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In recent years, there have been major advances in deep learning algorithms for

image recognition in traumatic brain injury (TBI). Interest in this area has increased

due to the potential for greater objectivity, reduced interpretation times and, ultimately,

higher accuracy. Triage algorithms that can re-order radiological reading queues have

been developed, using classification to prioritize exams with suspected critical findings.

Localization models move a step further to capture more granular information such as

the location and, in some cases, size and subtype, of intracranial hematomas that could

aid in neurosurgical management decisions. In addition to the potential to improve the

clinical management of TBI patients, the use of algorithms for the interpretation of medical

images may play a transformative role in enabling the integration of medical images into

precision medicine. Acute TBI is one practical example that can illustrate the application

of deep learning to medical imaging. This review provides an overview of computational

approaches that have been proposed for the detection and characterization of acute

TBI imaging abnormalities, including intracranial hemorrhage, skull fractures, intracranial

mass effect, and stroke.

Keywords: traumatic brain injury, deep learning, artificial intelligence, precision medicine, evidence-based

medicine, image recognition

INTRODUCTION

Acute traumatic brain injury (TBI), defined as sudden physical trauma that results in damage
to the brain, is diagnosed through clinical assessment, with considerable reliance on structural
neuroimaging studies such as computed tomography (CT) and occasionally, magnetic resonance
imaging (MRI) (1). CT is the primary imaging modality worldwide for diagnosis of acute TBI
due to its high sensitivity for acute intracranial hemorrhage and skull and facial fractures, rapid
scan times, and lack of absolute contraindications (2, 3). While MRI is more sensitive to certain
pathoanatomic features of acute TBI such as traumatic axonal injury and small cortical contusions,
it is not routinely performed on acute TBI patients, but may be used as a follow-up study in patients
with persistent or unexplained neurological deficits (4, 5). The rapid and accurate interpretation
of these structural imaging studies in acute TBI is critical; imaging informs immediate clinical
decisions such as hospitalization, intensive care unit admissions, and neurosurgical intervention,
and also bears prognostic information. Structural imaging studies are interpreted by radiologists,
but there has also been increasing interest in the development of image recognition algorithms that
can aid, augment, and streamline the image interpretation process.

The use of algorithms for the detection of acute TBI pathoanatomic features has several
key advantages. Automated algorithms could reduce the time to diagnosis and treatment and
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help improve patient outcomes. They also have the potential
to extract useful information from medical imaging studies
in a quantitative and objective manner, which can greatly
facilitate the integration of diagnostic medical imaging with
advances in precision and evidence-based medicine. Radiological
interpretations by human observers, in contrast, are subjective
and vary based on differences in experience and judgment.
In addition to this, algorithms are not affected by fatigue or
“satisfaction of search,” a very common problem in which
detection of one radiographic abnormality causes a human
observer to overlook an additional critical, but unexpected,
abnormality (6). In order for algorithmic approaches to be of
clinical relevance, however, they must demonstrate very high
accuracy levels on large datasets that are representative of
the population.

Early attempts to develop algorithms to interpret head
CT exams used rule-based or traditional machine learning
approaches. For the former, researchers would define a set of
heuristics for the detection of pathoanatomic features (7–10).
Despite a considerable amount of painstaking manual tuning
through trial and error and promising preliminary results,
however, it was not possible to curate a set of rules that could
distinguish abnormal from normal images with accuracies in
the range of those needed for clinical utility. Machine learning
approaches, consisting ofmodels that detected lesions by learning
directly on a set of training examples, were also used. These
approaches were attractive because they reduced the need
for painstaking trial and error and pre-programming. Studies
reported a variety of machine learning strategies for head CT
interpretation, including random forest (11, 12), support vector
machine (13), and decision tree (14–16). However, the rigid
analytic forms of traditional machine learning models still made
it difficult to accurately model complex imaging data. Ultimately,
neither rule-based nor machine learning strategies were sufficient
to achieve the strong performance levels needed for clinical use.

Just over 10 years ago, advances in computer hardware
enabled a 100-fold acceleration of matrix computations that are
fundamental to neural networks, a class of machine learning
algorithms (17). Reduced data storage costs also made it easier to
amass large datasets. These developments made it feasible, for the
first time, to perform massive numbers of matrix manipulation
tasks on enormous datasets in a reasonable amount of time,
and led to a resurgence of interest in deep neural networks,
or “deep learning.” Unlike traditional machine learning models,
which are fixed in analytic form, deep learning models are
flexible, have potential for essentially limitless complexity, and
can theoreticallymodel any arbitrarymathematical function (18).
In real-world applications, the required quantity of training data,
which roughly scales with the depth of a deep learning model,
does impose a practical limit on the depth and complexity of a
deep learning model. Nevertheless, the increased representation
power, elimination of the need for manual tuning, and more
efficient large-scale learning have resulted in profound increases
in accuracy in image recognition tasks. As a result, deep learning
has rapidly dominated the computer vision field in the last
decade, with advances also diffusing into the medical field.
Examples of early demonstrations of deep learning applied to

medical imaging include detection of pneumonia on chest x-ray
(19) and tuberculosis (20) and lymph node metastases (21) and
non-small cell lung cancer (22) on histopathology slides.

