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Association between genes regulating neural pathways for
quantitative traits of speech and language disorders
Penelope Benchek1,9, Robert P. Igo Jr. 1,9,10, Heather Voss-Hoynes1,9, Yvonne Wren 2, Gabrielle Miller3, Barbara Truitt1, Wen Zhang4,
Michael Osterman1, Lisa Freebairn3, Jessica Tag3, H. Gerry Taylor5,6, E. Ricky Chan1, Panos Roussos 4,7, Barbara Lewis3,8,11,
Catherine M. Stein 1,11✉ and Sudha K. Iyengar1,11✉

Speech sound disorders (SSD) manifest as difficulties in phonological memory and awareness, oral motor function, language,
vocabulary, reading, and spelling. Families enriched for SSD are rare, and typically display a cluster of deficits. We conducted a
genome-wide association study (GWAS) in 435 children from 148 families in the Cleveland Family Speech and Reading study
(CFSRS), examining 16 variables representing 6 domains. Replication was conducted using the Avon Longitudinal Study of Parents
and Children (ALSPAC). We identified 18 significant loci (combined p < 10−8) that we pursued bioinformatically. We prioritized 5
novel gene regions with likely functional repercussions on neural pathways, including those which colocalized with differentially
methylated regions in our sample. Polygenic risk scores for receptive language, expressive vocabulary, phonological awareness,
phonological memory, spelling, and reading decoding associated with increasing clinical severity. In summary, neural-genetic
influence on SSD is primarily multigenic and acts on genomic regulatory elements, similar to other neurodevelopmental disorders.

npj Genomic Medicine            (2021) 6:64 ; https://doi.org/10.1038/s41525-021-00225-5

INTRODUCTION
Communication disorders are highly prevalent in the United
States with approximately one in twelve children ages 3–17 years
demonstrating a disorder1. The most common difficulties are a
speech problem (5%) or language problem (3.3%). Speech sound
disorders (SSD) refer to difficulties producing certain sound past
the age that a child is expected to acquire the sound, and include
both errors of articulation or phonetic structure (errors due to poor
motor abilities associated with the production of speech sounds)
and phonological errors (errors in applying linguistic rules to
combine sounds to form words). SSD has a prevalence of
approximately 16% in children 3 years of age2, with an estimated
3.8% of children persisting with speech delay at 6 years of age3.
More than half of these children encounter later academic
difficulties in language, reading, and spelling4–8. Because of the
clinical heterogeneity of speech problems and their correlation
with other communication domains, endophenotypes are key to
the study of genetic underpinnings9.
Vocabulary is core to speech acquisition10. Children with

difficulties in speech sound development often have difficulties
with oral language and later reading and spelling disability2,4–6,11.
Thus, speech, language, reading, and spelling measures are highly
correlated and often have common genetic associations7,8.
Moreover, speech and other communication phenotypes follow
a developmental trajectory, where some speech and language
disorders resolve with age, whereas others persist; genetic
influences on the less easily resolved manifestations are generally
stronger12,13. Because of the common genetic underpinnings and

pathologic associations between speech and other communica-
tion phenotypes, it is conceivable that genetic replication
interweaves with different communication measures. Indeed,
various studies have examined candidate gene associations
associated with both binary traits and quantitative endopheno-
types, and have identified several strong candidates14, though a
clear model of genetic susceptibility has not emerged. Of seven
known GWASs, none overlap in their top results (multiple genes
with p < 5 × 10−5, see Table 2 in the Graham and Fisher meta-
analysis paper13), because they focused on several phenotypes
(word reading, vocabulary, receptive and expressive language,
nonword repetition, and language impairment (LI) binary trait), or
these measures were assessed at different ages (either pre-school
or early school-age)15–22. Because these studies only present
results from one or a few measures and/or a binary trait, it is
difficult to dissect the complexity of shared genetic influences.
Most have not focused on children with SSD, particularly measures
of articulation. Our sample represents a unique set of deeply
phenotyped individuals with information on six domains that form
the core of speech and language.
SSDs are likely due to deficits in both motor ability and broader

neural dysfunction. While motor deficits contribute to problems in
speech production, abnormalities in other neural systems likely
influence the formation of phonological representation, which is
common to SSD as well as reading and LI. We hypothesize that
genomic factors associated with variation in speech production,
phonological representation, and language may point to neural
pathways common to speech, language, reading, and spelling
ability. To address this hypothesis, we examined endophenotypes
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representing motor speech, vocabulary, phonological memory,
phonological awareness, reading, spelling, and language, in order
to characterize genetic commonality across these domains and
fully characterize the complexity of SSD. We conducted a GWAS in
the Cleveland Family Speech and Reading Study (CFSRS), a cohort
ascertained through a proband with SSD, and replicated findings
in a population-based cohort. We also conducted a methylome-
wide study (i.e., MWAS) to determine the functional implications
of these genetic associations. We utilized a family-based cohort as
our discovery sample because we hypothesized it would be
enriched for disease-associated variants23,24. In these analyses, we
identified new candidate genes for correlated communication
endophenotypes, and bioinformatic annotation of these loci
revealed that regulation of neural pathways is associated with
variation in these measures.

