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Abstract: N-myristoyltransferase (NMT) inhibitors that were initially developed for treatment of
parasitic protozoan infections, including sleeping sickness, malaria, and leismaniasis, have also shown
great promise as treatment for oncological diseases. The successful transition of NMT inhibitors,
which are currently at preclinical to early clinical stages, toward clinical approval and utilization may
depend on the development and design of a diverse set of drug molecules with particular selectivity
or pharmacological properties. In our study, we report that a common feature in the inhibitory
mechanism of NMT is the formation of a salt bridge between a positively charged chemical group of
the small molecule and the negatively charged C-terminus of an enzyme. Based on this observation,
we designed a virtual screening protocol to identify novel ligands that mimic this mode of interaction.
By screening over 1.1 million structures downloaded from the ZINC database, several hits were
identified that displayed NMT inhibitory activity. The stability of the inhibitor-NMT complexes was
evaluated by molecular dynamics simulations. The ligands from the stable complexes were tested
in vitro and some of them appear to be promising leads for further optimization.

Keywords: NMT; N-myristoyltransferase inhibitor; myristoylation; virtual screening; ZINC database;
salt bridge in ligand-protein complexes

1. Introduction

The enzymes N-myristoyltransferases (NMTs) catalyze the transfer of myristic acid
to the N-terminus of specific cellular proteins or peptide substrates [1,2]. Due to its hy-
drophobicity, the attached myristic acid is utilized for association of the modified proteins
to the cellular membranes, but it also can bind to hydrophobic pockets of certain proteins,
exerting control on their cellular localization or switching between on/off states [3–5].

NMTs use myristoyl Coenzyme A (Myr-CoA) as a cofactor to transfer myristic acid to
its protein substrates [1,2]. The active site of NMT contains two adjacent pockets—one for
binding to Myr-CoA and the other for binding to the substrate protein/peptide (known
as the peptide binding pocket). In this configuration the N-terminal amino group of the
peptide substrate comes in close proximity to the thioester bond of Myr-CoA, allowing a
nucleophilic attack, which is one of the first steps in the catalytic process [1]. Coenzyme A
(CoA) is released as a byproduct of this reaction [1].

NMTs are present in all eukaryotic species, including unicellular protozoan and
metazoan organisms, but are absent in the prokaryotic kingdom [6]. The human genome
contains two genes that encode two distinct forms of NMTs: NMT1 and NMT2 [7]. They
share a very conserved catalytic domain, but their N-terminal regions are highly divergent.
NMT1 and NMT2 have overlapping functions but may be regulated differently due to their
unique N-terminal unstructured regions [7,8].

As myristoylation plays a key role in the life cycle of parasitic protozoan species,
targeting NMTs has shown promise in the treatment of diseases such as sleeping sick-
ness, malaria, leismaniasis, and others [9–11]. The first potent nanomolar inhibitors of
N-myristoyltransferases were developed to target NMTs of Trypanosoma brucei, the causative
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agent of the African sleeping sickness [12]. DDD85646, the prototypical drug in this set of
sulfonamide compounds, was found to be highly effective in the treatment of Trypanosoma
infections in preclinical models [12]. IMP-1088 was developed later as a fragment-based
NMT inhibitor with the aim to target Plasmodium spp., the protozoan species that causes
malaria [10,13]. However, because the 3-dimensional structure of the catalytic domain of
NMT is remarkably evolutionarily conserved, both DDD85646 and IMP-1088 were also
found to be potent inhibitors of the human N-myristoyltransferases. This allows for their
repurposing to treat diseases where the inhibition of human NMTs may be desirable. For
example, IMP-1088 was found to block the capsid assembly and replication of cold viruses,
because myristoylation of certain viral proteins by the endogenous human NMTs plays a
key role in rhinovirus biology [13]. Human NMTs are also responsible for myristoylation
of c-Src and c-Abl proto-oncogenes [4,14–16]. Myristoylation of c-Src is required for its
association with cellular membranes, but also mediates its dimerization and plays a critical
role in regulation of its kinase activity and function, a process that has been found to be
deregulated in cancer [14,17,18]. More importantly, treatment with NMT inhibitors at con-
centrations that are tolerated in vivo induces apoptosis in cancer cells and has a profound
effect on their overall viability [19]. In cell culture models, almost every cancer type was sen-
sitive to NMT inhibition, including tumors from the breast, colon, pancreatic, lung, prostate,
skin, and of hematopoeitic origin [19,20]. In a preclinical model, treatment with an NMT
inhibitor led to the complete regression and eradication of B-cell lymphoma implanted in
mice, even from a type refractory to other clinically approved treatments [20]. Therefore,
NMT inhibitors, which are currently entering early stages of clinical development, are
promising therapeutics that may revolutionize the treatment of some of the most dreaded
diseases. The success of NMT inhibitors in clinical practice could depend on the design
and development of a diverse set of drugs with specific selectivity and pharmacological or
ADME (absorption, distribution, metabolism, and excretion) properties that are best suited
for a particular clinical application. In this study, we describe some commonalities between
the mechanisms of inhibition of the two known classes of NMT inhibitors, represented by
DDD85646 and IMP-1088, and perform virtual screening to identify novel compounds with
NMT inhibitory activity. The best scored compounds were tested experimentally by NMT
assay and some of the hits were confirmed as promising leads for further optimization.

