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Cancer cells often adapt their lipid metabolism to accommodate the increased fatty acid

demand for membrane biogenesis and energy production. Upregulation of fatty acid

uptake from the environment of cancer cells has also been reported as an alternative

mechanism. To investigate the role of lipids in tumor onset and progression and to identify

potential diagnostic biomarkers, lipids are ideally imaged directly within the intact tumor

tissue in a label-free way. In this study, we investigated lipid accumulation and distribution

in living zebrafish larvae developing a tumor by means of coherent anti-Stokes Raman

scattering microscopy. Quantitative textural features based on radiomics revealed higher

lipid accumulation in oncogene-expressing larvae compared to healthy ones. This high

lipid accumulation could reflect an altered lipid metabolism in the hyperproliferating

oncogene-expressing cells.

Keywords: zebrafish, cancer model, lipid metabolism, label-free microscopy, coherent anti-Stokes Raman

scattering

1. INTRODUCTION

Cancer is the second leading cause of death responsible for about 1 out of 6 deaths worldwide.
According to the World Health Organization one defining feature of cancer is the rapid creation
of abnormal cells that grow beyond their usual boundaries and then invade adjoining parts of
the body and spread to other organs (WHO, 2010). These abnormal cells differ from their non-
transformed counterparts in morphology, proliferative and migratory potential, metabolism, and
cellular interactions. Metabolic adaptation of cancer cells, including lipid metabolism, has been
identified as one of the important factors for tumor growth (Vander Heiden and DeBerardinis,
2017).

Lipids are organic molecules used by cells as an essential component of membranes
compartmentalizing structures and organelles within the cell as well as separating the cell from
other cells. Lipids are also used to store energy and to modify proteins (Munir et al., 2019). Due
to their increased proliferation, cancer cells are in high demand of fatty acids for the synthesis of
lipidmembranes and to provide energy. This often induces alterations in lipidmetabolism to satisfy
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the increased fatty acid demand and to allow for the survival
of cancer cells. Alteration in lipid metabolism has become a
hallmark in many solid tumors and has been recognized as an
important rewriting phenomenon in tumor cells (Maan et al.,
2018). Several studies have demonstrated that changes in lipid
content could serve as a novel biomarker for cancer detection;
furthermore, targeting lipid metabolism could be an innovative
therapeutic anti-cancer strategy (Long et al., 2018; Maan et al.,
2018). Therefore, studying lipid metabolism at cellular and
subcellular levels will give new insights into carcinogenesis to
instruct the development of targeted and efficient treatment
of patients. As lipid metabolism is largely conserved among
species ranging from plant (Nguyen et al., 2011), yeast (van
Zutphen et al., 2014), C. elegans (Lapierre et al., 2011) to zebrafish
(Anderson et al., 2011) and humans, animal models can be
used to obtain relevant insights (Schlegel and Stainier, 2007). In
preclinical cancer research, zebrafish (Danio rerio) has gained
popularity over the last years and has been established as an in
vivo cancer model offering many benefits. Zebrafish are small,
easy, and cheap to house. Moreover, this small fresh water fish
shares approximately 81% of human disease related genes (Howe
et al., 2013). Nowadays, several zebrafish cancer models have
been established, including leukemia, melanoma, neuroblastoma,
liver, pancreatic, and testicular cancer (Mione and Trede, 2010).
High fecundity, with females producing up to 300 embryos per
week, makes such models especially suitable for large-scale drug
screening. Most importantly, the transparent nature of zebrafish
embryos provides a unique opportunity to investigate cancer cells
and their microenvironment by optical microscopy. Indeed, by
using transgenic fluorescent zebrafish reporter lines highlighting
distinct cell populations or activity of signaling pathways by
fluorescence or even by observing endogenous markers in wild-
type zebrafish, optical microscopy can objectively and non-
invasively identify, evaluate, and assess changes between healthy
and pathological embryos. This offers even the possibility of
longitudinal studies with follow up over several days (Lieschke
and Currie, 2007; Keller, 2013; Abu-Siniyeh andAl-Zyoud, 2020).