Deep learning models have also been successfully developed
for the analysis of neuroimaging studies in acute TBI. Numerous
triage algorithms have been developed for the automated
classification of imaging abnormalities, with the goal of future
implementation into the radiological workflow to decrease time
to diagnosis (23–26). Simultaneously, localization algorithms
were also being developed and trained to automatically segment
abnormality boundaries to extract granular information such as
lesion size, subtype, number, and location (27–29). This review
will provide an overview of computational approaches for the
detection of TBI imaging abnormalities, including intracranial
hemorrhage, fractures, mass effect, and stroke.

METHODS

A targeted literature review was performed using Google
Scholar to identify publications related to computational
approaches for image recognition in acute TBI. Search
queries included combinations of the following keywords:
“Traumatic brain injury,” “Deep learning,” “Machine learning,”
“Automated detection,” “Head computed tomography,”
“Magnetic Resonance Imaging,” “Intracranial hemorrhage,”
“Skull fracture,” “Intracranial mass effect,” “Edema,” and “Stroke”
without any restrictions on publication year. Articles that were
most relevant to the review topic were selected, with an effort to
identify and include all key articles with major contributions to
the field.

TRAUMATIC BRAIN INJURY

Traumatic brain injuries can be classified either as penetrating,
in which a foreign body traverses the skull and enters the
intracranial space, or non-penetrating (also known as closed head
injury or blunt TBI). TBI is divided into three clinical severity
categories: mild, moderate and severe. The primary criterion that
determines clinical severity category is the Glasgow Coma Scale
(GCS) score. Patients presenting with GCS scores from 3 to 8,
9 to 12, and 13 to 15 are classified as having severe, moderate,
and mild TBI respectively, with mild TBI accounting for ∼90%
of acute TBI patients (30). In some grading schemes, mild
TBI classification also requires that the patient exhibit no focal
neurological deficit on initial examination (31, 32). Although
clinical severity has long been based primarily on the GCS score,
this coarse classification belies considerable heterogeneity in the
underlying neuropathology and clinical outcomes of patients
with identical GCS scores (33, 34). The current consensus is
that development of more granular TBI classification schemes is
a critical need in order to develop effective therapies for acute
TBI (34).

Computed Tomography (CT)
With rare exception, head CT is the imaging modality used to
evaluate patients with suspected acute TBI. A small proportion
of patients in the Emergency Department (ED) are judged
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FIGURE 1 | Intracranial hemorrhage subtypes and their frequencies among mild TBI patients enrolled in the TRACK-TBI prospective longitudinal study of acute TBI

(39). (A) Illustrates the various subtypes of intracranial hemorrhage, with red arrows indicating the abnormal lesion. (B) Shows the frequencies of each subtype of

hemorrhage. SAH is the most commonly observed subtype, followed by SDH and contusion. Although the overall average incidence of “complicated” mild TBI (mild

TBI with presence of acute intracranial hemorrhage on head CT) in the U.S. is lower in clinical practice than in TRACK-TBI (40), the relative distribution of hemorrhage

subtypes within mild TBI is likely similar (39).

to have sustained very mild head injuries based on a benign
mechanism of injury, presenting GCS score of 15, and no loss of
consciousness or posttraumatic amnesia, and may be discharged
from the ED without head imaging. For all others, non-contrast
head CT is performed (32). Over 20 million head CT scans are
performed annually in the U.S. Head CT is the near universal
choice for initial imaging in acute TBI in infants, children and
adults, due to its very high sensitivity for acute intracranial
hemorrhage and skull and facial fractures, widespread 24-h
availability (35), and lack of any absolute contraindication. In
addition, it’s extremely short acquisition time, which allows it to
perform whole-head imaging in as little as 0.3 s using modern
multidetector-row CT scanners (36), is essential in many cases
in which patients are unable to remain still due to altered mental
status, pain, or young age.