2. Results
2.1. A Salt Bridge between the NMT Inhibitors and the C-Terminus of NMT

At neutral pH, DDD85646 and IMP-1088 have a net charge of +1, due to protonation of
a terminal nitrogen atom, part of the piperazine ring in DDD85646 and the dimethylamino
group in IMP-1088 (Figure 1).
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Figure 1. 2D structures and protonation states of the NMT inhibitors, DDD85646 and IMP-1088, at
a pH of 7.0. Both molecules have a net charge of +1 due to protonation of the piperazine ring of
DDD85646 and the dimethylamino group of IMP-1088.

Analysis of crystallographic structures of DDD85646 and IMP-1088 complexes with
human NMT1 reveals that the positively charged chemical group of the inhibitor takes part
in formation of a salt bridge with the negatively charged C-terminus of the NMT protein,
which is atypically located in the active site of the enzyme (Figure 2).
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Figure 2. Formation of a salt bridge between the positively charged moiety of the NMT inhibitors
and the C-terminus of the NMT1 protein based on: (a) the crystal structure of Homo sapiens NMT1
in a complex with DDD85646 (PDB 3IWE) [12]; (b) the crystal structure of Homo sapiens NMT1 in a
complex with IMP-1088 (PDB 5MU6) [13]. The carbon atoms of the inhibitors are shown in orange.
The salt bridge is depicted by red dots. The corresponding charges of the inhibitors and of the
carboxyl group at the C-terminus are also indicated. Distances shown are in angstroms (Å).

As DDD85646 and IMP-1088 are potent NMT inhibitors, the formation of a salt bridge
with the C-terminus of NMT may play a critical role in mediating their activity. As such,
we reasoned that this could be used to devise a successful virtual screening strategy that
relied on identifying small molecules capable of forming similar salt bridges.

2.2. Virtual Screening for Identification of Novel N-Myristoyltransferase Inhibitors
2.2.1. Optimization of the Docking Protocol

The crystal structure of Homo sapiens NMT1 in a complex with the NMT inhibitor
DDD85646 (PDB 3IWE) was used to optimize the docking parameters for AutoDock
Vina [21,22]. Docking the structure of DDD85646 downloaded from the ZINC15 database
(with a positive charge of +1), revealed a close match with the crystallographic structure
(RMSD = 1.08) and AutoDock affinity (−11.1 kcal/mol). DDD86481 is a derivative of
DDD85646, and differs from it by the presence of an isobutyl group attached to its pyrazole
ring [20]. With IC50 < 1 nM, DDD86481 is more potent than DDD85646, has 8.8-fold
higher anti-tumor activity in vitro, and has been successfully used in preclinical oncological
models [20]. Consistent with its higher potency, the AutoDock affinity of DDD86481 was
also higher (−11.6 kcal/mol). The AutoDock affinities of DDD85646 and DDD86481 were
used as a guideline to assess and compare the scores of the different ligands identified in
the virtual screening. A workflow summary chart of our study is presented in Figure 3.

2.2.2. Docking-Based Screening of ZINC15 Database with AutoDock Vina

The NMT inhibitors DDD85646, DDD86481, and IMP-1088 have a charge of +1 at neu-
tral pH. Keeping this in mind, we set up a virtual screening protocol that used compounds
with a charge of +1 at a pH of 7.0. Altogether, 1,114,610 structures with a predicted net
charge of +1 at a pH of 7.0 were downloaded from the ZINC15 database [23] and used
for docking-based screening with AutoDock Vina. The molecular weight of the selected
compounds ranged from 250–500 Da and LogP values were between −1 and 5. The vir-
tual screening identified 2560 compounds with an AutoDock affinity equal to or higher
than the affinity of DDD85646 (between −11.1 and −13.4 kcal/mol) and 508 compounds
with a predicted affinity equal to or higher than that of DDD86481 (between −11.6 and
−13.4 kcal/mol). Of the 2560 compounds with an AutoDock affinity above or equal to
DDD85646, only 55 were found to form a salt bridge with the C-terminus of NMT. In
addition, it was revealed that among the hits from the virtual screening, there was a second
group of compounds that formed a hydrogen bond with the C-terminus of NMT, but did
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not form a salt bridge because the positive charge of the molecule was located in a different
moiety of the structure. A third group of compounds did not interact with the C-terminus
of NMT directly. Overall, the identified ligands had diverse structures, and only rarely
belonged to sets of compounds containing common structural elements.
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Figure 3. A workflow chart of the virtual screening. Over 1.1 million structures with a charge of +1
were downloaded from the ZINC database. By using AutoDock Vina, 2560 compounds were identified
that had a higher AutoDock affinity score than the score of the potent NMT inhibitor, DDD85646
(−11.1 kcal/mol). Of them, 55 were found to form a salt bridge with the C-terminus of NMT. In parallel,
508 of the highest scoring ligands that did not participate in a salt bridge with the C-terminus of NMT
were also analyzed. Filtering the compounds based on their ADME properties narrowed down the
number of compounds to 28 and 79, respectively. These compounds were used for docking using GOLD
software, and the best scoring 35 were selected (17 that form a salt bridge and 18 that do not). Molecular
Dynamics (MD) was performed on the NMT complexes of these 35 ligands, and finally, 24 compounds
were selected for experimental testing in an in vitro fluorescent NMT assay. The group that did not form
a salt bridge with the C-terminus of NMT, comprised two types of compounds: some that formed a
hydrogen bond with the C-terminus of NMT and some that did not interact with the C-terminus at all.