Fluorescence microscopy based on single photon absorption
is the most common approach used to track specific cell
populations labeled with bright fluorescent proteins (Pan
et al., 2013; Li et al., 2019; Balla et al., 2020). However, this
method is work-intensive and bears the risk of introducing
artifacts by expression of exogenous proteins (Lipták et al.,
2019). Spectral overlap of fluorescent proteins typically
prevents to study more than 3–5 biomarkers at once.
Moreover, out-of-focus photobleaching, toxicity, scattering,
absorption, and signal loss are common drawbacks when
imaging biological tissue with single photon excitation
(Georgakoudi and Quinn, 2012). Multiphoton techniques
can be used to overcome these restrictions. Compared to
single photon fluorescence microscopy multiphoton improves
depth penetration and reduces photo damage as a result of
employing near infrared femtosecond lasers. It is uniquely suited
to perform studies with "minimal" invasion over long periods
of time to provide excellent insight on dynamic biological
processes offering time scales from microseconds to days
or weeks.

Multiphotonmicroscopy based on nonlinear optical processes
is the method of choice for imaging living, intact tissue
on a molecular level throughout the entire organism with
molecular endogenous and exogenous contrast. Two-photon
excited fluorescence (TPEF) and second harmonic generation
(SHG) imaging have been used for imaging zebrafish (Abu-
Siniyeh and Al-Zyoud, 2020). Neural population activity and
organogenesis have been investigated in transgenic fluorescent
zebrafish with TPEF microscopy (Renninger and Orger, 2013;
Abu-Siniyeh et al., 2016). Gene expression and wound healing
have been studied using endogenous contrast mechanism by
means of SHG (Hsieh et al., 2008; LeBert et al., 2015, 2016).
Still, metabolic adaptations are challenging to image in the
native cell environment, e.g., without the use of labels, and
few optical methods are available. TPEF has the capability to
image metabolic activity but is limited to the cellular optical
redox ratio by inducing the endogenous fluorescence response
of flavin adenine dinucleotide (FAD) and the reduced form of
nicotinamide adenine dinucleotide (NADH) and detecting either
the fluorescence intensity or fluorescence lifetime (FLIM) (Skala
et al., 2007; Quinn et al., 2013; Stringari et al., 2017; Cao et al.,
2020).

Coherent Raman scattering (CRS) has emerged as powerful
imaging tool offering a unique opportunity to image metabolism
by tracking specific endogenous molecules of interest (Yue and
Cheng, 2016). CRS is able to excite molecular vibrations offering
label-free chemically selective imaging, because certainmolecules
have a distinctive signature produced by the vibrations of their
chemical bonds (Cheng and Xie, 2016). CRS is a nonlinear optical
process driving a vibrational transition in a molecule with two
photons, followed by a third photon that probes the induced
vibrational coherence of this molecule. Two short pulsed laser
beams, the pump of frequency ωp and the Stokes of frequency
ωS, are used. When the frequency beating ωp − ωS matches
the vibrational frequency of a molecule, two major processes
occur simultaneously, namely stimulated Raman scattering (SRS)
and coherent anti-Stokes Raman scattering (CARS). In SRS,
the signal is obtained by an increased intensity on the Stokes
beam (stimulated Raman gain) or a decreased intensity on the
pump beam (stimulated Raman loss), and thus SRS requires
modulation schemes and lock-in or tuned amplifier detection
approaches (Freudiger et al., 2008; Slipchenko et al., 2012). CARS
signal is generated at a new frequency 2ωp − ωS, away from the
excitation frequency and thus the experimental requirements are
more relaxed in respect to SRS, e.g., the signal can be detected
with a photomultiplier tube (PMT). CRS allows the use of the
spectral focusing method to add a frequency dimension to the
microscopic image allowing for fast and easy switching of the
vibrational excitation frequency by means of chirped laser pulses
(Hellerer et al., 2004). Through the obtained hyperspectral image
spatial discrimination of different molecular components within
the sample can be performed. CRS has been extensively used
to visualize lipids through their carbon-hydrogen (C-H) bonds
due to their high Raman cross-section (Huff et al., 2008; Kim
et al., 2010; Le et al., 2010b). Several studies showed that CRS
microscopy can be used to investigate different types of living
tissues including cell culture (Potcoava et al., 2014), mouse (Le
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et al., 2009; Uckermann et al., 2014; Liu et al., 2019), C. elegans
(Le et al., 2010a; Shi et al., 2018), and zebrafish (den Broeder et al.,
2017) models. As mentioned before, altered lipid metabolism has
been identified as a biomarker for several types of tumors and
thus CRS represents a promising way to investigate lipid content
within the tumor microenvironment (TME).