Approximately 9% of head CT scans on acute TBI patients
demonstrate acute intracranial hemorrhage (Korley, 2016). GCS
score is a significant predictor of intracranial hemorrhage,
identified on ∼9% of CT scans in mild TBI (37), 56%
in moderate TBI, and 81% in severe TBI (38). Subtypes
of acute intracranial hemorrhage include epidural hematoma
(EDH), subdural hematoma (SDH), contusion, subarachnoid
hemorrhage (SAH), intraventricular hemorrhage (IVH), and
petechial hemorrhage (Figure 1A). The most common subtypes
are SAH, SDH and brain contusion (Figure 1B). Although there
is a correlation between the initial GCS score and the presence of
intracranial hemorrhage, all subtypes of intracranial hemorrhage
are observed at all clinical severity levels. For example, SAH is

the most common subtype of intracranial hemorrhage across
all severity levels, although it is observed in 24.4% of mild TBI
patients and 43% of moderate and severe TBI patients (38, 39).
Skull fractures are also seen across all GCS scores, although are
much more common in severe TBI [∼47% (41)] compared to
mild TBI [∼3% (42)]. While midline shift and other types of
brain herniation are also present in all severity categories, they
are much more common in moderate and severe TBI, affecting
∼60% of these patients (43) compared to 3% of mild TBI patients
(44). Lastly, while ischemic stroke does occasionally occur in
acute TBI patients, it is rare and occurs in ∼2.5% of moderate
and severe TBI (45). While a brief discussion of deep learning
applications for stroke is included in this review, it is usually
treated as a distinct disorder.

Brain MRI
Brain MRI, including basic structural (anatomic) brain MRI, is
not currently recommended as the initial diagnostic imaging
modality for acute TBI in adults (46, 47), children or
infants (48). Brain MRI protocols for evaluation of acute TBI
generally include T1-weighted, T2-weighted, T2-weighted Fluid
Attenuated Inversion Recovery (FLAIR) sequences, diffusion-
weighted imaging (DWI), and either susceptibility-weighted
imaging (SWI) or T2∗-weighted gradient echo (GRE) (49). MRI
is highly sensitive to certain traumatic intracranial findings such
as traumatic/diffuse axonal injury, small cortical contusions,
and small extra-axial collections (50, 51), and is occasionally
performed in hospitalized TBI patients as a problem solving tool
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in cases when the level of consciousness is persistently impaired
and not accounted for by findings on initial head CT. Brain MRI
is also used to evaluate persistently symptomatic patients in the
subacute or chronic stages after TBI, in medico-legal cases, and
in cases of suspected abusive head trauma to assess for evidence
of brain injuries of different ages (52).

The use of more advanced MRI techniques such as diffusion
tensor imaging (DTI) and functional magnetic resonance
imaging (fMRI) in acute TBI are highly promising techniques
for more detailed and nuanced characterization of damage
to the brain in TBI (49, 53). DTI in particular has been
shown in numerous studies to demonstrate significant group
differences in physical characteristics of the white matter tracts
between acute TBI and control patients (54–56) that are also
correlated with patient outcome. While most studies to date
of DTI for acute or post-acute TBI have demonstrated group
differences between TBI and control patients, there is not yet
a consensus on how these techniques should be used clinically
for diagnosis of individual acute TBI patients. Unlike CT and
“basic” structural brain MRI, DTI, and fMRI data are not
directly evaluated through human visual interpretation, but
are inherently quantitative studies that undergo extensive post-
processing using traditional statistical and machine learning
techniques (57), and are not currently recommended for clinical
use (46, 47). Interpretation of these studies is largely based on
what the data show relative to “statistical significance” threshold
values, rather than on subjective human visual inspection.
Although machine learning, including deep learning, will likely
have an increasing role in the analysis of DTI and fMRI data as
these techniques continue to mature, these topics are beyond the
scope of the current focused review.

OVERVIEW OF ALGORITHMS FOR
COMPUTER ANALYSIS OF MEDICAL
IMAGING

Rule-Based Algorithms
The term “computer-aided diagnosis” (CAD) has existed in
the scientific literature for ∼50 years (58). For nearly all
of that time, researchers have proposed heuristic, or rule-
based, approaches for the analysis of neuroimaging studies
in acute TBI. Rule-based approaches for image analysis use
a set of “hand-crafted” rules created by a human observer
based on morphology, brightness, and other characteristics of
an image or imaging feature that can be perceived by the
human visual system. Examples of such rule-based approaches,
e.g., for acute intracranial hemorrhage detection on head
computed tomography (CT), include algorithms based on top-
hat transformation and left-right asymmetry (7); thresholding
and connectivity (8); thresholding, linear and circular Hough
transformations, and cluster analysis (9), and fuzzy c-means
clustering (FCM) and region-based active contour (10). Though
these and other rule-based approaches demonstrated the
feasibility of using CAD to extract useful information from head
CT images, they generally fell far short of accuracy levels that
would be needed to make these approaches clinically useful.