2.2.3. Prediction of ADME Properties

The large number of positive hits from the virtual screening necessitated the usage
of additional filters. To narrow down the number of compounds, we selected the ones
with desirable ADME properties, based on SwissADME [24]. The filters used included GI
absorption—high, BBB permeability—no, violations of rules of Lipinski: 0, violations of
rules of Ghose: 0–2, violations of rules of Veber: 0, violations of rules of Egan: 0, violations
of rules of Muegge: 0, PAINS: 0, and Brenk: 0 (Figure 4). To eliminate ligands with potential
neurotoxicity, BBB non-permeable compounds were selected at this stage only. This may be
advantageous for the selection of anti-cancer therapeutics, which in most cases are BBB
non-permeable. Among the 55 compounds that formed a salt bridge with the C-terminus
of NMT, 28 passed the ADME filters. In addition, from the 508 compounds that showed
an affinity in AutoDock equal to or higher than that of DDD86481, 79 compounds were
found to have desirable ADME properties. Altogether, 107 compounds were identified
with desirable ADME properties and were used for further analysis. With a few exceptions,
the compounds had diverse and unique structures.
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2.2.4. Docking-Based Pre-Screening with GOLD

To evaluate the role of protein side chain flexibility and the presence of structural
water molecules, as well as to reconfirm the docking solutions previously obtained by
AutoDock Vina, we performed docking studies using GOLD software version 5.3.0 (CCDC
Ltd., Cambridge, UK) [25]. All 107 molecules that passed the ADME filters were docked
to human NMT1 (PDB 3IWE). The ChemPLP docking scores of the ligands ranged from
120.37 to 88.05. Fourteen compounds had docking scores higher than the score of IMP-1088,
seventeen higher than the score of DDD86481, and fifty-eight higher than the score of
DDD85646 (Tables 1 and S1).

Table 1. The top scoring ligands of the virtual screening in GOLD. The ligands with ChemPLP
score above the score of DDD86481 are shown. The AutoDock affinity of all ligands is equal to or
higher than the one of DDD85646 (−11.1 kcal/mol). The control NMT inhibitors are shaded in grey.
Complete list of ligands and their docking scores is provided in Table S1.

ZINC ID ChemPLP
GOLD

Affinity AutoDock
kcal/mol

Interaction with
C-Terminus of NMT

1 ZINC19710084 120.37 −11.4 Salt bridge
2 ZINC19691948 120.17 −12.0 H-bond
3 ZINC19710136 119.73 −11.6 Salt bridge
4 ZINC19710116 117.55 −11.3 Salt bridge
5 ZINC19228549 117.52 −11.9 None
6 ZINC15080181 116.02 −11.1 Salt bridge
7 ZINC19710117 115.26 −11.3 Salt bridge
8 ZINC35451413 114.82 −11.8 H-bond
9 ZINC21711800 113.94 −11.3 Salt bridge
10 ZINC61997750 113.09 −11.9 None
11 ZINC46055559 112.95 −11.9 H-bond
12 ZINC35458799 112.31 −11.3 Salt bridge
13 ZINC19692196 111.64 −11.8 H-bond
14 ZINC20600095 111.56 −11.9 None
ctr IMP-1088 111.36 −10.8 Salt bridge
15 ZINC19692195 110.28 −12.0 H-bond
16 ZINC65111278 110.24 −11.6 None
17 ZINC19590209 110.20 −11.9 Salt bridge
ctr DDD86481 110.20 −11.6 Salt bridge

Among the top scoring compounds, the biggest proportion was of ligands that formed
a salt bridge with the C-terminus of NMT. For example, 6 of the 10 top scoring ligands
formed a salt bridge with the C-terminus of NMT, including ligands 1, 3, and 4 (Table 1).