RESULTS
Study population
The CFSRS sample included 435 subjects from 148 families (Table
1). Of these, 27% had SSD only, 4% had LI only, 16% had SSD+ LI
without CAS, and 11% had CAS (Table 1) diagnosed by a speech-
language pathologist. There was a high rate of comorbidities,
especially among the probands (Table 1, Supplementary Table 4).
Of the subjects in the ALSPAC sample, the prevalence of speech
problems by parental report varied from 4 to 6% (Supplementary
Table 5).

Genetic correlation analysis reveals new relationships among
endophenotypes
Genetic correlation analysis revealed that while many of the
patterns of correlation were consistent with phenotypic correla-
tions we have previously reported8, polygenic correlations enable
a deeper understanding of these measures, which will inform the
examination of replication of association effects both within the
CFSRS data set and with measures from ALSPAC (Fig. 1). For
example, while previous studies have demonstrated a strong
genetic correlation between reading and spelling measures,
polygenic correlation analysis additionally reveals correlations
between those skills and Elision. Not surprisingly, expressive and
receptive language (measured by the CELF), are strongly
correlated with vocabulary (EOWPVT and PPVT) in addition to
reading (WRMT-AT and WRMT-ID). Vocabulary is also strongly
correlated with listening comprehension (WIAT-LC).

The most significant findings from GWAS reveal five new
candidate genes
Single marker association tests significant at p < 10−5 were
examined further and integrated with data on gene expression
and regulation, as detailed below. Other GWAS of neuropsychiatric
disease and behavioral traits have similarly found that noncoding
regions harbor a significant proportion of risk alleles25 (Supple-
mentary Fig. 1).
Of five top loci, all had enhancers or promoters for muscle,

brain, and/or neuronal progenitor cells, four out of five had
significant methylation and meQTL effects, and three out of five
had eQTLs for brain and/or skeletal-muscle tissue (Table 2, Fig. 2,
Supplementary Fig. 2, Supplementary Table 6). EpiXcan analysis
suggested that the SNP in the chromosome 1 IFI6 region is
associated with expression in the DLPF cortex (Elision p= 0.018,
TWS p= 0.008; Supplementary Tables 7 and 8). The first region on
chromosome 14, including NFKBIA and PPP2R3C, shows significant
chromatin interaction mapping in adult cortex tissue. NFKBIA,
which codes for a component of the NF-κB pathway, is associated

Table 1. Characteristic table for CFSRS GWAS sample.

Na 435

Number of families 148

Median age in children (sd) 6.6 (5.7)

Median age in parents (sd) 36 (8)

Female, N (%) 194 (45%)

Speech disorder subgroup, N (%)

CAS 47 (11%)

SSD+ LI (no CAS) 70 (16%)

SSD only 119 (27%)

Lang only 17 (4%)

No CAS/SSD/Lang 177 (41%)

Missing 5 (1%)

Speech disorder subgroup in probands, N (%)

CAS 43 (31%)

SSD+ LI (no CAS) 39 (28%)

SSD only 49 (36%)

Lang only 3 (2%)

No CAS/SSD/Lang 3 (2%)

Hollingshead SES

1 (lowest) 3 (1%)

2 30 (7%)

3 67 (15%)

4 167 (38%)

5 (highest) 147 (34%)

Missing 21 (5%)

aSample considered is the union of all samples across the 16 tests. Specific
test sample sizes and age ranges are shown in Supplementary Table 1.

Fig. 1 Genetic correlation matrix across traits in CFSRS. Figure
1 shows cross-trait correlation results for each pair of tests using
GCTA’s bivariate REML analysis69. The cross-trait correlation was
tested under the null hypothesis of 0 correlation. Circles shown are
for results significant at p < 0.05, with increasing diameter/color
corresponding with increasing correlation (circles omitted other-
wise). Traits: Phonological memory MSW.PPC, MSW, NSW, NSW.PPC),
Spelling (TWS), Reading (WRMT-ID, WRMT-AT, WIAT-RC), Language
(CELF.E, CELF.R, WIAT.LC), Vocabulary (EOWPVT, PPVT), phonological
awareness (Elision).
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with neurogenesis, neuritogenesis, synaptic plasticity, learning,
and memory26. The second region on chromosome 14 includes
PP2R3C, which is within the topologically associating domain
(TAD) boundary of the NFKBIA locus in the Hippocampus and
DLPFC. EpiXcan analysis showed NFKBIZ, a gene in the same
pathway as NFKIBA, is also associated with expression in the
DLPFC (Elision p= 0.000452, TWS p= 0.004939; Supplementary
Tables 7 and 8). Further, there was significant colocalization at
the MON1B/SYCE1L locus on chromosome 16, with differential
gene expression of SYCE1L in multiple brain tissues and skeletal
muscle localizing with our SNP association signature (Supple-
mentary Fig. 3) and borderline significant colocalization with
MON1B expression. The SETD3 locus also showed colocalization
with gene expression in skeletal muscle and brain tissue
(Supplementary Fig. 3).