Reported performances either remained far below the threshold
needed for clinical utility or were tested on CT exams that were
not randomly selected.

Rule-based strategies are limited because it is challenging to
enumerate all the rules that would fully describe the diversity
in appearance of normal anatomy as well as pathological
imaging findings seen in clinical practice. This problem is
compounded by a large number of potential technical artifacts
that are easily recognized by human observers, but have highly
variable imaging appearances that are difficult to codify reliably.
For instance, thresholding for brighter areas is a common
rule-based strategy to identity acute intracranial hemorrhage,
because acute hemorrhage is characterized by CT densities
from 50 to 100 Hounsfield units and present as hyperdense,
or “bright,” regions on head CT images (Figure 2A). However,
Figure 2B shows an example in which a rule-based algorithm
employing thresholding, cluster analysis, and morphological
analysis incorrectly labels streak artifacts as acute ICH due to
its brightness.

Traditional Machine Learning Algorithms
Machine learning, a subset of artificial intelligence, seeks
to minimize the reliance on heuristics and manual pre-
programming and make predictions based on learned experience
instead. Classical machine learning algorithms are broadly
divided into supervised and unsupervised models. In supervised
learning, the model receives as input both the data and the
desired output, and “learns” from training data such that its
predictions match the desired output as closely as possible.
The use of labeled training data (with labeling performed
by human experts and/or other computer algorithms) often
results in stronger performances, making supervised learning
the paradigm of choice for most practical applications including
medical imaging. In contrast, unsupervised learning models
receive input data with no labels and learn by identifying
the underlying structural patterns or groupings in the data
itself. Depending on the algorithm choice, model training is an
iterative process in which the algorithm periodically updates
its own parameters to better approximate the desired function
and minimize the error in its output predictions. Numerous
machine learning algorithms, including logistic regression (12),
random forest (11, 12, 59), Bayesian decision theory (60), k-
means clustering (61), and support vector machines (13, 62),
have been used for the detection and segmentation of acute TBI
imaging features. Each of these is briefly described below.

Logistic regression produces a binary output based on
independent predictors (63). The random forest algorithm is
an ensemble learning strategy that leverages multiple decision
trees to make a classification prediction (64). Bayesian decision
theory quantifies the tradeoffs between multiple choices in a
probabilistic manner (65, 66). K-means clustering divides data
into k groupings, where each data point is associated with the
most similar group (67). The support vector machine maps input
data onto a higher-dimensional grid and identifies the hyperplane
that best differentiates each class, and can be more effective
on complex and higher-dimensional data (68). Even though
machine learning techniques such as these have considerable
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FIGURE 2 | Rule-based algorithms. (A) Illustrates one possible workflow for a rule-based intracranial hemorrhage detection model. Application of thresholding and

connectivity is a common way to identify regions of hematoma (8). (B) Shows examples of false positive errors from rule-based models in which streak artifacts are

incorrectly labeled as regions of intracranial hemorrhage. This can result if regions of hemorrhage are obtained by thresholding for brighter pixels, which is a common

strategy in rule-based models. Red indicates regions of algorithmic predictions (9).

overlap with statistical modeling, they often differ in objectives.
The goal in machine learning is usually to make accurate
predictions, while the goal in statistics is often to uncover
significant relationships between variables that allows broad
interpretation of the data (69).

While traditional machine learning algorithms are more
adaptive than rule-based methods, there remain limitations.
The use of traditional machine learning for medical imaging
tasks still generally requires explicit feature extraction, usually
as one or more early steps in the algorithm. Such features
include but are not limited to voxel CT density thresholding
(12), properties of surrounding voxels (11), and shape features
(13), with predictions often made based on these extracted lesion
predictors rather than the input image itself. This means that
traditional machine learning models are rarely applied end-to-
end on raw input image pixels, which could also make it more
difficult to scale the algorithm to large complex datasets. Lastly,
they are limited in the functions they are able to model. Logistic
regression, for example, is optimal when the data can be linearly
separated. However, medical imaging data is muchmore complex
and often cannot be modeled in a linear fashion. As a result,
many of these traditional machine learning techniques are more
frequently used and better suited for applications such as TBI
outcome prediction (70, 71).