The compounds identified by virtual screening represented three groups, based on
their interaction with the C-terminus of NMT (Table 1, last column): compounds that form
a salt bridge with C-terminus of NMT (Figure 5a,b), compounds that form a hydrogen
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bond with C-terminus of NMT (Figure 5c), and compounds that do not interact with the
C-terminus (Figure 5d).
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2.2.5. Determination of Stability of Ligand-NMT Complexes by MD Simulations

35 candidate compounds and 3 control inhibitors (DDD85646, DDD86481, and IMP-1088)
were chosen for determination of NMT1-ligand complex stability by molecular dynamics
simulations (Figures 6–8). The selected compounds were among the best hits of the virtual
screening, based on GOLD and AutoDock scores, and included: (a) 17 compounds pre-
dicted to form a salt bridge with C-terminus of NMT (Figure 6); (b) 9 compounds predicted
to form a hydrogen bond with C-terminus of NMT (Figure 7); and (c) 9 compounds that
would not interact with the C-terminus of NMT (Figure 8).
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Figure 6. Structure, protonation, and charge at pH 7.4 of ligands identified in the virtual screening
with predicted salt bridge with the C-terminus of NMT. The salt bridge is formed between the
positively charged moiety of the small molecule and the negatively charged C-terminal carboxyl group
of NMT protein. The positive charge of the ligand is located at a distal piperidine or piperazine ring.
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Figure 7. Structure, charge, and protonation at pH 7.4 of candidate ligands that form a hydrogen
bond with C-terminus of NMT1. The hydrogen atom involved in the H-bond is highlighted by a small
asterisk. This hydrogen atom can be a part of an amino group, hydroxyl group, or indole ring in the
different ligands. The positive charge of the molecule is in a centrally located ring substructure and
does not engage in formation of a salt bridge (may participate in cation–pi interactions in some cases).
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Figure 8. Structure, protonation, and charge at pH 7.4 of candidate ligands that do not interact with
the C-terminus of NMT1. These ligands do not engage the C-terminus of NMT in a salt bridge or in a
hydrogen bond.



Molecules 2022, 27, 5478 9 of 19

A very good representation of the stability of the ligand–NMT complexes can be
obtained by plotting the distances between selected atoms; for example, atoms participating
in a salt bridge or a H-bond vs. the different frames of MD simulations. The results for the
three control NMT inhibitors, DDD85646, DDD86481, and IMP-1088, indicated that the salt
bridge was stable during the entire duration of the MD simulation (Figure 9).
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Figure 9. NMT inhibitors DDD85646, DDD86481, and IMP-1088 form stable complexes in MD
simulations. Here the length of the salt bridge is plotted against the different frames of simulation.
Note that the distances do not exceed 4 Å, indicating that the salt bridge is preserved and stable
during the simulations.

Similarly, 15 out of the 17 ligands that formed a salt bridge with the C-terminus of
NMT also formed exquisitely stable complexes with NMT1; the remaining two displayed
partial stability (Figure 10).
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Figure 10. Stability of the ligand–protein complexes for compounds that form a salt bridge with
C-terminus of NMT1. The graphs depict the length of the salt bridge at the different frames of MD
simulations. The salt bridge is considered stable if its distance does not exceed 4 Å. The complex of
ZINC353458799 (second row, right) displays partial stability; initially, the salt bridge is disrupted,
but later, it is re-formed (after frame 650). The complex of ZINC67688793 (fifth row, right) is at least
partly unstable, because the salt bridge becomes disrupted in frames 780–960. Altogether, the results
emphasize the role of the salt bridge in formation of stable ligand–protein complexes.

In contrast, all nine ligands from the group that formed a hydrogen bond with the
C-terminus of NMT did not form stable complexes, because the aforementioned hydrogen
bond was disrupted during the MD simulation (Figure 11).
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Figure 11. Compounds that interact through a hydrogen bond with C-terminus of NMT1 do not
form stable complexes in MD simulations. The distance between atoms participating in hydrogen
bonds between the ligand and C-end of NMT1 are depicted. During the MD simulation, the distances
increased above 4 Å for all ligands, indicating dissociation of the hydrogen bond.
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In addition, seven out of the nine compounds from the group that did not interact
with C-terminus of NMT1 displayed unstable complexes (Figure 12). Altogether, the results
emphasize the role of the salt bridge in the formation of stable ligand-NMT complexes.
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Figure 12. Stability of the ligand–protein complexes for compounds that do not interact with the
C-terminus of NMT1. The values on the Y-axis show the distance between selected atoms during
the MD simulation. For ZINC19228549, these were the atoms participating in a hydrogen bond with
Gly284; for ZINC61997750, ZINC65111278, and ZINC257248718—the atoms involved in a hydrogen
bond with Tyr420; for ZINC20600095—the atoms participating in a hydrogen bond between the
ligand and coenzyme A; for ZINC19781807—the distance between the ligand and Asn473; and for
ZINC34830480 and ZINC306129675—the distance to Gln496 (non-polar contact). Distance > 4 Å
indicates instability.

2.3. Experimental Determination of Inhibitory Activity of Selected Ligands by NMT Assay

In addition to the control NMT inhibitors, DDD85646 and IMP-1088, 24 ligands were
selected for experimental testing. Among them, there were 15 ligands that formed a salt
bridge with C-terminus of NMT, 5 that formed a hydrogen bond with C-terminus of NMT,
and 4 that didn’t interact with C-terminus. The list included ligands that displayed stable
or at least partially stable complexes with NMT in the MD simulations, but a few ligands
that did not form stable complexes were also included for comparison (Figures 10–12).
The potency of the ligands was determined by using an in vitro NMT assay (Table 2).
Representative dose-response inhibitory curves are shown in Figure S1.