The ability to describe subtle changes in tumor cells and
their environment is an important step to understand molecular
dynamics. Conventionally, statistical imaging analysis methods
based on the intensity of individual pixels, namely mean and
standard deviation, are used to extract quantitative values. In
recent years, radiomics has emerged as scientific field that
extracts large amounts of quantitative features from images to
characterize imaging patterns, conventionally, from radiological
and hybrid datasets (Lambin et al., 2012). The radiomic process
can be divided into distinct steps, such as image acquisition
and reconstruction, image segmentation, features extraction and
qualification, analysis, and model building. Each step needs
careful evaluation for the construction of robust and reliable
models to be transferred into clinical practice for the purposes
of diagnosis, prognosis, non-invasive disease tracking, and
evaluation of disease response to treatment (Rizzo et al., 2018;
Devkota et al., 2020).

In this paper, we performed hyperspectral CARS microscopy
to investigate lipid metabolism in a zebrafish cancer model.
The CARS microscope, based on a compact and cost effective
femtosecond Ti:sapphire laser with an inherently synchronized
high power Yb fiber amplifier for Stokes generation as described
in Andreana et al. (2017), was used to analyze the lipid content
in oncogene expressing and healthy zebrafish larvae in vivo.
Radiomics features were used to distinguish between healthy and
cancerous tissue based on the lipid content shown on the CARS
images. We followed the larvae longitudinally from 72 h-post-
fertilization (hpf) up to 120 hpf and monitored changes that
occur in the lipid content of an emerging tumor.

2. MATERIALS AND METHODS

2.1. Animal Model
Zebrafish (D. rerio) were maintained at standard conditions
(Kimmel et al., 1995; Westerfield, 2000) according to
the guidelines of the local authorities under licenses
GZ:565304/2014/6 and GZ:534619/2014/4. Transgenic
zebrafish strains Et(SP8b:KalTA4,UAS:mCherry) Tg(UAS:EGFP-
Hsa.HRAS_G12V)io6 were used to target oncogene expression to
the central nervous system (Distel et al., 2009; Santoriello et al.,
2010). This leads to hyperproliferation of neural cells within
the brain and the spinal cord in zebrafish larvae and, causing
prominent “curved tail” and head deformation phenotypes at 5
days after fertilization (Figure 1C). To give an overview of the
fluorescent co-expression with the oncogene, we show mCherry
expression at location of RASG12V in Figure 1D. The image was
taken on the PerkinElmer Operetta CLS with 5x Air objective.
From now on, we will refer to oncogene-expressing and healthy
larvae as “RAS+” and “RAS-” to indicate the presence or the
absence of oncogenic RAS expression, respectively.