Deep Learning Algorithms
The feasibility of a large-scale data-driven approach for image
classification is exemplified by deep learning (72). Deep learning
circumvents many of the limitations of rule-based and traditional
machine learning algorithms, including heavy reliance on
painstaking handcrafted rules and feature selection. It also allows
“learning” of image patterns directly from large volumes of data,
making it a scalable method to more efficiently generalize to
external datasets. This has led to substantial boosts in accuracy

of machine learning algorithms for image recognition tasks, and
a paradigm shift in the field of computer vision. Deep learning
underpins all current state-of-the-art algorithms for widely-
benchmarked computer vision tasks such as image classification
and object detection (73–77). While deep learning originated
from the concept of the artificial neural network (ANN), it has
since progressed to much deeper and more advanced networks
including convolutional neural networks (CNNs), recurrent
neural networks (RNNs), and, more recently, transformers. This
section will provide an overview of the major deep learning
algorithms and how they have been applied to medical imaging.

The earliest artificial neural networks (ANNs) were inspired
by the transmission of information between the neurons in the
human brain (78–81). The ANN includes an input layer, an
output layer, and at least one “hidden” layer, with each layer
designed as an array of neuron-like nodes (Figure 3A) (82, 83).
The input layer accepts data, and the output layer produces a
prediction. Between the input and output layers are the hidden
layers, each of which accepts the output from the previous layer’s
nodes and performs forward computations to produce its own
output. Although ANNs were highly novel at the time, they
have limited representation power. This can be solved in part
by increasing the numbers of layers and deepening the neural
network, which increases the power of the network to “learn”
subtle differences in complex patterns, because deeper networks
have larger numbers of values that can be adjusted in order to
model complex data. However, the simple network architecture
still limited the performance of basic neural networks on more
complex tasks such as visual recognition.

This problem was addressed by the development of the
convolutional neural network (CNN). In 2012, a CNN called
AlexNet was the winner of the ImageNet Large Scale Visual
Recognition Competition (ILSVRC) (74). As one of the earliest
CNNs, AlexNet used convolutional layers to detect local features,
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FIGURE 3 | Deep learning algorithms. (A) Is a schematic representation of an artificial neural network. n indicates the number of hidden layers. A network with n = 1,

as seen in the figure, is the most basic and shallow form of a neural network. n can be increased to deepen the network and broaden its representation capacity.

Increasing n results in the ability of the network to model tasks of increasing complexity, but also requires more training data to avoid overfitting (in which the model

merely exploits the extra variables to achieve high performance on a specific training dataset, but fails to perform similarly on data outside of the training dataset). (B)

Illustrates a convolutional neural network. Convolutional filters (in gold) are applied across the image to extract features, followed by pooling filters (in silver) that reduce

feature map dimensionality. Most CNNs use multiple convolutional and pooling layers. The end layers include the fully connected and output layers.

with early layers detecting simple features such as edges, corners,
and colors, and higher layers detecting higher-level features
such as objects (84). Filters that perform the convolution
operation are applied across the input image, producing feature
maps that preserve spatial invariance (Figure 3B). CNNs also
apply pooling layers to reduce the dimensionality of feature
maps and increase computational efficiency while retaining
important image features. The CNN architecture continued to
improve significantly in the subsequent years, with increased
network depths and added features such as multi-scale filters
(85), factorized convolutions (86), and residual connections
(87). Coupled with greater computational efficiency, the CNN
has since become the standard network architecture of choice
for most visual tasks and has been applied to medical image
analysis, including the detection (23, 25, 26) and localization of
intracranial hemorrhage (27–29).

Aside from the CNN, other deep learning models have
been applied to sequential data such as language, audio, and
video tasks. Algorithms such as RNNs (88) and long short-
term memory (LSTM) (89) augment a model with sequential
memory to model temporal relationships, but often struggle to

retain information when encountered with longer sequences.
Transformers were recently proposed to address this limitation;
they have shown great success in modeling sequential data
by capturing long-range pairwise relationships and have since
replaced RNNs in most practical applications (90–92). Because
RNNs are best suited for sequential data, they are more
commonly used for the analysis of electronic medical records and
clinical reports (93, 94) rather than medical images. However,
there has been recent interest in the use of transformers in
medical imaging (95–97). This area is still relatively new and
unexplored, but may be a promising direction in coming years.

Overall, deep learning models have benefited tremendously
from recent breakthroughs in computational resources (98–100),
data volume (101–103), and algorithmic advancements (74, 87,
90, 104, 105). The large number of free parameters associated
with hidden layers has enabled a vastly more flexible algorithm
that can model complex data and excel over rule-based and
traditional machine learning approaches for image recognition
tasks. Coupled with greater data availability, deep learning has
facilitated the development of acute TBI imaging algorithms that
are more accurate than previously seen.
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FIGURE 4 | A schematic of three labeling strategies in order of increasing granularity. Red indicates the label(s). (A) Demonstrates examination labels, in which an

entire exam is annotated as “positive” or “negative” for a given pathology. (B) Demonstrates image labels, where each image in a stack is annotated as “positive” or

“negative” for a pathology. (C) Demonstrates pixel labels, where all pixels in the exam are labeled as “positive” or “negative” (29).

