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Dendropanax morbifera Léveille extract ameliorates D-galactose-
induced memory deficits by decreasing inflammatory

responses in the hippocampus
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In the present study, we examined the effects of Dendropanax morbifera Léveille leaf extract (DML) on D-
galactose-induced morphological changes in microglia and cytokines, including pro-inflammatory
cytokines (interleukin [IL]-1β, IL-6, and tumor necrosis factor [TNF]-α) and anti-inflammatory cytokines
(IL-4 and IL-10) in the hippocampus. Administration of DML to D-galactose-treated mice significantly
improved D-galactose-induced reduction in escape latency, swimming speed, and spatial preference for
the target quadrant. In addition, administration of DML to D-galactose-treated mice significantly
ameliorated the microglial activation and increases of IL-1β, IL-6, and TNF-α levels in the hippocampus.
Administration of D-galactose significantly reduced IL-4 levels in the hippocampus, while administration of
DML to D-galactose-treated mice significantly increased IL-4 level. However, we did not observe any
significant changes in IL-10 levels in hippocampal homogenates. These results suggest that DML reduces
D-galactose-induced mouse senescence by reducing pro-inflammatory cytokines such as IL-1β, IL-6, and
TNF-α, as well as increasing anti-inflammatory cytokine IL-4.
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Nervous tissue is more susceptible to oxidative

damage than other tissue, because it has a high content

of unsaturated fatty acids. Moreover, the brain has high

metabolic activity and relatively low antioxidant defense

[1]. In aging progresses, oxidative damage accumulates

and the brain undergoes morphologic and functional

changes [2]. Finally oxidative damage causes chronic

inflammation in the aged brain. Neuroinflammation

induces the activation of microglia in the brain and

active microglia secrete pro-inflammatory cytokines

(M1 microglia) or have important roles in brain repair

and plasticity (M2 microglia) [3]. Activated microglia

release neurotoxic substances and pro-inflammatory

cytokines such as interleukin (IL)-1β, IL-6, and tumor

necrosis factor-α (TNF-α) [4-6]. In contrast, anti-

inflammatory cytokines such as IL-4 and IL-10 may

decrease neuroinflammation by regulating the production

of IL-1β or IL-6 [7].

There are several animal models for the study of

aging. However, the D-galactose model is the most

convenient and can be compared to natural aging

studies. Under normal condition, diet-fed D-galactose
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can be metabolized by two enzymes in the body: D-

galactokinase and galactose-1-phosphate uridyl transferase.

However, repeated treatment of D-galactose can be

converted into hydrogen peroxide in the presence of

galactose oxidase, leading to the formation of a

superoxide anion [8]. Administration of D-galactose

shows aging phenotypes such as impairment of spatial

learning and memory, and neurodegeneration and

neuroinflammation [8].

Dendropanax morbifera Léveille (D. morbifera) is an

endemic species distributed in the southwest costal

region and Jeju island of South Korea. Several lines of

evidence demonstrate that D. morbifera leaf extract

(DML) has antioxidant [9-11] and anti-inflammatory

[12,13] effects. In particular, in our previous study, we

demonstrated that D. morbifera stem extract ameliorates

streptozotocin-induced memory impairment, microglial

activation, and release of TNF-α and IL-1β in the

hippocampus [13].

However, there are few reports on the effects of DML

on age-related changes of hippocampal function. Therefore,

in the present study, we evaluated the effects of DML on

hippocampal function using a Morris water maze task,

and microglial activation and subsequent cytokine

release using immunohistochemistry and enzyme-linked

immunosorbent assay (ELISA), respectively, in D-

galactose treatment-induced aged mouse hippocampus.

Materials and Methods

Experimental animals

Male C57BL/6 mice were purchased from Orient Bio

Inc. (Seongnam, South Korea). Rats were housed in a

conventional animal facility at 23oC with 60% humidity,

a 12-h/12-h light/dark cycle, and free access to food and

tap water. The handling and care of the animals conformed

to the guidelines established to comply with current

international laws and policies (NIH Guide for the Care

and Use of Laboratory Animals, NIH Publication No.