Replication of previous communication disorder loci
In the replication phase, we focused on gene-level replication
because of the differences in SNP coverage between our study
and the original findings. ATP2C2 was associated with single
word reading (WRMT-ID, p= 7.6 × 10−8), nonword reading
(WRMT-AT, p= 4.6 × 10−5), and phonological awareness (Eli-
sion, p= 4.6 × 10−5), consistent with prior literature27 (Supple-
mentary Figs. 4 and 5). Similarly, CYP19A1 was associated with
nonword reading (WRMT-AT, p= 2.8 × 10−5), phonological
awareness (p= 3.3 × 10−4), and single-word reading (WRMT-
ID, p= 5.0 × 10−4), validating a previous association28. CNTNAP2
was associated with receptive language (CELF-R, p= 5.2 ×
10−6), and diadochokinetic rate (DDK, p= 2.9 × 10−5), replicat-
ing a previous association27. While SNPs within ROBO1 and
ROBO2 were not significantly associated with our measures,
SNPs in the intergenic region were associated with single word
reading (WRMT-ID, p= 3.6 × 10−6); ROBO1 was originally
associated with dyslexia while ROBO2 was originally associated
with expressive vocabulary22,29. Finally, SNPs within the DCDC2-
KIAA0319-TTRAP and in FOXP2 regions were associated with
various traits at p < 0.01. Within the ALSPAC cohort, a different
pattern of replication emerged (Supplementary Fig. 6), with
sometimes different SNPs and/or different phenotypes than
those associated with CFSRS.
In addition, we examined loci (genes and/or SNPs) associated in

recently published GWAS studies of language and reading15–22

(Supplementary Data 2 and 3); we restricted our examination to
the CFSRS data, since the ALSPAC data were included in some of
the original studies. In these analyses, we often observed cross-
trait replication, with most genes originally associated with
dyslexia, and associated with other traits in our sample. These
included ZNF385D16, which was associated with all CFSRS traits at
p < 0.005, CDH1321, associated with all CFSRS traits at p < 0.005,
GRIN2B17, associated with spelling (TWS), expressive vocabulary
(EOWPVT), and phonological awareness (Elision) at p < 0.0005 and
all CFSRS traits at p < 0.05, NKAIN17, associated with receptive
language (CELF-R, at 9.7 × 10−5 (rs16928927 p= 1 × 10−4) and
reading comprehension (WIAT-RC, p= 4 × 10−4), and MACROD219

associated with all CFSRS traits at p < 0.005).

Polygenic risk scores are associated with increasing clinical
severity
In Fig. 3, we illustrate polygenic risk scores (PRS) for six
endophenotypes representing the major domains that we
analyzed (receptive language, expressive vocabulary, phonolo-
gical awareness, phonological memory, spelling, and reading
decoding), by quintile, across the clinical subgroups to illustrate
the connection between clinical diagnosis and genetic under-
pinnings of these traits (all endophenotypes are illustrated in
Supplementary Fig. 7). Generally, we found that polygenic load,
indicated by increasing risk scores, was associated with clinicalTa
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Fig. 2 Locus zoom plots for most significant findings. Figure 2 shows association results for the top loci. p-Values displayed are for CFSRS
and are for the test for which the top SNP was observed. Circles show p-values for SNP associations and triangles show p-values for
methylation associations (specifically those for which the top SNP is an meQTL). The plot shows the top SNP for each region ±200 kb. a IFI16
region. rs855865 was associated with NSW in CFSRS (p= 7 × 10−6) and with vocabulary (WISC-V) in ALSPAC (p= 0.01). This region also
includes an meQTL (rs12124059, p= 4 × 10−8) for methylation marker cg07196514, and this methylation marker (cg07196514) was also
associated with NSW (p= 0.018). b NFKBIA region. rs57645874 was associated with Elision in CFSRS (p= 1 × 10−6) and with reading accuracy
(NARA-A) in ALSPAC (p= 0.02). This region also contains an meQTL, rs4981288, for cg07166546 (p= 2 × 10−50), and this methylation marker
was associated with Elision (p= 3 × 10−5), TWS (p= 0.0005) and WRMT-ID (p= 0.002). c DACT1 region. rs856379 was associated with MSW in
CFSRS (p= 3 × 10−6) and with nonword reading (ALSPACread) in ALSPAC (p= 0.036). This SNP is an meQTL for methylation marker
cg13972423 (p= 3 × 10−5). d SETD3 region rs1257267 was associated with WRMT-AT in CFSRS (p= 6.58 × 10−6) and with nonsense word
repetition (CNrep5) in ALSPAC (p= 0.05). While only 1 SNP replicated between CFSRS and ALSPAC, 14 additional SNPs showed association in
CFSRS at p < 10−5. This SNP (rs1257267) is an meQTL for cg18949721 (p= 4 × 10−12), and methylation marker cg18949721 was also associated
with WRMT-AT (p= 0.003). e MON1B region. rs4888606 was associated with MSW in CFSRS (p= 9 × 10−6) and with nonword reading
(ALSPACread) in ALSPAC (p= 0.046). While only 1 SNP replicated between CFSRS and ALSPAC, 18 additional SNPs showed association in CFSRS
at p < 10−5. This SNP (rs4888606) falls in an intron of MON1B and is an meQTL for cg06128999 (p= 4 × 10−23) and cg05007098 (p= 1 × 10−15);
these 2 methylation markers were also associated with MSW (p= 0.045 and p= 0.12, respectively). Functional annotation is in Supplementary
Fig. 2.
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severity (p < 1 × 10−8 by ANOVA), with typical children having the
lowest scores, followed by children with SSD-only, and children
with SSD+ LI and CAS having the greatest scores. The exception
to this trend is receptive language, where the genetic load is
greatest for children with LI, for whom receptive language is a
focal deficit. Thus, in general, an increase in PRS scores is
associated with greater clinical severity.

