ray modalities  (Huazhu et  al. 2020) to 
control the exponential growing trend (Punn et al. 2020a) of the spread. Wu et al. (2020) 
proposed a JCS framework (similar to cU-Net) for joint classification and segmentation of 
COVID-19 from chest CT scans using the U-Net model. In another U-Net based imple-
mentation, a feature variation block is introduced in the COVID-SegNet model (Yan et al. 
2020) to better segment the COVID-19 infected regions by highlighting the boundaries 
and diverse infected regions. The lung infection segmentation deep network (Inf-Net) (Fan 
et al. 2020a) followed U-Net topology with diverse modifications including reverse atten-
tion and parallel partial decoder. The authors validated the performance in the super-
vised and semi-supervised modes to address the challenge of limited availability of the 
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labelled data. Recently, Punn and Agarwal (2020b) introduced a hierarchical segmentation 
approach, CHS-Net that involves two cascaded residual attention inception U-Net (RAIU-
Net) models, where first generates lungs contour, which is fed to the second model to iden-
tify COVID-19 infected regions using CT images. The RAIU-Net model is designed with 
a residual inception U-Net model and spectral-spatial-depth attention blocks. The authors 
achieved promising results in generating the infected segmentation masks.

Furthermore, similar approaches are also developed for X-ray imaging for the screening 
of COVID-19 (Punn and Agarwal 2020a). Zahangir Alom et al. (2020) proposed a robust 
classification and segmentation framework of coronavirus infected X-ray and CT images, 
where classification is performed using inception residual recurrent convolutional neural 
network (IRRCNN) with transfer learning and NABLA-N model is used for localizing the 
infected regions. In addition, other deep learning based application areas are also explored 
to control the spread of the virus such as automated social distancing monitoring  (Punn 
et al. 2020b), mask detection (Chowdary et al. 2020), etc. Furthermore, the survey of deep 
learning based approaches for COVID-19 diagnosis (Shi et al. 2020) reveals the significant 
impact of U-Net for CAD systems. Following these developments, it is believed that these 
artificial intelligent approaches will continue to evolve and contribute towards the faster 
and efficient diagnosis of the coronavirus.

6 � Analysis

Over the years, the advancements in deep learning and computer vision techniques have 
attracted many researchers to contribute to the healthcare domain with a variety of tasks 
e.g. classification, detection, segmentation, etc. With segmentation being a critical task that 
drives the diagnosis process  (Hesamian et  al. 2019), researchers have developed a keen 
interest to develop a computer-aided diagnosis system to speed up the treatment process.

Among the published approaches or frameworks, U-Net appears to be the prominent 
choice  (Minaee et  al. 2020) to develop novel architectures to adapt multiple modalities 
with optimal segmentation performance. Following such high utility of the model, this arti-
cle presented the recent developments in U-Net based approaches for biomedical image 
segmentation. Due to the high mutability and modularity design, U-Net topology can eas-
ily be integrated with other state-of-the-art deep learning models such as AlexNet (Kriz-
hevsky et al. 2012), VGGNet (Simonyan and Zisserman 2014), ResNet (He et al. 2016a), 
GoogLeNet  (Szegedy et  al. 2015), MobileNet  (Howard et  al. 2017), DenseNet  (Huang 
et  al. 2017), etc., to produce the desired results depending on the application. This ease 
of integration opens a wide spectrum of applications for U-Net with endless possibilities 
of novel architecture designs. In the most recent developments of U-Net based biomedical 
image segmentation models following observations are drawn:

–	 More emphasis is given to multi-scale feature extraction and fusion to explicitly model 
global and long-range feature dependencies.

–	 Inspired by the state-of-the-art performance of self attention mechanism in transformer 
models many transformer based U-Net variants are utilized to enhance its capability to 
capture global contexts.
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–	 For the training phase, most models employed a hybrid loss function that combines 
the binary cross entropy loss with dice similarity coefficient loss or with Jaccard loss, 
which tends to better penalize the false positive and false negative predictions

–	 Considering the implementation strategies mostly authors applied an end-to-end train-
ing-from-scratch approach with minimal pre-processing i.e. resizing and normalization 
and without any post-processing.