DATA LABELING STRATEGIES

Deep learning algorithms learn by gleaning patterns from large
volumes of data, but they require high quality labeled data to
do so. The granularity of the labels determines the maximum
granularity, or level of detail, of the model’s output prediction,
and also affects the final accuracy of the model for a given task.
Therefore, the labeling strategy partly determines the clinical
applications the model may be useful for. Because deep learning
models’ accuracy is critically dependent on the quality and
type of data they learn from, it may be useful to discuss and
compare common data labeling strategies. We discuss below
several common data labeling strategies, in order of increasing
labeling granularity.

The coarsest data labeling strategy in medical imaging is

examination-level labeling, which refers to categorization of
each imaging exam based on the presence or absence of a

specific type of imaging finding (Figure 4A). For example, a

head CT exam typically contains a stack of 25–70 images,
depending on the size of the head and the specific imaging
protocol. If a CT exam has at least one instance of intracranial
hemorrhage on at least one image, the entire exam would be
annotated as “positive” for intracranial hemorrhage. The use
of examination-level labels has several advantages, the primary
being that these labels can generally be obtained with less time

and cost, making it possible to amass larger datasets. In addition,
examination-level labels can potentially be extracted from pre-
existing clinical radiological reports by human reviewers without

specialized training in radiology, or through the use of automated
natural language processing algorithms. Examination-level labels
represent the coarsest level of labeling and generally do not
provide information on the location or size of abnormal findings.

Image-level annotations are an example of labels with an
intermediate level of granularity. In this strategy, each image of
an exam is annotated for the presence or absence of a specific
type of imaging finding (Figure 4B). Unlike examination-
level labels, image-level annotations provide some localization
information, identifying the image(s) that contain instances of
the finding of interest. Image-level labels provide significantly
more information than examination-level labels, and can be
used to improve the accuracy of exam-level predictions, as well
as to provide coarse estimates of the locations and sizes of
instances of the imaging finding of interest. However, image-
level labels require significantly more cost and effort to obtain.
Unlike examination labels, which are already present in clinical
reports, image labels do not exist in the clinical setting and must
be manually annotated by highly trained specialists.

Pixel-level annotation is the most granular labeling approach,
and consists of the designation of each pixel in each image
of the exam as positive or negative for the finding of
interest. Pixel-level labels provide the densest information
content (Figure 4C), and can be used to further improve the
accuracy of exam-level predictions, as well as provide fine-
grained localization information. Algorithms trained on high-
quality pixel-level annotations have the potential to produce the
strongest results because they are trained on the data with the
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FIGURE 5 | A schematic representation of (A) classification and (B) segmentation algorithmic outputs. In (B), red regions indicate areas of acute intracranial

hemorrhage designated by the algorithm (29).

densest information content. The primary disadvantage of this
strategy is that pixel labels are costly and time-consuming to
obtain, requiring manual delineation (“segmentation”) of the
boundaries of each lesion or finding of interest. This is not
a task that radiologists are accustomed to performing in a
clinical setting, and is highly labor-intensive even with the use
of optimized manual segmentation tools. Unlike examination-
labeled datasets, the expansion of an existing pixel-labeled dataset
may be prohibitively costly due to the labeling requirement.
Regardless, algorithms trained on pixel labeled data can create
stunning delineations of the boundaries of lesions, producing
detailed location and size information that can be useful for
clinical management decisions.

Bounding-box labels constitute a labeling approach that is
intermediate between image-level and pixel-level labels. For
example, Mask R-CNN (87) first detects an object and indicates
its location by placing a bounding box that encloses all or part of
the object, and subsequently performs a pixel-wise segmentation
within the bounding box. However, hemorrhage is fluid and
can take on nearly limitless morphologies, and is not well-
suited to this approach. Mask R-CNN was designed primarily
for the detection of discrete objects, and may be better suited
to medical imaging applications that require identification of
discrete pathological findings such as mass lesions.

These approaches illustrate several major strategies that have
been used to label training data for deep learning algorithms for
TBI image analysis. These concepts will appear again in later
discussions of specific algorithms.