2.2. Sample Preparation
After spawning, eggs from RAS+ and RAS- zebrafish were
maintained in E3 medium at 28◦C under standard conditions.
To suppress pigmentation, 1-phenyl 2-thiourea (PTU, CAS
Number:103-85-5; Sigma Aldrich) was added to the medium at
24 hpf. For imaging, zebrafish were manually dechorionated and
larvae showing a healthy or strong RAS-mediated phenotype
were selected and transferred to a small water tank. Before
imaging, zebrafish larvae were anesthetized in 100 mg/L tricaine
(CAS Number 886-86-2; Sigma-Aldrich). Subsequently, larvae
were transferred into a pipette with 250 µL of 1 % ultra-low
gelling temperature agarose at 32◦C (CAS Number 9012-36-
6; Sigma Aldrich). The volume containing the zebrafish larvae
was then released into a sterilized glass bottom dish forming a
semi-spherical volume (Figure 1A) to fix the larvae in space for
imaging. The larvae were manually micro-positioned sideward,
perpendicular to the optical axis and away from gel borders
under a microscope as shown in Figures 1A,B. After gelification,
the glass bottom dish was filled with E3 medium to preserve
the humidity level of the gel during the imaging session and
ensure survival of larvae. At this point, larvae were ready to
be imaged. CARS images were taken from the same region of
interest (ROI) in the tail for all larvae at the position of the
two dorsal myotomes (blue rectangle in Figure 1E). The end
of the yolk extension served as morphological reference (blue
dashed line in Figure 1B). This covers the region, where strong
hyperproliferation of neural spinal cord cells can be observed in
RAS+ larvae.

2.3. Nile Red Fluorescence Imaging
Nile red (CAS Number 7385-67-3; Thermo Fisher Scientific)
fluorescence imaging has been used to countercheck the signal
of the label-free contrast by means of CARS microscopy. Indeed,
its potential as fluorescent lipid stain has been exploited for
many years (Greenspan et al., 1985). It is highly sensitive to
the microenvironment polarity that induces distinct chromatic
properties on the fluorescence excitation/emission spectra. The
fluorescent peak emission is blue shifted as the polarity of
the environment decreases, from deep red for polar lipids to
yellow for neutral lipids. Therefore, it has been extensively
used to selectively investigate polar and neutral lipids such as
phospholipid bilayer and triglyceride. In this work, we make
use of this chromatic property to image triglyceride content
in living zebrafish larvae. In vivo imaging of 120 hpf zebrafish
larvae stained with Nile red, following the protocol as in Minchin
and Rawls (2011), has been performed with a Leica confocal
microscope using 510 nm laser line excitation and detection
window between 520 and 605 nm to ensure visualization of
triglycerides’ tissue distribution content. For comparison reasons,
we have used a Fluotar VISIR 25x/0.95 water immersion
objective, which gives a rather similar spatial resolution to the
CARS images.

2.4. Imaging Conditions and System
In vivo zebrafish measurements were conducted using an epi-
detecting label-free imaging platform as described in Andreana
et al. (2017) and the geometry shown in Figures 1A–C. In
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FIGURE 1 | Sample preparation for in vivo imaging. (A) Lateral view of coherent anti-Stokes Raman scattering (CARS) microscope objective showing the fish

mounted in agarose gel. (B) Top view of fish mount showing the imaging region of interest (ROI) (blue dashed line). (C) Microscopic white light images of RAS- and

RAS+ larvae showing the cancer phenotype (red arrows). (D) mCherry expression at location of RasG12V expression in a 96 hpf larvae. (E) Cross-section of the

zebrafish larvae showing the ROI in depth (blue rectangle) with: sc, spinal cord; um, dorsal myotomes; lm, lower myotomes; nc, notochord; g, gut.