85-23, 1985, revised 1996). Ethical and experimental

protocol approvals were obtained from the Institutional

Animal Care and Use Committee (IACUC) of Kangwon

National University (KW-161014-1). All of the experiments

were conducted with an effort to minimize the number

of animals used and the suffering caused by the

procedures employed.

Preparation of DML

Fresh D. morbifera was supplied by HBJ Biofarm

(Jeju, South Korea). The plant was identified by two

practitioners of traditional Asian medicine. Leaves from

the plant samples (100 g) were chopped, blended, soaked

in 2 L of 80% ethanol, and then refluxed three times at

20oC for 2 h. Insoluble materials were removed by

centrifugation at 10,000×g for 30 min, and the resulting

supernatant was concentrated and freeze-dried to yield a

powder. Before each experiment, dried extracts were

dissolved in distilled and deionized water.

Administration of D-galactose and (DML)

Animals were divided into 3 groups (n=10 in each

group): vehicle-treated, D-galactose-treated, and D-galactose

with DML treated group. D-Galactose (100 mg/kg) and

DML (100 mg/kg) were subcutaneously and orally

administered to 7-week-old mice once a day for 10

weeks.

Water maze performance

During the 10th week after D-galactose administration,

spatial memory was assessed using a Morris water maze

as described previously [14]. Morris water maze tests

were performed in order to ensure objectivity in blind

conditions. Three days after the training, the time

individual mice spent to find the submerged platform

(within 2 min) (escape latency) and the swimming

distance were monitored by a digital camera and a

computer system for 4 consecutive days during 4 trials

per day. The administration of D-galactose and DML

was continued during the water maze performance. For

each trial, a mouse was placed in the water facing the

wall at one of four starting positions and released. The

swimming speed and the time required for the mouse to

find the hidden platform were recorded via visual

tracking system. The probe test was done on day 5; the

platform was removed and the time that the mouse spent

swimming in the target quadrant and in the three non-

target quadrants (right, left, and opposite quadrants) was

measured in the training and opposite quadrants for 60 s.

In addition, the number of times the mouse crossed the

platform site was recorded.

Tissue processing

For immunohistochemical analysis, vehicle-treated, D-



Effect of Dendropanax extract on D-galactose-exposed hippocampus 285

Lab Anim Res | December, 2017 | Vol. 33, No. 4

galactose-treated, and D-galactose with DML treated

mice (n=5 per group) were anesthetized with 1 g/kg

urethane (Sigma-Aldrich, St. Louis, MO, USA) and

perfused with 0.1 M phosphate-buffered saline (PBS,

pH 7.4) followed by 4% paraformaldehyde in 0.1 M

phosphate-buffer, pH 7.4. Brains were removed and

postfixed in the same fixative for 24 h. Subsequently, the

brain was dehydrated with graded concentrations of

alcohol before being embedded in paraffin. Paraffin-

embedded tissues were sectioned into 3-μm coronal

sections using a microtome (Leica Microsystems GmbH,

Wetzlar, Germany) and were mounted onto silane-coated

slides (Muto Pure Chemicals Co., Ltd, Tokyo, Japan).

Immunohistochemistry for Iba-1

To ensure that the immunohistochemical data was

comparable among groups, sections were carefully

processed under the same conditions. Sections were

hydrated and treated with 0.3% hydrogen peroxide

(H
2
O

2
) in phosphate-buffered saline (PBS) for 30 min.

For antigen retrieval, the sections were placed in 400-mL

jars filled with citrate buffer (pH 6.0) and heated in a

2100-retriever (Prestige Medical, Lancashire, UK). After

antigen retrieval, slides were allowed to cool at room

temperature and were washed in PBS. After washing,

sections were incubated in 10% normal goat serum in

PBS for 30 min. Sections were then incubated with

rabbit anti-Iba-1 antibody (1:500, Wako, Osaka, Japan)

for 48 h at 4oC. Sections were subsequently exposed to

biotinylated goat anti-rabbit IgG, or anti-mouse IgG

(diluted 1:200, Vector Laboratories, Inc., Burlingame,

CA, USA), and streptavidin peroxidase complex (diluted

1:200, Vector Laboratories). Finally, sections were

stained with 3,3-diaminobenzidine tetrahydrochloride

(Sigma, St. Louis, MO, USA) in 0.1 M Tris-HCl buffer

(pH 7.4).