Table 2. IC50 and docking scores of ligands identified in the virtual screening. The control NMT
inhibitors are shaded in grey.

ZINC ID IC50, µM ChemPLP
GOLD

Affinity AutoDock
kcal/mol

Interaction with
C-Terminus of NMT

1 ZINC19710136 14.03 ± 0.6 119.73 −11.6 Salt bridge
2 ZINC61997750 34.29 ± 2.2 113.09 −11.9 None
3 ZINC67688793 37.47 ± 1.8 98.10 −11.4 Salt bridge
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Table 2. Cont.

ZINC ID IC50, µM ChemPLP
GOLD

Affinity AutoDock
kcal/mol

Interaction with
C-Terminus of NMT

4 ZINC19708540 45.74 ± 3.9 105.16 −11.2 Salt bridge
5 ZINC19566088 52.37 ± 13.7 94.50 −11.1 Salt bridge
6 ZINC19692195 64.00 ± 9.5 110.28 −12.0 H-bond
7 ZINC19710084 96.64 ± 19.5 120.37 −11.4 Salt bridge
8 ZINC19708784 >100 101.21 −11.6 Salt bridge
9 ZINC299757951 >100 106.95 −11.5 Salt bridge
10 ZINC21711800 >100 113.94 −11.3 Salt bridge
11 ZINC19228549 >100 117.52 −11.9 None
12 ZINC35458799 >100 112.31 −11.3 Salt bridge
13 ZINC35459261 >100 105.64 −11.7 Salt bridge
14 ZINC8992179 >100 108.00 −11.6 None
15 ZINC72353749 >100 106.19 −11.7 H-bond
16 ZINC72370170 >100 102.19 −11.5 Salt bridge
17 ZINC19710924 >100 102.12 −11.4 Salt bridge
18 ZINC19691948 >100 120.17 −12.0 H-bond
19 ZINC257248718 >100 107.29 −11.9 None
20 ZINC19376075 >100 107.51 −12.2 H-bond
21 ZINC257297002 >100 105.31 −12.0 H-bond
22 ZINC19710116 >100 117.55 −11.3 Salt bridge
23 ZINC19590209 >100 110.20 −11.9 Salt bridge
24 ZINC214463354 >100 110.07 −12.0 Salt bridge
25 DDD85646 0.02133 ± 0.00008 103.59 −11.1 Salt bridge
26 IMP-1088 <0.007611 ± 0.0006 111.36 −10.8 Salt bridge

IC50 values of the control inhibitors were in the low nanomolar range (Table 2,
Figure S1), in agreement with published results. For example, IC50 of DDD85646 has
been reported as 3, 4, 13.7, or 17 nM in different studies [2,12,26,27], and in our NMT assay,
it was 21.33 nM. IC50 of IMP-1088 has been reported to be <1 nM [13] and in our study,
it was determined to be 7.61 nM (Table 2, Figure S1). However, this value is near the
threshold of sensitivity of our NMT inhibition assay and may underestimate the potency
of IMP-1088 (see Materials and Methods). The ligands identified by virtual screening
displayed moderate activity, comparable with results from previous high-throughput
screening experiments [13] (Table 2).

For example, 7 compounds showed IC50 in the low and middle micromolar ranges
(IC50 < 100 µM) and 17 others had IC50 > 100 µM (Table 2). Five of the compounds
with IC50 < 100 µM (ZINC19710136, ZINC67688793, ZINC19708540, ZINC19566088, and
ZINC19710084) formed a salt bridge with the C-terminus of NMT; one compound
(ZINC19692195) interacted with the C-terminus through a hydrogen bond; and another
one (ZINC61997750) was a natural product and didn’t interact with C-terminus of NMT
(Figure 13). Moreover, 7 of the 24 (29%) of the tested compounds displayed IC50 < 100 µM,
indicating that the virtual screening had significantly amassed compounds with inhibitory
activity. That the virtual screening is a technique that gathers ligands with inhibitory
activity is well recognized and provided a rationale for the current study. By using this
approach, we were able to identify compounds with NMT inhibitory activity, without the
need to experimentally test each compound.

Structure-Activity Relationship (SAR) study revealed some common structural ele-
ments in the active compounds, such as the presence of distal benzene rings (Figure 13).
Some of the most potent compounds that were identified, such as ZINC19710136 and
ZINC19710084, possessed two distal benzene rings connected by an oxygen atom. Sim-
ilarly, ZINC19708540 had a distal benzene ring bridged through an oxygen atom to a
cyclohexane ring (Figure 13, left column). Interestingly, these substructures were not
present in any of the inactive compounds. The docking poses of these ligands showed that
the benzene rings inserted into a hydrophobic pocket inside the active site of NMT that
formed stacking interactions with Phe188 and Phe311.
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Figure 13. Structures of compounds identified in the virtual screening with IC50 < 100 µM. The
predicted positive charge of the molecules at pH 7.0 is indicated by a plus sign. Five ligands form a
salt bridge with C-terminus of NMT though a positively charged piperidine ring. The amino-group
of ZINC19692195 (indicated by a small asterisk), forms a hydrogen bond with the C-terminus of
NMT1. ZINC619997750 is a natural product that does not interact with the C-terminus of NMT. Distal
benzene rings are indicated by arrows.