DISCUSSION
Communication disorders are genetically complex, manifested by
a variety of deficiencies in articulation, vocabulary, receptive and
expressive language, phonological awareness, reading decoding
and comprehension, and spelling. This study ascertained children
through an earlier-presenting clinical disorder and examined
several key communication measures, and is thus one of the first
studies of its kind. This study is also novel in that it is the first
GWAS to include a measure of phonological awareness, as well as
a motor speech measure. By analyzing several endophenotypes
together, we can draw conclusions about the common genetic
basis across these seemingly dissimilar skills. Here, we have
identified five new candidate regions, some containing multiple
genes, that have connections to neurological function and
regulation of neurological pathways. We also found that increased
polygenic load is associated with more severe communication
disorders. Finally, by examining genetic correlations among these
traits, we conclude that different domains of communication have
some common genetic influences. All of these aspects together

add new clarity regarding the genetic underpinnings of speech
and language skills.
First, the novel candidate genes that we have identified all have

roles in neurological function as evidenced by expression levels of
those genes in brain and/or neural tissue, and associations with
other communication and/or psychiatric phenotypes. Colocaliza-
tion analysis provided the strongest evidence for two loci, MON1B/
SYCE1L and SETD3, showing that our association effects localized
with gene expression in brain and skeletal tissue. This common-
ality between communication traits and brain and neural
pathways was also demonstrated by a mouse study of vocaliza-
tion30, and pleiotropy between the brain, learning, and psychiatric
phenotypes was recently demonstrated by a large GWAS of brain
phenotypes31. The existence of enhancers, promoters, and
methylation effects in the associated regions further emphasizes
the importance of regulatory effects on these traits. Deletions
spanning SETD3 and CCNK have been associated with syndromic
neurodevelopmental disorders32 and variants in SETX, within this
same family of genes, have been associated with CAS33. In
addition, CCNK is in the FOXP2 pathway in brain tissue34–36. NFKBIA
is involved in the regulation of the NF-κB pathway, which is
involved a number of brain-related processes including neurogen-
esis, neuritogenesis, synaptic plasticity, learning, and memory37.
PPP2R3C has been associated with schizophrenia38. IFI6 expression
has been associated with autism39 and overexpression of IFI6 in
the brain is present in chronic neurodegeneration40. Finally, DACT1
may be involved in excitatory synapse organization and dendrite
formation during neuronal differentiation41 and is mainly

Fig. 3 Polygenic risk scores across major domains. We constructed polygenic risk scores for 587 individuals who were both genotyped and
had clinical subgroup information available. Polygenic risk scores are displayed by quantile across the clinical subgroups for six
endophenotypes representing the major domains (a Receptive language; b Expressive vocabulary; c Phonological awareness; d Phonological
memory; e Spelling; f Reading decoding).
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expressed within the first two trimesters of pregnancy, just before
the first evidence of speech processing is observed in preterm
neonates42. DACT1 was associated with several endophenotypes
in our sample. Interestingly, SETD3, NFKBIA, and IFI6 are all also tied
to the immune system, and a recent study identified an excess of
T cells in the brains of individuals with autism43.
Second, understanding the genetic architecture across these

endophenotypes is essential for understanding how loci are
associated with different measures in different study cohorts or
across the developmental trajectory. Strong genetic correlations
are observed between spelling, reading comprehension and
decoding, expressive and receptive language, vocabulary, and
phonological awareness. The strongest replications were for a
variety of measures collected in CFSRS with ALSPAC from older
youth. Consistent with these findings, we previously demon-
strated that spelling at later ages has a higher estimated
heritability than spelling at school-age12. Measures administered
in older youth may also be more sensitive to variations in clinical
manifestation of SSD. Examination of the ALSPAC measures
suggests that many of those administered at younger ages may
have tapped different domains than intended, or may have been
less sensitive to later emerging reading and spelling skills.
Methods of cohort ascertainment may also be important in
comparing our findings to those of other studies. Our families
were ascertained through a child with SSD whereas other studies
ascertained subjects through LI or dyslexia. These different
ascertainment schemes affect both the available measures, as
well as the distribution of scores and power to detect association.
Since dyslexia emerges later than SSD, longitudinal studies that
ascertain through a proband with SSD will be able to capture
variants associated with SSD, LI, and dyslexia, as there is high
comorbidity. In addition to the plethora of studies ascertaining
children at a variety of ages, which has an impact on the
heritability of traits7, these studies use a wide variety of measures,
even for the same endophenotype. Moreover, these studies have
been conducted in populations that speak different languages of
varying orthographic transparency, which makes them difficult to
compare. As noted by Carrion-Castillo et al.15, most of the novel
loci identified through GWAS have been unique to each study,
and these aforementioned issues may explain the lack of
replication. Thus, examination of the genetic correlation matrix
is essential for the interpretation of results across studies, as it is
nearly impossible to analyze the same exact traits, as we have
demonstrated with our replication study cohort (ALSPAC).
Third, we replicated candidate genes that had been previously