Analysis of the regions of interest in the hippocampal

CA1 region was performed using an image analysis

system. Images were calibrated into an array of 512×

512 pixels corresponding to a tissue area of 140 μm×

140 μm (40× primary magnification). Pixel resolution

was 256 gray levels. The intensity of Iba-1 immuno-

reactivity was evaluated by relative optical density

(ROD), which was obtained after transformation of the

mean gray level using the formula: ROD=log(256/mean

gray level). The ROD of the background was determined

in unlabeled portions (white matter region) and this

value was subtracted to normalize the corrected optical

densities using ImageJ 1.50 software (National Institutes

of Health, Bethesda, MD, USA). The ratio of the ROD

was calculated as percentage relative to control (vehicle-

treated group).

ELISA for cytokines

To measure changes in TNF-α, IL-1β, IL-4, IL-6, and

IL-10 levels in the hippocampus, vehicle-treated, D-

galactose-treated, and D-galactose with DML treated

mice (n=5) were sacrificed and used for ELISA. After

sacrificing the mice and removing the hippocampus,

hippocampal tissues were homogenized in ice-cold

50 mM sodium phosphate buffer (pH 7.4) containing

0.1 mM ethylenediaminetetraacetic acid (EDTA) by

using a glass-teflon homogenizer (Heidolph Silent

Crusher M, Germany). The supernatant was separated

by centrifugation at 20,000×g for 20min at 4oC. TNF-α,

IL-1β, IL-4, IL-6, and IL-10 were measured in the

supernatant of homogenized hippocampal tissue by

using ELISA kits (EMD Millipore, Billerica, MA,

USA). The procedures were carried out according to the

manufacturer’s instructions. TNF-α, IL-1β, IL-4, IL-6,

and IL-10 levels were determined from a standard curve

and were expressed in pg/mg protein.

Statistical analysis

Data are expressed as means for each experiment. The

differences among the means were statistically analyzed

by one- or two-way analysis of variance (ANOVA) with

repeated measures and Bonferroni’s post hoc test using

GraphPad Prism 5.01 software (GraphPad Software,

Inc., La Jolla, CA). Threshold for statistical significance

was set to P<0.05.

Results

Effects of D-galactose and/or DML on spatial memory

in mice

Mean escape latency in the D-galactose-treated group

was longer than in the vehicle-treated group on all days

of experiments. However, differences were only significant

on days 2, 3, and 4. Administration of DML to the D-

galactose-treated group resulted in shorter mean escape

latencies compared to escape latencies in the D-galactose-

treated group. Differences were statistically significant

on days 2 and 4. There was no significant difference in

escape latency between the vehicle-treated group and D-

galactose-treated group with DML (Figure 1A).
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Mean swimming speed tended to be decreased after

successive trials. In addition, mean swimming speed was

slower in the D-galactose-treated group than in the

vehicle-treated group. Administration of DML to the D-

galactose-treated group increased the swimming speed

in all trials although this tendency was not statistical

significant (Figure 1B).

Significantly fewer platform crossings in the probe

trial were observed in the D-galactose-treated group

compared to the vehicle-treated group. Administration of

DML to the D-galactose-treated group significantly

increased the frequency of crossing over the platform

site relative to that in the D-galactose-treated group and

similar to that in the vehicle-treated group (Figure 1C).

In the probe trial for the escape latency task, mice form

the D-galactose-treated group took significantly longer to

find the target platform location than mice from the

vehicle-treated group. Administration of DML to the D-

galactose-treated group significantly reduced the time

mice required to find the target platform (Figure 1D).