3. Discussion

Considering that potent NMT inhibitors are positively charged and participate in
a salt bridge with the negatively charged C-terminus of NMT, we performed virtual
screening of over 1.1 million ligands that had a charge of +1 at a reference pH of 7.0. Over
2500 compounds were identified that had an AutoDock affinity equal to or greater than
that of DDD85646, but among them, only 55 formed a salt bridge with the C-terminus of
NMT. Docking in GOLD indicated that the ligands that formed a salt bridge were among
the best-scoring ligands, including the top compound from the list (Table 1). Consistent
with this were also the results from the MD simulations that suggested that the ligands
involved in a salt bridge with C-terminus of NMT form stable complexes (Figure 10).

The hits identified in the virtual screening were found to have more modest activity
compared with the control inhibitors. This is not unexpected, considering the small proba-
bility of discovering highly active compounds directly from a virtual or, in that matter, even
an experimentally based high-throughput screening (HTS). A fairer comparison would be
to compare the results from the virtual screening to results from a HTS, and in this case,
virtual screening outperformed previous HTS protocols tailored for NMT inhibitors. For
example, the best hit discovered by HTS during development of IMP-1088 had an IC50
of 20 µM [13]. In comparison, the best hit from our virtual screening fairs better with an
IC50 of 14 µM. Approximately 1/3 of the experimentally tested ligands had IC50 < 100 µM,
indicating that the virtual screening had successfully gathered compounds with inhibitory
activity; thus, providing evidence for the validity of this approach.
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The ligands identified in the virtual screening may serve as leads to build more potent
NMT inhibitors in the future and suggest the existence of several novel pharmacophores.
For example, many hits from the virtual screening formed a salt bridge with the C-terminus
of NMT through a piperidine ring, instead of a piperazine ring as in DDD85646, or a
dimethylaminogroup as it is in IMP-1088 (Figure 13). Although, the piperidine and the
piperazine rings are similar, they also differ in some of their properties. For instance,
the piperidine is more basic (pKa 11.22) than piperazine (pKa 9.73) [28,29]; hence, it is
probably better suited as a hydrogen donor in the formation of the salt bridge with the
C-terminus of NMT. In addition, many of the best hits identified in the virtual screening,
including ZINC19710136, ZINC67688793, ZINC19708540, ZINC19566088, ZINC19710084,
and ZINC19692195 (Figure 13), had distal benzene rings that inserted into a hydrophobic
pocked formed by Phe188, Phe311, Leu416, Ala418, and Val449, where they participated in
sandwich π–π stacking and hydrophobic interactions. As IMP-1088 and DDD85646 do not
target this hydrophobic pocket, these described distal aromatic rings could be of interest as
promising novel pharmacophores.

In addition to a salt bridge with the C-terminus of NMT, IMP-1088 and DDD85646
participate in a hydrogen bond with Ser405 through their pyrazole rings (Figure 2). Thus,
joining fragments with such complementary binding modes may result in the generation of
more potent NMT inhibitors. In this study, we identified ZINC619997750 as a compound
with micromolar activity that occupies a complementary region to the C-terminus of NMT
(Figures 5 and 13). Modifying its structure by introducing chemical moieties capable of
forming a salt bridge with the C-terminus of N-myristoyltransferases, such as piperidine,
could be a productive strategy to create novel NMT inhibitors.

In the current study, a screening and in vitro NMT assay was performed using human
NMT1 protein, for several reasons. First, the development of NMT inhibitors as anti-cancer
therapeutics, which is the aim of this work, restricts the targets to human NMT1 and NMT2.
Second, NMT1 and NMT2 share very conserved catalytic domains, and so far, it has not
been possible to selectively target only one of them, implying that the identified ligands are
likely to display dual NMT1/NMT2 activity. For example, IC50 of DDD85646 was reported
to be 17 nM against NMT1 and 22 nM against NMT2, and IC50 < 1 nM was reported for
IMP-1088 in the assays using both proteins [2,13]. Third, it has been reported that the
expression of the NMT2 gene is significantly decreased or even completely lost in certain
hematological cancer types; hence, the development of a selective NMT1 inhibitor is of
interest to the biotech industry [20]. Thus, in the unlikely event that some of the identified
hits display selectivity against NMT1, the findings will remain relevant to the goal of
development of therapeutics with anti-cancer activity.

According to SwissADME, some of the best known NMT inhibitors may have certain
undesirable ADME properties. For example, DDD86481 has a violation of Lipinski’s rule
of five, because it has a MW > 500 Da, a fact that may affect its tissue distribution and
penetrance and reduce its efficacy as anti-cancer therapeutic, especially for treatment of
solid tumors. IMP-1088 is predicted to be BBB-permeable, potentially restricting its usage
as an anti-cancer therapeutic, due to possible neurotoxicity. Therefore, the design and de-
velopment of novel NMT inhibitors with different pharmacological properties may play a
significant role in the adoption of these novel therapeutic agents in clinical practice. The cur-
rent study identifies some of the common features that mediate potency of NMT inhibitors
and may facilitate future efforts in the development of these promising therapeutics.