primarily associated with reading and/or LI: CNTNAP2, ATP2C2, and
CYP19A1. These analyses extend previous findings to show that
these genes are associated with articulation (CNTNAP2) and
phonological awareness (ATP2C2 and CYP19A1). This further
illustrates the pleiotropic nature of these genes. While we did
not observe an association with SNPs within the coding regions of
ROBO1 and ROBO2, we did observe significant associations with
SNPs between these two genes, which may have regulatory
influences on ROBO1/ROBO2. We also replicated (p < 5 × 10−3) loci
identified in recent GWAS of reading and/or language traits.
Similar to another association study between FOXP2 variants and
language44, we did not observe a statistically significant associa-
tion between FOXP2 and measures in CFSRS, though there was a
replication of some traits at a less stringent (p < 0.01) level44.
Finally, our analysis of PRSs shows strong associations between

these risk scores and clinical outcomes of increasing severity.
Because of the strong significance of these findings, this suggests
that the genetic architecture of communication disorders are
maybe largely polygenic, which may additionally explain the lack
of replication and/or genome-wide significance. While other
studies have examined PRSs associated with language17,45, ours
is the first to examine the polygenic risk associated with other
communication endophenotypes. It is noteworthy that our

associated SNPs fell outside of gene coding regions but resided
in regulatory regions, even having potential regulatory effects
themselves as further evidenced by colocalization analysis. This
further illustrates the genetic complexity of communication
disorders; perhaps the search for single gene dysfunction is
misplaced, and rather regulatory functions are more relevant.
This study has several limitations. The sample size of the CFSRS

cohort was modest, potentially reducing power. There was no
clear correspondence between measures obtained in ALSPAC with
those in CFSRS, necessitating consideration of cross-trait replica-
tion. We restricted analyses in both cohorts to individuals of
European descent because of the low sample size in other ethnic
groups, reducing generalizability.
In summary, this first GWAS of communication measures

ascertained through families with SSD identified five new
candidate genes, all with potential relevance in central nervous
system function. Polygenic risk is strongly associated with more
severe speech and language outcomes. Careful consideration of
genetic correlation among domains of verbal and written
language shows that these loci have general effects on commu-
nication, not specific to any single domain, suggesting a common
genetic architecture. Further research is needed to more closely
examine the impact of regulatory variants on these outcomes.

METHODS
Subject ascertainment—CFSRS
From the CFSRS46–51, we examined 435 individuals from 148 families who
had both DNA and endophenotype data available (Table 1). As previously
described, families were ascertained through a proband with SSD
identified from caseloads of speech-language pathologists in the Greater
Cleveland area and referred to the study. All participants met inclusion
criteria based on information provided by a parent in an interview or via
questionnaire including normal hearing acuity; fewer than six episodes of
otitis media prior to age 3; monolingual English speaker; absence of a
history of neurological disorders other than childhood apraxia of speech
(CAS), such as cerebral palsy or autism spectrum disorder; and a diagnosis
of an SSD or suspected CAS by a local speech-language pathologist or
neurologist. Diagnosis of CAS, one severe type of SSD, was confirmed by
an experienced licensed speech-language pathologist upon enrollment
into the study. Socioeconomic status was determined at the initial
assessment based on parent education levels and occupations using the
Hollingshead Four Factor Index of Social Class52. This study was approved
by the Institutional Review Board of Case Medical Center and University
Hospitals and all parents provided informed consent and children older
than 5 years provided assent.

Communication measures in CFSRS
We studied many endophenotypes covering domains that are common to
speech, language, and reading, We examined diadochokinetic rates using
the Robbins and Klee Oral Speech Motor Control Protocol53 or Fletcher Time-
by-Count Test of Diadochokinetic Syllable Rate54. The merged variable is
referred to as DDK. Expressive vocabulary was assessed with the Expressive
One Word Picture Vocabulary Test-Revised (EOWPVT55) and receptive
vocabulary with the Peabody Picture Vocabulary Test—Third Edition
(PPVT56), and phonological memory with the Nonsense Word Repetition
(NSW57), Multisyllabic Word Repetition (MSW57), and Rapid Color Naming58

task. In addition to examining the total number of words correct for the
MSW and NSW, we also examined the percent phonemes correct for both
of these tasks (NSW-PPC and MSW-PPC, respectively). Phonological
awareness was assessed using the Elision subtest of the Comprehensive
Test of Phonological Processing—Second Edition59, which measures the
ability to remove phonological segments from spoken words to form other
words. Reading was assessed using the Woodcock Reading Mastery Test-
Revised, Word Attack subtest (WRMT-AT) (reading of nonsense words) and
Word Identification Subtest (WRMT-ID) (reading of real words), the Reading
Comprehension subtest (WIAT-RC), and Listening Comprehension subtest
(WIAT-LC) of the Wechsler Individual Achievement Test60. Spelling was
assessed on the Test of Written Spelling-3 (TWS) using the total score61. The
expressive and receptive language was assessed using the Test of
Language Development (TOLD62) and Clinical Evaluation of Language
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Fundamentals-Revised or Clinical Evaluation of Language Fundamentals-
Preschool according to age (CELF63) referred to as the CELF-E (expressive)
and CELF-R (receptive), respectively. Additional details about these
measures are provided in the Supplementary Note. For each of our tests,
we selected the first available assessment for each individual (Supple-
mentary Table 1).
For the following tests—NSW, NSW PPC, MSW, and MSW PPC—we did

not have population normed data, therefore, we converted all scores to
age-adjusted z-scores using CFSRS controls. Here, controls were defined as
individuals without SSD, LI or CAS. To age-adjust we chose the first
available observation for each of the four tests for every control within the
CFSRS to determine the effect of age. The age-adjusted score is simply the
standardized residual of the score with the effect of age and age-squared
regressed out (where the age effect is determined by controls and
subsequent adjustment is applied to all participants)48,64. Age and age-
squared are both used to determine the effect of age, as there is a
nonlinear relationship between age and each of the above four tests. If
applicable, test scores were transformed to an approximately normal
distribution using the Box–Cox power transformation39. Because measures
were already age-normed or age-adjusted, age was not included
additionally as a covariate in GWAS or other analytical models.