Effects of D-galactose and/or DML on the morphology

of Iba-1-immunoreactive microglia

In the vehicle-treated group, Iba-1-immunoreactive

microglia were present throughout hippocampus. These

microglia showed small cytoplasms and long processes

(Figure 2A). In the D-galactose-treated group, the

distribution pattern was similar to that in the vehicle-

treated group. However, Iba-1 immunoreactive microglia

showed hypertrophy of the cytoplasm with highly

ramified processes (Figure 2B). In this group, Iba-1

immunoreactivity was significantly increased by 148.6%

relative to the vehicle-treated group (Figure 2D). In the

D-galactose-treated group with DML, only a few Iba-1

immunoreactive microglia had hypertrophied cytoplasm,

while most cells had small cytoplasms (Figure 2C). In

addition, Iba-1 immunoreactivity was significantly decreased

in this group compared to that in the D-galactose-treated

group (Figure 2D).

Figure 1. Escape latency training trials (A), average speed (cm/sec) (B), frequency of target crossing (C) and time spent in correct
quadrant (D) of vehicle-treated, D-galactose-treated, and D-galactose-treated group with Dendropanax morbifera Léveille leaf
extract (D-galactose+DML) in the Morris water maze task (n=10; a indicates a significant difference from the vehicle-treated group;
b indicates a significant difference from D-galactose-treated group). Vales are means±standard errors of the mean (SEM).
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Effects of D-galactose and/or DML on pro- and anti-

inflammatory cytokines

In the D-galactose-treated group, pro-inflammatory

cytokines such as TNF-α, IL-1β, and IL-6 significantly

increased by 1.71-2.46 fold relative to the vehicle-treated

group in hippocampal homogenates. Anti-inflammatory

cytokine IL-4 was significantly decreased in the D-

galactose-treated group by 59.7% relative to the vehicle-

treated group. In contrast, administration of DML to the

D-galactose-treated group significantly decreased TNF-

α, IL-1β, and IL-6 levels and increased IL-4 levels in

hippocampal homogenates. However, IL-10 level did not

change significantly among the hippocampal homogenates

of the different groups (Figure 3).

Discussion

Mounting evidence suggests that, with advancing age,

the brain atrophies and its capacity for plasticity decreases

[15]. In addition, age-related deficits resemble the

deficits observed following bilateral damage to the

hippocampus [16]. In the present study, we investigated

the effect of DML on D-galactose-induced impairment

of hippocampal functions based on the Morris water

maze task. The Morris water maze task has been

generally accepted as the key method for studying the

relationship between hippocampal function and spatial

learning and memory in rodents [17]. Repeated exposure

to D-galactose for 10 weeks significantly decreased the

spatial learning ability of mice. Supplementation of D-

galactose with DML ameliorated reduced spatial learning

ability. This result is consistent with results from a

previous study showing that long-term treatment with D-

galactose induces learning and memory deficits in both

water maze and step-down latency [18]. In addition, D.

morbifera stem extracts significantly improved novel

object recognition memory in cadmium-exposed rats

[19]. In addition, ethyl acetate fraction of D. morbifera

ameliorated high fat diet-induced memory impairment

measured in Y-maze, passive avoidance, and Morris

water maze tests [20].

Aging is closely related to microglial activation. We

Figure 2. Immunohistochemical staining for ionized calcium-binding adapter molecule 1 (Iba-1) in the hippocampal CA1 region of
vehicle-treated (A), D-galactose-treated (B), and D-galactose-treated group with Dendropanax morbifera Léveille leaf extract (D-
galactose+DML, C). Scale bar=100 μm. D: Relative optical densities (ROD) are expressed as a percentage of the value of vehicle-
treated group corresponding to a tissue area of 400×400 μm in the hippocampal CA1 region per section of vehicle-treated, D-
galactose-treated, and D-galactose+DML-treated mice (n=5; a indicates a significant difference from vehicle-treated group; b

indicates a significant difference from D-galactose-treated group). Vales are means± standard errors of the mean (SEM).



288 Kwon Young Lee et al.

Lab Anim Res | December, 2017 | Vol. 33, No. 4

monitored the effects of DML on D-galactose-induced

morphological changes in Iba-1-immunoreactive microglia.