–	 Mostly depthwise separable convolutions are employed to reduce the overall number of 
computations and training parameters of the model.

–	 Multi-modality fusion based approaches are also developed for better feature represen-
tation learning concerning target regions.

From the reviewed articles it is observed that some of the segmentation approaches uti-
lize the local dataset (datasets that are not publicly accessible), which tend to limit their 
reusability and reachability. In order to develop a widely acceptable solution, the summary 
of most widely utilized publicly available datasets for BIS is provided in Table 7. These 
benchmark datasets aid the research community to validate the existing performance and 
propose further improvements. Among the reviewed articles, CT and MRI modalities cover 
a wide range of U-Net variants for biomedical image segmentation. Moreover, for PET 
scan and ultrasound imaging most of the proposed approaches are validated on the local 
dataset, whereas for X-rays the approaches aim to localize the target structure with the 
bounding boxes. Despite such variants, it is difficult to conduct an effective comparative 
analysis of the results because each approach is evaluated with different evaluation metrics 
such as accuracy, F1-score, Jaccard index, etc. However, among these metrics, dice simi-
larity coefficient is most widely utilized to quantize segmentation performance.

Considering the present survey it is also observed that each modality requires a dif-
ferent approach to address the corresponding challenges. Though there are segmentation 
approaches that are validated on multiple modalities to form generic architectures like nn-
UNet, U-Net++, MR-Unet, etc. but it is difficult to achieve optimal performance in all seg-
mentation tasks. The main reason is due to the diverse variation in the features correspond-
ing to the target structures involving lungs nodule, brain tumor, skin lesions, retina blood 
vessels, nuclei cells, etc. and hence require different mechanisms (dense, residual, incep-
tion, attention, fusion, etc.) to integrate with U-Net model to effectively learn the complex 
target patterns. Moreover, the presence of noise or artefacts in different modalities adds 
another factor to propose different segmentation methods.

7 � Scope and challenges

Deep learning technologies have played a vital role in advancements towards medical diag-
nosis and applications. Generally, deep learning based technologies such as U-Net aims 
to develop CAD systems to achieve the desired results with minimal error. Despite U-Net 
based models being superefficient for biomedical image segmentation, there are various 
challenges involved, as shown in Fig. 8 with general and modality specific challenges, for 
developing the real-world implications of the deep learning models. With regular advance-
ments in deep learning, these challenges are tackled with hardware and software oriented 
approaches which consequently attracts researchers to develop novel architectures and 
frameworks for biomedical image segmentation.
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7.1 � General challenges

One major challenge is concerned with the computational power requirement which tends 
to limit the feasibility of the approach. Following this many cloud based high performance 
computing environments are developed for mobile, efficient and faster computations. 
Although progress is also made towards the model compression and acceleration tech-
niques (Cheng et al. 2017) with great achievements; however, it is still required to estab-
lish the concrete benchmark results for real-time applications. Recently, Tan and Le (2019) 
proposed an EfficientNet framework that uses compound coefficients for uniform scaling 
in all dimensions. This could make the U-Net design streamlined for complex segmenta-
tion tasks with minimal change in the parameters. Besides several attempts are also made 
towards automation of model architecture design (Ren et  al. 2021) to develop optimal 
model for different applications; however, there is still long way to go.