brief, CARS imaging was performed by means of chirped
pulses, the so-called spectral focusing implementation, with the
pump and the Stokes laser beams centered at 805 and 1,050
nm, respectively, not only to be in resonance with but also
covering the C-H stretch vibration region. Spectral focusing
was configured to reach a spectral resolution of ∼ 35 cm−1,
enabling sufficient spatial-spectral discrimination between the
CH2 stretching vibration at 2,845 cm−1 corresponding to lipid
molecules and contribution from the agarose gel at∼ 3000 cm−1.
The laser beams were focused onto the sample through a 40x/0.8
water immersion microscope objective with a 0.8 numerical
aperture and a working distance of 3.5 mm. Pump and Stokes
beam powers at the sample were kept constant during all the
experiments at 25 mW and 10 mW, respectively. Epi-CARS
signal was detected through the same illuminating objective
spectrally separated from the excitation beams and detected with
a PMT. The combination of spectral focusing CARS and epi-
detection scheme ensures an improved ratio between resonant
and nonresonant contributions of the CARS signal. Average
acquisition time was 0.8 s for a 512× 512 pixel CARS image. The
spectral scan data set of 240 time points took about 100 s over the
C-H stretch region from 2,500 to 3,500 cm−1.

2.5. Data Analysis
While the ability to track associations between lipid CARS images
and pathology is important, it is equally important to have the
ability to track such correlations using quantifiable measures for
objective comparison. Image data analysis was performed on the
CARS images to highlight these associations.

Initially, a simple evaluation of the CARS images properties
was performed based on the intensity of individual pixels to
relate the amount of lipid deposited in a specific ROI with

the image contrast. Other than the absolute intensity value
detected by the sensor (which will later become the image’s pixel),
we used mean and standard deviation to obtain the intensity
levels of the selected ROI in the images. The mean provides
measures of the overall lightness/darkness of the ROI, while the
standard deviation describes its overall contrast. These measures
are associated to the amount of lipid detected in a specific region.
The identified ROI for these measurements corresponded to a
single dorsal myotome of the zebrafish larvae (white dashed line
in Figure 2A). For comparative measurements between RAS+
and RAS- larvae at progressing developmental stages, the ROIs
were matched in terms of dimensions (number of pixels). Image
intensity of the ROI was normalized as a function of the PMT
gain and thresholding was performed taking the notochord
wall intensity as a reference. Thereby, we ensured that the
measurement was not affected by slightly different experimental
settings for each larvae. Mean and standard deviations were
calculated by using the open source software ImageJ (Schindelin
et al., 2012). At this point, we performed statistical analysis for
each developmental stage between RAS+ and RAS- zebrafish
larvae (n = 3) on the normalized ROI. Shapiro–Wilk W test for
normality distribution was initially performed (Royston, 1992).
The null hypothesis at significance level of 0.05 was in all 3
cases (76, 96, and 120 hpf) not rejected. Furthermore, two-tailed
Welch’s t-test was used, thereby p-values smaller than 0.05 were
considered as significantly different.

Moreover, exploratory quantitative analysis of the underlying
image pattern characteristics was performed including numerical
radiomic features. Hence, the CARS images underwent radiomic
analysis utilizing the radiomic engine of python version 3.6.8
(pyradiomics version 2.2.0, van Griethuysen et al., 2017), which
has been certified as being compliant with the Imaging Biomarker
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FIGURE 2 | In vivo hyperspectral coherent anti-Stokes Raman scattering (CARS) images. (A) CARS image of healthy zebrafish larva at 120 hpf at 2,845 cm−1, field of

view (FOV) is 80 × 80 µm2. (B) High-resolution CARS image of the green dashed square in (A) showing contrast coming from the lipid content of the muscle cells,

FOV is 30 × 30 µm2. (C) Quadratic power dependency of the CARS signal of the white dashed rectangle area in (A) respect to the pump power intensity. R-squared of

the quadratic fit is 0.9889. (D) Spectral information provided by hyperspectral CARS allowing discrimination between the resonant signal of lipids and 1% agarose gel.