GWAS analysis
DNA was extracted from buffy coats or saliva samples as previously
described6. All genotyping was performed using the Illumina Omni 2.5
platform. Standard QC procedures were applied, including filtering based
on call rate, Hardy–Weinberg equilibrium (HWE), chromosome (autosomes
only), minor allele frequency (MAF), and Mendelian errors. Principal
components analysis (PCA) was conducted using markers that attained
MAF ≥ 0.01, sample and variant call rate ≥ 0.98 and p ≥ 0.0001 from an
exact test of HWE while omitting genomic regions with long-range linkage
disequilibrium (LD)65. Genotyped data were later imputed to Phase 3,
cosmopolitan reference option, of the 1000 Genomes Project panel using
the University of Michigan Imputation server66 which implements
minimac367. Following imputation, all markers with imputation quality
score R2 < 0.6 and MAF < 0.05 in our population were removed. Samples
were processed and typed for the Illumina Methylation450 chip by the
CWRU School of Medicine Genomics Core.
Principal components (PC) obtained from PCA and the genetic relation-

ship matrix (GRM) were generated using genotyped markers that met QC
criteria. We used PC-AiR and PC-Relate from the Bioconductor package
GENESIS version 2.6.168 to generate our PCs and GRM, respectively. PC-AiR
accounts for sample relatedness to provide ancestry inference that is not
confounded by family structure, while PC-Relate uses the ancestry
representative PCs from PC-AiR to provide relatedness estimates due only
to the recent family (pedigree) structure.
To examine cross-trait correlation, we used GCTA version 1.24.469 to run

a bivariate REML analysis for each pair of tests and tested for genetic
correlations equal to 0. GCTA’s bivariate REML analysis estimates the
genetic variance of each test and the genetic covariance between the two
tests that can be captured by all SNPs70. Here we included all SNPs with
MAF ≥ 0.01. The genetic variance/covariance calculated was adjusted for
sex and the first two PCs.
We used RVTests, version 2.071 to conduct our GWAS for each of the 16

communication phenotypes, assuming an additive effect of alleles and
restricting to all common SNPs with MAF > 0.05. Phenotypes were
transformed using a Box-Cox transformation (MASS, R) when applicable
(Supplementary Table 2). We specifically relied on RVTest’s Grammar-
gamma test72, which performs a linear mixed model association test while
allowing for genotype dosages and accounting for family structure using
the GRM. Because each of our tests was age-normed we included only sex
and the first two PCs as covariates in our regression models.

PRS analysis
In addition, we generated endophenotype-based PRS in the European
subset of the CFSRS where genotype data, as well as clinical group data (no
disorder, SSD only, language impairment (LI) only, SSD+ LI, CAS) were
available. This analysis was done to elucidate the connection between the
genetic architecture of these endophenotypes and standard clinical
diagnosis seen in clinics. Risk scores were derived from association
statistics from our CFSRS GWASs and were constructed using PLINK 1.973

(clump and score functions). Regions were considered if at least one
variant in the region met the threshold for inclusion as a risk variant

(p < 0.001). Clumping of variants was done in selected regions around the
variant showing the strongest association in the region, removing other
variants in linkage disequilibrium (r2 > 0.5). We used a linear mixed model
to model the relationship between PRS and clinical group, controlling for
sex and familial relationship (based on family ID). Nested model
comparison (the full model with the clinical group included versus the
reduced model with clinical group removed) using the chi-squared test
was implemented to determine if the clinical group explained a significant
amount of variability in polygenic risk. These PRSs were used to examine
the hypothesis that an increase in PRS score would associate with more
complex clinical phenotypes when comparing SSD only versus SSD+ LI
and CAS.

Statistical analysis of methylome-wide data
Quality control and normalization of raw methylation data (as Illumina.idat
files) were carried out using the Bioconductor package RnBeads version
2.3.3 for R74. We removed methylation probes in non-CpG contexts, with
nearby SNPs, on the X and Y chromosomes, and probes with low variability
(SD < 0.005), leaving a total of 470,870 CpG markers with detection p value
< 0.05. We normalized signal intensity by means of the BMIQ algorithm75,
which adjusts for differences between Infinium I and II loci, and adjusted
background by the methylumi NOOB procedure, as implemented in
RnBeads. Our final data set was scaled to proportion of methylated DNA
strand (β) values. Duplicate pairs were verified through concordance of
genotypes for 65 SNPs on the Methylation450 chip. The final data set
typed for the Methylation450 panel comprised 713 unique individuals, plus
60 duplicate samples.
The source of DNA for the MWAS came from saliva samples. Because our