4. Materials and Methods
4.1. Materials and Reagents

The NMT inhibitors DDD85646 (# 13839, purity ≥ 95%) and IMP-1088 (# 25366,
purity ≥ 95%), as wells as ZINC214463354 (HTH-01-015, purity ≥ 95%) were obtained
from Cayman Chemical (Tallinn, Estonia). ZINC19710084 (BDE23655434), ZINC19710136
(BDE23487785), ZINC19710116 (BDE23485461), ZINC19590209 (ASF18346903), ZINC19708540
(BDE26713143), ZINC19708785 (BDE26712082), ZINC72370170 (BDE23638314), ZINC19710924
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(BDE25383454), ZINC19566088 (SFA21724189), ZINC19691948 (BDE25453618), ZINC19692195
(BDE25455680), ZINC72353749 (BDD26202670), ZINC257248718 (BDG33393211), ZINC19376075
(ASF19297597), and ZINC257297002 (BDH33615638) were purchased from Asinex Inc.,
(Amsterdam, The Netherlands). ZINC8992179 (MolPort-005-915-735), ZINC21711800
(MolPort-010-692-358), ZINC35458799 (MolPort-010-747-076) ZINC299757951 (MolPort-
047-505-967), ZINC35459261 (MolPort-010-747-122), ZINC67688793 (MolPort-047-488-103),
ZINC19228549 (MolPort-005-090-923), and ZINC61997750 (MolPort-002-530-610) were or-
dered from Molport (Riga, Latvia). The purity of the screening compounds is estimated to
be at least ≥85% and in many cases to be ≥90%, according to the manufacturer’s data.

Recombinant full-length Homo sapiens NMT1 protein (# 80R-4067) was purchased
from Fitzgerald Industries International. The substrate peptide H-Gly-Ser-Asn-Lys-Ser-
Lys-Pro-Lys-NH2 used in the NMT assay corresponds to the N-terminal region of c-Src
(Src peptide 2–9). The amino group at the C-terminus of the peptide indicates amidation.
This sequence, as a part of the endogenous c-Src protein, is naturally myristoylated in the
cells by NMTs. The peptide was custom made by GenScript. CPM (7-Diethylamino-3-(4-
maleimidophenyl)-4-methylcoumarin) and myristoyl-CoA were purchased from Cayman
Chemicals and the buffer components from Merck (Kenilworth, NJ, USA). The NMT assay
reactions and fluorescence reading was performed in polystyrene Greiner bio 655076,
96-well black, flat bottom, medium-binding, non-sterile plates that were purchased from
Merck (M4936-40EA).

4.2. Visualization of Protein–Ligand Interactions and Image Preparation

Protonation and protein–ligand interactions were visualized in YASARA v. 17.1.28
(IMBM, Graz, Austria) [30]. Images were prepared in PyMOL 1.6.0.0 (Schrödinger, New York,
NY, USA).

4.3. Virtual Screening of ZINC Database with AutoDock Vina

The virtual screening was performed using the structures of 1,114,610 distinct com-
mercially available compounds that have a charge of +1 at a reference pH of 7.0. The
structures were downloaded from the ZINC15 database [23] in pdbqt format in July 2020.
The filters used included: reactivity-standard; purchasability—in stock; pH-Reference,
pH 7.0; charge: +1; and MW and LogP-drug-like (compounds with MW 250–500 Da
and LogP between −1 and 5). The virtual screening was performed by using AutoDock
Vina [21,22,31]. The ligands were docked into the X-ray structure of Homo sapiens NMT1
in complex with DDD85646 and Myr-CoA (PDB 3IWE). Prior to docking, DDD85646 was
extracted in silico and the binding site was defined by a grid box with these coordinates:
center x = −11.077, center y = 21.635, center z = −5.355, size x = 28, size y = 26, and size
z = 26. Considering a published report about cooperativity in binding between Myr-CoA
and NMT inhibitors [12], Myr-CoA was kept in the structure and was present during
the docking. The parameters were set to energy range = 3 and exhaustiveness = 20. The
docking was performed at FUJITSU servers with GPU NVIDIA Tesla V100 at the Faculty of
Pharmacy, Medical University of Sofia, on a Linux operating system.

4.4. Determination of ADME Properties

The ADME properties were determined by SwissADME, hosted at the Swiss Institute
of Bioinformatics http://www.swissadme.ch (accessed on 15 October 2020) [24], and using
smiles of the ligand structures downloaded from the ZINC15 database.