Standardization Initiative (IBSI) guidelines (Zwanenburg et al.,
2020). The radiomic features were correlated with their respective
label (RAS-/RAS+) using point-biserial correlation (Tate, 1954).
The bin size for pixel value discretization before radiomics was
chosen as 98 from the value range of 1–100 automatically so
that the lowest feature significance p-value was minimized. This
bin width resulted in max 5 number of bins. Features having
p-value lower than 0.05 were further analyzed and decoded to
describe the textural characteristics differences of the RAS+ and
RAS- cases.

3. RESULTS

In order to confirm the origin of the CARS signal from
all measurements, we performed experimental checks on the
collected signals. Typically, the contrast in CARS microscopy
arises from molecular specific and non-specific signals, the
so-called resonant and nonresonant contributions. Indeed, in
this complex living system this is a key point for the correct
interpretation of the images. Considering the representative
image in Figure 2A and the corresponding high-resolution image
in Figure 2B, the power dependency and the spectral shape
of the signal of the myotome (white dashed rectangle) and

the sarcomeres were evaluated. Indeed, quadratic and linear
dependencies of the signal were found for pump and Stokes
intensities (see Figure 2C), respectively, and the detected signal
disappeared when pump or Stokes beam was out of resonance
or blocked. Hence, the collected signal was assigned as resonant
CARS contribution of muscle fibers. Moreover, the spectral
information carried by each pixel by means of spectral focusing
CARS allowed the discrimination of the resonant molecules. We
assigned the signal at 2845 cm−1 to the lipid-rich structure of
the muscles fibers as shown in Figure 2D. We also spectrally
identified and characterized the resonant signal of the agarose gel,
which did not interfere with the resonant lipid signal of interest
as shown in Figure 2D.

For careful investigation of the lipid distribution in the
CARS images and its role during cancer formation, we
performed two different measurements. We first analyzed
the lipid distribution of RAS- and RAS+ larvae in depth
along the z direction on the selected ROI as described in
section 2.2 from the muscle surface down to the middle of
the notochord (Figure 3). Subsequently, we investigated the
behavior over time from 72 to 120 hpf. For comparative
investigation, we focused the laser beams always on the
same ROI and at a depth of around 50 µm from the
muscle surface.
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FIGURE 3 | In vivo coherent anti-Stokes Raman scattering (CARS) images at 2,845 cm−1 at three different depths for RAS- (left) and RAS+ (right) larvae. nc,

notochord; um, dorsal myotome region. All images have a FOV of 100 × 100 µm2.

Figure 3 shows representative images of the lipid distribution
in depth for 120 hpf larvae. In healthy larvae, the well-organized
lipid distribution is clearly visible. The corresponding CARS
signals are coming from lipid-rich structures within the dorsal
myotome (um), where muscle fibers are clearly visible. The
myotomes are followed in depth through their lipid content.
The notochord (nc) is also visible at depths from 40 to 75 µm
since its cell membrane structure is composed of a mixture of
lipids and proteins. The CARS images of RAS+ fish have a totally
different appearance. The organized lipid distribution from the
muscle fibers found in healthy larvae can be barely identified at
the surface. Deeper in the tissue this arrangement is completely
lost and a cluster of high-intensity lipid signal is visible. We
can identify a region, where there is high-clustered lipid content
overwhelming the expected CARS signal coming from themuscle
fibers at depths from 40 to 75 µm as observed in the healthy case.
This ROI corresponds to the enlarged spinal cord location, where
RAS expressing cells are situated and are proliferating.

Additionally, we performed independent in vivo
measurements to confirm the distribution of lipids as observed by
CARS microscopy. Here, Nile Red staining highlighting neutral
lipids (triglycerides) in RAS+ and RAS- larvae was performed
and 120 hpf larvae were imaged by confocal microscopy to
show triglycerides content. The comparative results of Nile red
showing similar phentotype than the CARS images are shown in
Figure 4.

FIGURE 4 | In vivo confocal images of Nile Red stained RAS- (A) and RAS+

(B) 120 hpf larvae imaged with 25x, 0.95 NA water immersion objective. The

contrast is based on fluorescence of Nile Red excited with 510 nm laser

excitation showing lipid (triglycerides) distribution and content. All images have

a field of view (FOV) of 100 × 100 µm2.