Administration of D-galactose for 10 weeks induced

microglial activation indicated by morphological changes

from small cytoplasm with thin and long processes to

hypertrophied cytoplasm and processes. A flow cytometry

study previously demonstrated that activated microglia

labeled with CD86 and MHC II are more common in

aged (22-month-old) mice than in young adult (4-month-

old) mice [21]. In the present study, administration of

DML to D-galactose-exposed mice significantly decreased

microglia activation. This result is in line with a previous

study showing that D. morbifera stem extract significantly

reduces the morphological changes indicative of the

activated form of microglia in streptozotocin-exposed

hippocampi [13].

Figure 3. Levels of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6, and anti-
inflammatory cytokines such as IL-4 and IL-10 in hippocampi of vehicle-treated, D-galactose-treated, and D-galactose-treated group
with Dendropanax morbifera Léveille leaf extract (D-galactose+DML) (n=5; a indicates a significant difference from vehicle-treated
group; b indicates a significant difference from D-galactose-treated group). Vales are means± standard errors of the mean (SEM).
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In the present study, we analyzed the pro- and anti-

inflammatory cytokines because microglial activation is

associated with cytotoxicity [4,7] and neuroprotection

[22]. Exposure to D-galactose for 10 weeks significantly

increased the levels of TNF-α, IL-1β, and IL-6 in

hippocampal homogenates. An in vitro neuron-microglia

co-culture study showed that activated microglia elevate

TNF-α and IL-1β mRNA [23]. IL-1β, IL-6, and TNF-

α are released in the Alzheimer brain during chronic

inflammation [24]. In addition, IL-6 levels are higher in

the hippocampus of aged mice than in juvenile and adult

mice [25]. In the present study, the administration of

DML to D-galactose-treated mice significantly reduced

D-galactose-induced increases of TNF-α, IL-1β, and

IL-6. These results suggest that DML reduces neuro-

inflammation in the hippocampus of D-galactose-

exposed mice. This finding may be closely related to the

age-related impairment of memory function, because

increases of IL-1β or IL-6 have been shown to correlate

with the tau-phosphorylation in the Alzheimer brain

[26]. In addition, elevated IL-1β decreases long-term

potentiation (LTP) sustainability [27]. Conversely, lowering

hippocampal IL-1β using minocycline treatment partially

rescues this impairment in LTP [28]. In addition, D.

morbifera stem extract also alleviates streptozotocin-

induced increases in TNF-α and IL-1β levels in

hippocampal homogenates [13].

In the present study, we observed that exposure to D-

galactose significantly decreases IL-4 levels, and slightly

increases IL-10 levels in hippocampal homogenates of

mice. Furthermore, we observed that administration of

DML to D-galactose-exposed mice rescued of IL-4 levels

in the hippocampal homogenates. This result suggests

that DML significantly increases the anti-inflammatory

cytokine IL-4, but not IL-10, to reduce the inflammatory

responses in the hippocampus. IL-4 levels have been

shown to be increased in aged brains with increased

neuroinflammation and reduced LTP [29]. Induction of

hippocampal IL-4 restored LTP in the aged rats [30] and

in the adult brains exposed to amyloid-β protein [31].

However, there have been conflicting reports on age-

related changes of IL-10 levels in the brain. Ye and

Johnson [32] demonstrated that IL-10 levels are decreased

in aged (24-month-old) mouse brains. This may contribute

to the increased expression of IL-6 in aged mouse brains.

In contrast, Petez et al [33] observed slightly increased

IL-10 expression in the aged (18-month-old) hippocampus

relative to the adult (4-month-old) hippocampus in

C57BL/6 mice. Other groups have also demonstrated

that activated microglia from aged mice showed higher

levels of IL-10 than activated microglia from adult mice

[34]. In the present study, we did not observe any

significant changes in IL-10 levels in hippocampal

homogenates of D-galactose-treated mice. The discrepancies

may be associated with the analysis methods used to

measure IL-10 levels.

In conclusion, DML significantly ameliorates signs of

D-galactose-induced mouse senescence by decreasing

pro-inflammatory cytokines such as TNF-α, IL-1β, and

IL-6, and increasing anti-inflammatory cytokine IL-4 in

hippocampus.
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