Furthermore, these powerful deep learning approaches are data-hungry i.e. the amount 
of data available directly affects the model performance towards achieving robust results. 
However, the expense of data acquisition and delineation, and data security, results in the 
limited availability of the data which bottlenecks the development of real-world systems. 
In this context, various data augmentation strategies (Shorten and Khoshgoftaar 2019) are 
proposed that tend to alleviate the performance of the model while drawing the advantages 
of big data. Generally, the image augmentation strategies involve geometric transforma-
tions, color space augmentations, kernel filters, mixing images, random erasing, feature 
space augmentation, adversarial training, generative adversarial networks, neural style 
transfer, and meta-learning. However, the diversity of augmented data is limited by the 
available data which could result in overfitting. In another approach, U-Net models utilize 
transfer learning approaches (Byra et al. 2020b) to optimize the pre-trained model to adapt 
to the targeted task while having insufficient training data. These deep transfer learning 
techniques are categories under four broad areas: instances based, mapping based, network 
based and adversarial based  (Tan et  al. 2018). The self-supervised learning (SSL)  (Jing 
and Tian 2020) is an emerging technology that also addresses this challenge. In SSL strate-
gies initially, pre-training is performed with un-annotated samples for some pretext task 
to learn feature representations such as predicting rotations, identifying the image patch, 
solving jigsaw puzzles, etc. and later model is fine-tuned to perform actual segmentation. 
The potential of this approach attracts many researchers to advance the U-Net based BIS 
approaches. Furthermore, with the fusion of different modalities, rich information can 
be extracted concerning desired features for training the model. However, developing an 
appropriate fusion approach representing vivid modalities is still a challenging task.

The performance of models are also affected by the low imaging quality caused by the 
noise and artefacts, where noise may obscure features of an image, while artefact adds 
irrelevant features following some pattern. For instance in CT imaging, noise can make 
images grainy with small variations in contrast, whereas a streak artefact appears to make 
the region of low density. There are several pre-processing strategies proposed to remove 
or minimize the presence of noise and artefacts from data. For denoising the most com-
mon approaches that are followed are wavelets thresholding, partial differential equations 
(PDEs) (minimization problem of total variation method), NL-means and fast NL-means 
algorithms, anisotropic diffusion, etc.  (Oulhaj et  al. 2012; Ravishankar et  al. 2017). The 
artefacts can be reduced by using newer reconstruction or metal artefact reduction (MAR) 
techniques (Chen et al. 2019b; Triche et al. 2019).
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In general, the decision made in the rule-based applications can be traced back to its ori-
gin; however, deep CNN models lack transparency in the decision making process, where 
the input and output are well-presented but the processing in the hidden layers is difficult 
to interpret and understand, and hence these are also termed as black-box models. To better 
interpret these models various visualization based approaches are proposed such as local 
interpretable model-agnostic explanations (LIME)  (Mishra et  al. 2017), shapley additive 
explanation (SHAP) (Lundberg and Lee 2017), partial dependence plots (PDP) (Friedman 
2001), anchor (Ribeiro et al. 2018), etc. Currently, these approaches are applied to explain 
and interpret the obtained results from deep learning models, but still, a concrete bench-
mark scheme is required to be established.

7.2 � Specific challenges

In addition to the general challenges each modality also exhibit unique challenges. Some 
of these major challenges that are profound in X-ray, CT, MRI, PET and US imaging are 
shown in Fig. 8. In X-ray imaging because of 2D projection of the 3D human body, fea-
tures representing physiological structures overlap each other which may result in variation 
in the anatomy representation. For instance, in chest X-rays, due to the presence of scarring 
the lung contours are substantially blurred and hence segmentation models must learn the 
global concept for resolving the ambiguities and producing the correct mask. This chal-
lenge is mostly addressed by using U-Net based models that use long skip connection vari-
ants to transfer the knowledge from extraction to reconstruction phase (Rashid et al. 2018; 
Frid-Adar et  al. 2018a), and adversarial learning strategies  (Gaál et  al. 2020). However, 
such model requires a large amount of pixel-level annotated training data which can be 
addressed by using data augmentation, self-supervised learning (Punn and Agarwal 2021a) 

Fig. 8   Challenges involved in biomedical image segmentation
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or semi-supervised learning (Yu et al. 2018) strategies. In another challenge, a model needs 
to be designed with dynamic feature adaption to generate segmentation masks at different 
locations in the human body. It can be considered as one of the important aspects for bone 
segmentation (Wang et al. 2020a) while using X-ray imaging.