sample included salivary DNA samples, we were unable to adjust for cell-
type composition using a blood-sample-based reference. Instead, we
conducted principal components analysis (PCA) on genomewide methyla-
tion as follows: We selected 287,720 CpG sites with SD ≥ 0.02 across the
entire sample and normalized the beta values for each site to mean= 0,
SD= 1, creating an m × n matrix X, where m is the number of markers and
n the number of samples. The eigenvectors from the matrix X′X/(m− 1), an
n × n matrix, were obtained using the eigen() function in R, to be used as
PC covariates in methylome-wide association studies (MWAS). We
regressed our SSD outcomes on each of the first 20 PCs, and included
significantly associated PCs in MWAS. Phenotypes were adjusted for
between one and four PCs.
We tested for association between CpG beta values and endopheno-

types using the linear mixed model approach of GRAMMAR-Gamma72 as
implemented in RVtests71. Because our phenotypes were age-normed, we
did not adjust for age, but rather for sex and one to four PCs.
We conducted a targeted cis-methylation QTL analysis over 521 CpG

sites within 50 kilobasepairs (kb) of 162 candidate SNPs (Supplementary
Data 1), using Matrix eQTL version 2.276 to find the effect of genotype on
the extent of methylation in a sample of 597 individuals with both
epigenetic and imputed genotype data. All pairs of SNPs and CpG sites
within 100 kb were considered to be in cis. Methylation was expressed as
M values, where M= log(β/(1− β)), which extends the range of possible
values to (−∞,∞), making the values suitable as an outcome for linear
regression.

Replication dataset—ALSPAC
To replicate our GWAS findings, we obtained data from the Avon
Longitudinal Study of Parents and Children (ALSPAC). The ALSPAC study
was a prospective population-based birth cohort of babies born from
>14,000 pregnancies between April 1991–December 1992, who were
followed prospectively with a wide battery of developmental tests,
parental questionnaires, child-completed questionnaires, and health out-
comes77–79. Pregnant women residents in Avon, the UK with expected
dates of delivery from 1st April 1991 to 31st December 1992 were invited
to take part in the study. The initial number of pregnancies enrolled is
14,541 (for these at least one questionnaire has been returned or a
“Children in Focus” clinic had been attended by 19/07/99). Of these initial
pregnancies, there was a total of 14,676 fetuses, resulting in 14,062 live
births and 13,988 children who were alive at 1 year of age. The study
website contains details of all the data that is available through a fully
searchable data dictionary (http://www.bris.ac.uk/alspac/researchers/data-
access/data-dictionary). Blood samples were also collected for biomarker
and genetic analyses.
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Ethical approval for the study was obtained from the ALSPAC Ethics and
Law Committee and Institutional Review Board of Case Medical Center and
University Hospitals. Because this was a birth cohort, all children were
included, regardless of diagnosis. We obtained both parental report data
on speech development in the children, and also communication
measures similar to those that we analyzed (see Communication Measures
above and Supplementary Table 3). As this was a longitudinal study,
different measures were given at different ages, and when the same
domain was tested at two different ages, the identical measure was not
used. At some ages, only random subsets were selected, so the sample size
available from each age is not the same. In Supplementary Table 3, we list
the measures given in the CFSRS battery along with the most similar
measure given in ALSPAC. Because all the children were the same age
when specific assessments were given, no age adjustment was needed.
There were no equivalent measures for RAN and Elision.
Genotype QC was performed previously by ALSPAC16. We restricted our

ALSPAC sample to unrelated individuals by randomly removing one from a
pair of twins, when applicable. PCs were generated using Hail 0.1 software,
to accommodate the format of files obtained from ALSPAC, using a
standard PCA approach80. In generating the PCs we first removed long-
range LD regions and restricted to variants with a MAF > 0.01, an
imputation quality score of >0.95, and variants not in LD (r2 < 0.2;
following the same process as with PLINK’s –indep-pairwise default
procedure). Genetic association testing was performed using linear
regression in Hail 0.1 when outcome measures were continuous and
using logistic regression in Hail 0.1 when outcome measures were binary.
We restricted our analyses to variants with a MAF > 0.01 and an imputation
quality score of >0.6; we used a lower MAF threshold because we
hypothesized that causal variants might be rarer in a population-based
cohort compared to a cohort that was ascertained through a trait of
interest. Covariates adjusted for included sex and the first two PCs. Age
was not a consideration as ALSPAC is a longitudinal birth cohort study and
age differences were negligible for any given measure.

Functional annotation and results integration
In this analysis, we considered CFSRS the discovery sample, since families
were ascertained through a child with SSD, and used ALSPAC as the
replication sample. We identified associated loci with SNPs significant at p<
10−5 in CFSRS and p< 0.05 in ALSPAC, with effects in the same direction.
Because the majority of our findings are intergenic and/or fall in

noncoding regions, we relied on annotation tools FUMA version 1.35d and
HaploReg to characterize which genes our variants might affect, as well as
variants’ functionality. We utilized FUMA81 for mapping genes to our
variants based on genomic proximity, eQTL evidence, and chromatin
interactions evidence. Default settings in FUMA were used, with the
exception of tissue specificity. We hypothesized that gene expression and
regulation would be most relevant in the brain and neural tissues, as well
as muscles related to speech. In FUMA, we focused on eQTL and chromatin
interaction evidence in our target tissues (brain and muscle). Additional
details are found in the Supplement. HaploReg v.4.1 was used to examine
the chromatin state evidence predicting whether the variant fell in a
promoter or enhancer region. Using HaploReg v4.1 we examined histone
marks indicating enhancer/promoter for brain tissues, neural tissues
(including neuronal progenitor cells) and skeletal muscle tissue.
In order to further prioritize and synthesize our findings, we annotated