4.5. Molecular Docking by GOLD

Docking was performed by using GOLDsuite version 5.3.0 (CCDC Ltd., Cambridge,
UK) [25]. The structures of the ligands were downloaded directly from the ZINC15 database
in mol2 format, with protonation state corresponding to the reference pH of 7.0. The crystal
structure of human NMT1 in complex with DDD85646 and Myr-CoA (PDB 3IWE) was
used for docking after removal of the bound inhibitor. The radius of the binding site was

http://www.swissadme.ch
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set to 6 Å. The protocol was optimized in terms of scoring function, rigidity/flexibility
of amino acid side chains, presence or absence of a water molecule within the binding
site, and number of genetic algorithms (GA) runs. Re-docking the structure of DDD85646
using the optimized protocol revealed a close match with the crystallographic structure
(RMSD = 1.21). The docking runs in the present study were performed by using protein
receptors with flexible binding sites, flexible ligands, and scoring function ChemPLP. Ten
amino acid residues from the binding site, which were in close proximity to the bound
ligand (Phe188, Phe311, Tyr296, His298, Y180, Phe190, Asn246, Thr282, Ser405, and Gln496),
were set as flexible. Three structural water molecules (HOH2, HOH760, and HOH970)
were also present and were set to toggle and spin. The docking was performed in 100 GA
runs for each ligand, but only the top 10 scored solutions were saved for analysis.

4.6. Stability of the NMT1-Ligand Complexes by Molecular Dynamics Simulations

The best-scored docking solutions were chosen as starting frames for molecular dy-
namics (MD) simulations, as previously described [32]. Briefly, the ligand structures were
parametrized using GAFF2.11 force field [33] and AM1-BCC charges [34] and the complex
was solvated in saline in a truncated octahedral box, with energy minimized, heated to
310 ◦C at constant volume for 1 ns, density equilibrated at 1 bar for 1 ns, equilibrated
keeping constant T and p for 1 ns, using the Langevin thermostat [35] and Berendsen
barostat [36], and simulated for 1000 ns by AMBER v. 18 (UCSF, CA, USA) [37,38]. The
systems were simulated with the ff14SB force field [39] under periodic boundary conditions.
Frames were saved every 1 ns to generate 1000 frames. This data was analyzed in VMD
(Visual Molecular Dynamics, University of Illinois, Urbana-Champaign, IL, USA) [40].
Representations of the results were obtained by plotting the distances between selected
atoms; for example, atoms participating in a salt bridge or an H-bond, vs. the different
frames of simulations. The results were saved as *.dat files, opened in Notepad, and then
used to generate the graphs in GraphPad Prism.

4.7. NMT Inhibition Assay

IC50 values were determined by using a fluorogenic NMT assay, adopted from
Goncalves et al. [27]. The assay detects Coenzyme A (CoA) that is released as a byprod-
uct of the enzymatic reaction. Briefly, 18.9 nM of the Homo sapiens NMT1 enzyme was
incubated in the presence of 3-fold dilutions of the various ligands, 4 µM myristoyl-CoA,
4 µM substrate peptide, and 2.7% DMSO. The reactions were performed in a reaction buffer
of 20 mM potassium phosphate, pH 8.0, 0.5 mM EDTA, and 0.1% (v/v) Triton® X-100, in
44 µL volume in a 96-well black plate. To eliminate background fluorescence for each
concentration of the ligands, reactions were also performed in the absence of the NMT1
enzyme. After 30 min of incubation at 25 ◦C, 20 µL of CPM in reaction buffer was added to
the final concentration of 5.5 µM. The reaction was stopped after 5 min by adding 36 µL of
0.1 M sodium acetate buffer (pH 4.75). Fluorescence was measured at an excitation wave-
length of 380 nm and emission wavelength of 470 nm with CLARIOstar fluorescent reader
(BMG LABTECH GmbH, Ortenberg, Germany). To eliminate the background signal, the
fluorescent values of samples obtained in the absence of NMT1 were subtracted from the
fluorescent signal of samples performed in the presence of NMT1. The subtracted values
were plotted in GraphPad Prism using log(inhibitor) vs. normalized response nonlinear fit
to generate inhibitory curves and determine IC50 values. The highest final concentration of
the ligands used in the assay was 100 µM, and if this concentration was not sufficient to
reduce the specific signal by 50% or more, IC50 > 100 µM value was assigned. In theory, the
experimentally determined IC50 cannot be lower than half the enzyme concentration used
in the assay (9.45 nM for the current assay). Therefore, IC50 of inhibitors with potencies that
are near or below the threshold of the assay cannot be determined with accuracy. The assay
was performed with full-length NMT1 protein, instead of the purified catalytic domain
of NMT, as done in all previous studies. Although this may have influenced some of the
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kinetic parameters of the enzyme reaction, it was found that the IC50 of the NMT inhibitors
were not substantially different from previously published results.

5. Conclusions

Using a fragment-based approach and seeds containing positively charged chemical groups
capable of interacting with the negatively charged C-terminus of N-myristoyltransferases
could be critically important for further attempts to develop novel NMT inhibitors. The
ligands identified in the virtual screening could serve as such lead molecules for further
optimization and development.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27175478/s1, Figure S1: Dose response inhibitory curves
and IC50 of selected compounds. Table S1: ChemPLP scores of candidate compounds after docking
with GOLD using crystal structure of human NMT1 (PDB 3IWE).
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