With CT imaging most of the challenges arise due to overlapping anatomical structures 
and large variations in the shape, size and location of the organs from person to person. 
For example, in the case of an abnormal lung CT segmentation, lung parenchyma (Skourt 
et al. 2018) needs to be segregated from the bronchus regions that represent similar fea-
tures as lung tissue, along with the segmentation of nodules and blood vessels. Moreover, 
pulmonary inflation with an elastic chest wall can result in large variation in volumes and 
margins (Mansoor et al. 2015). To address these challenges mostly attention based U-Net 
models are employed in CT image segmentation (Fan et al. 2020b; Seo et al. 2019; Song 
et al. 2019), while the performance could further be improved by incorporating other net-
works or operational designs such as object dependent filters, residual blocks, etc.

Unlike other modalities, MRI is most widely used for segmentation (brain tissue, tumor, 
skull, prostate, etc.) due to the ample availability of datasets. However, automated analy-
sis using MRI is challenging due to intensity inhomogeneity, changes in settings for the 
acquisition of MRI scans, fluctuations in the appearance of pathology, anatomical vari-
ations in brain morphology, and imperfections in image acquisition. For instance, the 
performance of brain tumor segmentation models is affected by large variations in brain 
tumors location, size, shape and heterogeneity (image uniformity, contrast uptake and tex-
ture) (Akkus et al. 2017; Wadhwa et al. 2019). To address these challenges multi-modality 
fusion based approaches are most widely studied to effectively learn the inconsistent tumor 
features  (Zhou et  al. 2019b). Depending on the segmentation problem under considera-
tion these challenges can be addressed by integrating several state-of-the-art architectural 
designs (inception, cascaded, attention, dense, etc.) and operational designs (atrous, spec-
tral, hybrid, etc.) resulting in ample possibilities of approaches  (Dong et  al. 2020; Punn 
and Agarwal 2020d; Zhang et al. 2019). Similar to MRI, PET imaging analysis is mostly 
utilized by oncologists to diagnose and analyse severe problems such as gliomas, perfusion 
evaluation, cerebrovascular accidents, parkinson’s disease, etc. This brings similar chal-
lenges of large variations in the appearance and location of pathologies (Weller et al. 2013) 
in addition to very limited data availability due to privacy and security concerns which can 
be addressed by using U-Net based models assisted with data augmentation, self-super-
vised learning or transfer learning strategies (Lu et al. 2020).

There are various clinical applications of ultrasound imaging including cardiology, 
breast cancer, prostate, and other diseases  (Noble and Boukerroui 2006) which can be 
assisted with automated segmentation. However, the heterogeneous appearance of the 
organ due to variations in depth, neighbouring tissues and location is one of the major 
challenges in ultrasound image segmentation  (Zhou et  al. 2020). In this regard, most of 
U-Net based approaches uses inception based attention with dense encoder modules to 
develop multi-scale feature representation (Yang et al. 2019; Li et al. 2019b; Wang et al. 
2018b). Another major challenge is concerned with the high variability in the inter and 
intra-observer among physicians and sonographers, which depends on the acquisition pro-
tocols and observer preference, thereby a larger training dataset is required to alleviate the 
variation (Liu et al. 2019a).
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8 � Conclusion

The deep learning approaches especially U-Net has great potential to influence the clinical 
applications involving automated biomedical imaging segmentation. With U-Net being a 
breakthrough development, it sets up the foundation for the development of novel archi-
tectures concerning the identification and localization of the target regions or sub-regions. 
Following from this context, in present article, various U-Net variants are explored, cover-
ing current advancements and developments in the area of biomedical image segmentation 
serving different modalities. Each U-Net variant features unique developments over the 
challenges incurred due to different modalities. With such high utility and potential of the 
U-Net models, it is believed that U-Net based models would be widely applied to address 
various challenging problems experienced in the biomedical image segmentation for devel-
oping real world computer-aided diagnosis systems.
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