associated loci as described above, including annotation of associated
effects of these loci in the literature, and incorporated supportive findings
from our MWAS (Supplementary Data 1). We generated a simple locus
priority score as the sum of the number of times a locus included an
enhancer and/or promoter, included an eQTL, was previously associated
with a communication disorder and/or neuropsychiatric disorder, showed
eQTL or chromatin state evidence specific to brain and/or neural tissues,
mapped to a gene that was a FOXP2 target in brain tissue34–36, and an
meQTL in that region (at p < 5 × 10−5) with an associated methylation site
(at p < 0.05) with the same phenotype as the associated GWAS loci, as
determined using the bioinformatic resources described above.
We applied the EpiXcan pipeline82 to train gene expression predictors in

human brain tissue. For genotypes and gene expression, we used
psychENCODE data from the dorsolateral prefrontal cortex (DLPFC)83. We
restricted our analysis to 924 Caucasian samples. We initially computed
eQTL summary statistics using the R package Matrix eQTL version 2.276,
followed by estimation of SNP priors through the qtlBHM Bayesian
hierarchical model84 using the Roadmap Epigenomics Project chromatin
states for DLPFC (‘BRN_DL_PRFRNTL_CRTX’). In total, 363,955 predictors for

18,425 genes were recruited in the EpiXcan psychENCODE model. We then
applied the S-PrediXcan method85 using the EpiXcan psychENCODE model
as well as the SNP covariance matrix on the GWAS summary statistics.
These analyses were based on genome-wide association results from two
phenotypes from our GWAS, TWS, and Elision; these traits were chosen
because they had the greatest number of unique significantly associated
loci. Detailed results are in Supplementary Tables 7 and 8.
Chromatin interaction mapping was performed in FUMA using Hi-C data

from PsychENCODE83 (Hi-C based enhancer-promoter interactions),
Schmitt et al.86 (Hi-C based (significant loops) of cell line GSE87112,
tissues Dorsolateral Prefrontal Cortex, Hippocampus and Neural progenitor
cell) and Giusti-Rodriguez et al.87 (Hi-C data (significant loops after
Bonferroni correction (Pbon < 0.001)) of adult and fetal cortex). Chromatin
interactions were filtered by FDR < 1 × 10−6.
We primarily focused on loci with priority scores >5, and for loci with

priority scores equal to 5, we examined loci with compelling evidence in
the communication disorders literature and/or our own methylation data.
These loci were then examined using colocalization analysis in LocusFo-
cus88, as described below, which facilitates the exploration of a GWAS
signal and the degree of colocalization with eQTLs in relevant tissue.
We used LocusFocus version 1.4.988 to explore our GWAS signals in their

degree of colocalization with expression quantitative trait loci (eQTL) for
genes within ±200 kb of the lead SNP in the relevant GTEx tissues. The aim
of this method is to annotate GWAS-derived associations to the most
probable gene(s) and tissue(s) that may be driving that signal. This method
uses the Simple Sum method to assess the degree of colocalization of any
two given datasets. The Simple Sum region used for calculating
colocalization of eQTLs and GWAS signals is ±100 kb of the lead SNP
(i.e., GWAS signals and eQTLs within 100 kb of the lead SNP for genes
within 200 kb of lead SNP). When applied to GTEx, LocusFocus presents the
degree of colocalization of genes nearby the GWAS association for all the
tissues selected in an interactive heatmap plot. Here we selected 14
tissues, including all brain tissue available for GTEx v7 (brain_spinal_-
cord_cervical, nucleus_accumbens_basal_ganglia, cerebellar_hemisphere,
hippocampus, caudate_basal_ganglia, anterior_cingulate_cortex, cortex,
hypothalamus, amygdala, frontal_cortex, substantia_nigra, putamen_ba-
sal_ganglia, cerebellum), as well as, skeletal_muscle. We also brought in
psychEncode eQTL data83 (FDR < 0.05 and a filter requiring genes to have
an expression > 0.1 fragments per KB per million reads (FPKM) in at least
10 samples) in as a secondary dataset to examine colocalization with our
GWAS signal and eQTLs within psychEncode data. Here, we pulled eQTLs,
within 100 kb of our lead SNP for genes within 200 kb of our lead SNP.

Examination of previously identified candidate genes for
communication disorders
In order to examine whether our GWAS replicated previous findings (either
from published GWAS in language and reading phenotypes and/or
targeted candidate gene studies of these phenotypes), we took a twofold
approach. If the original papers provided rs IDs, we looked up our results at
those specific SNPs. If the papers did not provide that level of detail, we
instead examined all SNPs with MAF > 5% in the gene regions ±5 kb.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
Data from the Cleveland Family Speech and Reading study are not available for broad
genetic data sharing because study subjects did not provide informed consent for
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stating that the consent forms did not adequately cover the issue of deposition of the
data into public repositories and that participants needed to be reconsented. In an
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