INTRACRANIAL HEMORRHAGE
DETECTION

Acute intracranial hemorrhage, which refers to acute bleeding
within the confines of the cranial vault, is a key neuroimaging
finding that determines the disposition of acute TBI patients
from the ED. It is the only neuroimaging finding accepted by
the U.S. FDA as a prognostic marker in acute TBI. Because
neurosurgical interventions such as intracranial pressure
monitor placement and craniotomy, including decompressive
hemicraniectomy, must be performed emergently, algorithms
that can reduce the time to diagnosis through the rapid detection
and localization of acute intracranial hemorrhage could improve

patient outcomes (106). A variety of deep learning approaches
have been explored for intracranial hemorrhage detection.
Some algorithms focus strictly on the classification of CT
exams as positive or negative for intracranial hemorrhage,
because this differentiation is a key determinant of immediate
management steps (Figure 5A). A number of models that
also attempt to predict different hemorrhagic subtypes have
been reported. To further increase clinical usefulness and
interpretability, algorithms may also perform segmentation, or
detailed delineation of the hemorrhage boundaries (Figure 5B).
Segmentation has the great advantage of allowing clinicians the
opportunity to visually appreciate the algorithm’s findings and
to have an understanding of the extent/volume and location
of the hemorrhage. Both segmentation and determination
of the subtype of intracranial hemorrhage (intraventricular,
intraparenchymal, subarachnoid, epidural, subdural, and
petechial hemorrhage) are also critical for guiding immediate
management decisions.

Table 1 summarizes prior algorithmic approaches for the
detection and segmentation of acute intracranial hemorrhage
in TBI. Although there is no formal distinction in the
literature, we group the algorithms into two broad classes
for illustrative purposes: triage algorithms and localization
algorithms. Hereafter, approaches to image analysis in acute TBI
will be described within the context of these two broad clinical
objectives. Dataset sizes are described either in terms of number
of CT exams or number of CT images. It is important to note that
results from different papers cannot be compared head-to-head
due to the use of different datasets and labeling strategies.

The publications in Table 1 are related to head CT, the
standard neuroimaging study in the clinical management of
acute TBI. In current clinical practice, brain MRI is only
occasionally performed secondarily, as a problem-solving tool
when neurological deficits persist throughout the hospital stay
and/or are not adequately explained by head CT findings. While
deep learning has been applied to brainMRI for other pathologies
and disorders (121–123), there has been little development of
such algorithms for MRI image recognition in acute TBI due to
the relatively uncommon use of brain MRI in this clinical setting.
MRI’s current limited role in acute TBI also limits the quantity
of available training data. Despite this, a small number of MRI
hemorrhage detection algorithms have been proposed and are
briefly discussed below for completeness (124–127).

Frontiers in Neurology | www.frontiersin.org 8 March 2022 | Volume 13 | Article 791816

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Lin and Yuh Computational Approaches for TBI Imaging

TABLE 1 | Deep learning approaches for intracranial hemorrhage detection and segmentation on head CT.

Publication Model description Training label type Output type Dataset size Model performance

Phong et al.

(107)

Three models used:

LeNet, GoogLeNet,

Inception-ResNet

Examination labels Hemorrhage detection Train: 1,360 images

Test: 340 images

LeNet accuracy: 0.997

GoogLeNet accuracy: 0.982

Inception-ResNet accuracy: 0.992

Prevedello et al.

(23)

CNN Examination labels Hemorrhage, mass effect,

hydrocephalus detection

Development: 246 exams

Test: 130 exams

Sensitivity: 0.90

Specificity: 0.85 AUC: 0.91

Patel and

Manniesing

(108)

Convolutional neural

network (CNN)

Image labels Hemorrhage detection Development: 150 exams

Validation: 20 exams

Test: 20 exams

Sensitivity: 0.87

Specificity: 0.97

Accuracy: 0.95

Majumdar et al.

(109)

CNN Pixel labels for

hemorrhage subtypes

Hemorrhage detection Development: 60 exams

Validation: 5 exams

Test: 69 exams

Sensitivity: 0.81

Specificity: 0.98

Grewal et al.

(110)

Recurrent Attention

DenseNet (RADnet)

Pixel labels for

presence of

hemorrhage

Hemorrhage detection Development: 185 exams

Validation: 67 exams

Test: 77 exams

Accuracy: 0.818

Recall: 0.886

Precision: 0.813

Jnawali et al.