The CARS images from the longitudinal study from 72
to 120 hpf are shown in Figure 5. RAS- larvae at different
developmental stages showwell-organizedmyotomes andmuscle
fibers at all time points. The corresponding CARS signals increase
according to the growth of the larvae due to the augmented
lipid content in muscle fibers. In the RAS+ fish, the well-
organized myotome structure is not visible anymore at any stages
as predicted from results with 120 hpf old fish. An increasing
clustered lipid content is observed. As well the expected contrast
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FIGURE 5 | Longitudinal in vivo coherent anti-Stokes Raman scattering (CARS) images at 2,845 cm−1 for RAS- and RAS+ larvae from 72 to 120 hpf (left and right

columns). All images have a field of view (FOV) of 100 × 100 µm2. The single image contrast is optimized for better visualization. Center column shows the lipid

distribution on the specific region of interest (ROI). Significant differences between the 3 groups with n = 3 (72, 96, and 120 hpf) are shown (*p < 0.02, **p < 0.03,

and ***p < 0.04).

coming from the notochord is not as clear as in the healthy cases
due to the high lipid content overwhelming all other signals.
Indeed, the dynamic range of the images, especially for the 120
hpf cases, has beenmainly filled with the lipid signal coming from
the ROI corresponding to the dorsal myotomes. Hence, the lipid
signal of the notochord is not visible anymore. At 72, 96, and 120
hpf, the clustered detected lipid signals correspond to the ROI,
where hyperproliferating cells are situated.

4. DISCUSSION

The observed lipid content in the CARS images has been
investigated by means of mean and standard deviation of
the intensity distribution within a single image and radiomic
analysis as described in section 2.5. First, mean and standard
deviations on a normalized ROI have been calculated. Results
are highlighted in Figure 5 for 72, 96, and 120 hpf RAS+ and

RAS- larvae. When comparing results at the three developmental
time points for the healthy cases only, the mean value indicates
that lipid content is following the growth of the myotome as an
increase in lipid signal can be observed. Still, the same trend is
also clearly visible for the RAS+ cases. However, clear evidence
of different lipid content is observable when comparing RAS-
to RAS+ larvae at each of the three analyzed time points. Since
the mean value provides a measure of the overall contrast of
the CARS images in the selected ROI and the image contrast is
related to the amount of lipids, it can be seen that the region
with oncogene expressing cells in the RAS+ larvae contain higher
amounts of lipids compared to healthy larvae at the same time
point. The standard deviation provides a confirmation that a
different biological mechanism is taking place involving lipid
molecules. Indeed, the high standard deviation as observed in
the RAS+ larvae yields to high clustering in the images as shown
in Figures 3, 5, and thus high variation in the lipid distribution
within the ROI. The above-described pattern is supported by
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TABLE 1 | Distribution of the three most prominent features associated with

RAS+ vs. RAS- for 72, 96, and 120 hpf zebrafish larvae.

Feature p-value R(correlation coefficient)

Dependence Variance

(GLDM)

0.020 –0.882

RunLengthNonUniformityNormalized

(GLRLM)

0.041 –0.830

ShortRunEmphasis

(GLRLM)

0.042 –0.827

SRE, short run emphasis; DV, difference variance; RLNUN, normalized non-uniformity

(run-length matrix). The correlation coefficient R indicates the relationship of the

continuous radiomic features generated from the images at each time point and the binary

RAS- vs. RAS+ variable.

the Nile Red staining experiments. Indeed, after performing the
same image analysis based on pixel intensity, confocal images
in Figure 4 show ∼ 1.6 times higher lipid content in the RAS+
larvae when compared with the RAS- one.

Second, for objective evaluation radiomics analysis has been
performed. Dependence variance is a gray level dependence
matrix (GLDM) metrics, which characterizes the gray value
dependence size in the image. (i) Dependence is defined as the
number of connected pixels that are dependent (similar) to a
center pixel, meaning in case of more homogeneous textures this
dependency is higher. (ii) Normalized non-uniformity measures
the similarity of run lengths in the image. (iii) Run length refers
to the number of consecutive pixels having the same values in the
image. Lower non-uniformity value indicates that the run length
similarities are lower, which corresponds to more heterogeneous
patterns. Short run emphasis describes the distribution of short
run lengths. Higher short run emphasis value indicates more
fine textures. These three identified significant radiomic features
had a negative correlation coefficient, implying that in case
of RAS+ larvae these values are all decreased compared to
RAS- larvae. This finding correlates with visual assessment,
where RAS- cases represent a more balanced pattern, composed
of small but homogeneous subregions. Overall, these findings
indicate that the lower the dependence variance (surrounding
pixels are different than center pixel), the lower the run length
similarities (high variation in homogeneous subgroup sizes),
and the lower the short run length emphasis (many small
homogeneous connected pixels – distorted texture), the more
likely a tissue is malignant. For the distribution and correlation of
these prominent features, seeTable 1. These initial findings imply
that the textural characteristics of RAS+ vs. RAS- cases can be
more accurately characterized with advanced radiomic analysis
compared to more conventional statistical tools, e.g., mean and
variance. This could open the potential for future radiomic-
based predictive models that aim to automatically characterize
the aggressiveness of tumors in zebrafish specimen.

The results shown give an objective evaluation that
hyperproliferative cells accumulate higher amounts of lipids
compared to untransformed cells in our animal model from early
stages on. Indeed, under non-pathological cellular conditions
there is a balance between lipid production and the amount
used. Recent studies have suggested that cancer cells with RAS

mutations exhibit altered metabolism including an enhanced
lipid synthesis (Oba et al., 2018). The high lipid accumulation
observed by means of CARS microscopy in RAS+ larvae fits with
these previous studies. Changes in lipid content as observed in
our longitudinal study indicate that lipid metabolism alterations
could serve as biomarker that can be traced over time by
non-invasive and label-free CARS microscopy in combination
with radiomics opening up clinical applications (Figure 5).

5. CONCLUSIONS

Label-free in vivo imaging of lipids in zebrafish larvae from 72
to 120 hpf has been performed by means of hyperspectral CARS
microscopy. Lipid distribution was investigated in oncogene-
expressing and healthy larvae by means of standard statistical
tools and more advanced tools like radiomics. It was shown that
multiple radiomic features have a significant negative correlation
with the cancer state of zebrafish larvae. However, due to the
small sample size for the radiomic analysis, further investigation
with a larger cohort is needed in order to determine whether
the discovered relation holds true in a more representative
cohort. It has been demonstrated that CARS microscopy can be
used to track lipid content in living larvae revealing increased
lipids in tumor-developing zebrafish larvae. This trend has
been confirmed by Nile Red staining experiments. Our results
indicate that CARSmicroscopy is a suitablemethod to investigate
lipid metabolism in living zebrafish larvae during development
and tumor formation. We anticipate that using hyperspectral
CARS microscopy will allow for detailed characterization of
lipid metabolism alterations during tumorigenesis. Furthermore,
we envision that our CARS microscopy approach can be
implemented in label-free high throughput via radiomics
automated screening platforms to identify compounds with
anti-tumor effects by targeting lipid metabolism in zebrafish,
which could ultimately be translated to clinical applications. Our
platform could help to better understandmechanisms underlying
cancer development. While the data and the analysis presented in
this paper are preliminary and further investigation with a larger
number of samples is required, our proposed approach based
on the combination of radiomic analysis and label-free CARS
microscopy has high potential for an improved understanding
of lipid metabolism and for high throughput in vivo zebrafish
drug screening.
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