(111)

3D-CNN Examination labels Hemorrhage detection Development: 34,848

exams

Validation: 2,000 exams

Test: 3,509 exams

AUC: 0.87

Titano et al. (24) 3D-CNN modeled after

ResNet-50

Examination labels Urgent or non-urgent

classification

Development: 37,236

exams

Test: 180 images

AUC: 0.73

Accuracy: 0.56

Arbabshirani

et al. (25)

CNN Examination labels “Routine” vs. “stat”

classification

Development: 37,074

exams

Test: 9,499 exams

AUC: 0.846

Chilamkurthy

et al. (26)

CNN Image labels Detection of hemorrhage

and subtypes

Development: 290,066

exams

Validation: 21,095 exams

Test: 491 exams

Overall hemorrhage AUC: 0.94

Intraparenchymal AUC: 0.95

Intraventricular AUC: 0.93

SDH AUC: 0.95

Extradural AUC: 0.97

SAH AUC: 0.96

Chang et al. (27) Hybrid 3D/2D CNN Pixel labels Hemorrhage detection and

segmentation

Development: 10,159

exams

Test: 862 exams

Hemorrhage detection accuracy: 0.975

Hemorrhage detection AUC: 0.983

Hemorrhage detection sensitivity: 0.971

Hemorrhage detection specificity: 0.975

Ye et al. (112) 3D joint convolution and

recurrent network

(CNN-RNN)

Image labels Detection of hemorrhage

and subtypes

Hemorrhage development:

2,255 exams

Hemorrhage validation: 282

exams

Hemorrhage test: 299

cases

Subtype development:

1,461 exams

Subtype validation: 181

cases

Subtype test: 194 cases

Hemorrhage classification: >= 0.98

across all metrics

Subtype AUC: > 0.8 across all subtypes

Cho et al. (113) Cascaded deep learning

model

Pixel labels Hemorrhage detection and

segmentation

5.702 exams Hemorrhage detection sensitivity: 0.979

Hemorrhage detection specificity: 0.988

Segmentation precision: 0.802

Segmentation recall: 0.822

Lee et al. (28) ImageNet pretrained

deep convolutional neural

networks (DCNN)

Image labels Classification of hemorrhage

and subtypes; heatmap

localization

Development: 704 exams

Retrospective test: 200

exams Prospective test:

196 exams

Retrospective sensitivity: 0.98

Retrospective specificity: 0.95

Prospective sensitivity: 0.92

Prospective specificity: 0.95

Kuo et al. (29) Patch-based fully

convolutional neural

network (PatchFCN)

Pixel labels Classification of hemorrhage

and subtypes; segmentation

Development: 4,396 exams

Test: 200 exams

Hemorrhage classification AUC: 0.991

SDH AUC: 0.954

EDH AUC: 0.940

Contusion/ICH/TAI AUC: 0.934

SAH/IVH: 0.956

Dice coefficient: 0.75

(Continued)
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TABLE 1 | Continued

Publication Model description Training label type Output type Dataset size Model performance

Lee et al. (114) “Kim-Monte Carlo

algorithm,” an artificial

neural network

Image labels with

hemorrhage subtype

Hemorrhage detection and

subtype classification

Training: 166 exams

Validation: 84 exams

Overall AUC: 0.859

SDH/EDH accuracy: 0.534

SAH accuracy: 0.917

IPH/IVH accuracy: 0.60

Burduja et al.

(115)

CNN-LSTM Image labels with

hemorrhage subtype

Hemorrhage detection and

subtype classification

Training: 21,000 exams

Validation: 744 exams

Testing: 3,528 exams

Overall AUC: 0.9792

EDH AUC: 0.9414

IPH AUC: 0.9834

IVH AUC: 0.9866

SAH AUC: 0.9609

SDH AUC: 0.9451

Arab et al. (116) Convolutional neural

network with deep

supervision (CNN-DS)

Pixel labels Classification of

hemorrhage; segmentation;

volume quantification

Development: 45 exams

Test: 10 exams

Dice coefficient: 0.84

Recall: 0.83

Sharrock et al.

(117)

Convolutional neural

networks with VNet

framework

Pixel labels Classification of

hemorrhage; segmentation;

volume quantification

Training: 100 exams

Validation: 500 exams

Testing: 12 exams

Mean dice coefficient: 0.911

Mean IVH dice coefficient: 0.911

Mean SDH dice coefficient: 0.879

Algorithm-human volume correlation: 0.98

Dhar et al. (118) U-Net Pixel labels Classification of

hemorrhage; segmentation;

volume quantification

Training and

cross-validation: 224 exams

Testing: 84 exams

Dice coefficient: 0.90

Monteiro et al.

(119)

CNN Pixel labels Classification of

hemorrhage; segmentation;

volume quantification

Training: 184 scans

Testing: 655 exams

ICH external AUC: 0.83

IPH external AUC: 0.90

EAH external AUC: 0.80

IVH external AUC: 0.95

Overall mean dice coefficient: 0.36

Zhao et al. (120) nnU-Net Pixel labels Classification of

hemorrhage; segmentation;

volume quantification

Training: 300 exams

Validation: 80 exams

ICH dice coefficient: 0.92

IVH dice coefficient: 0.79

Triage Algorithms
Triage algorithms for analysis of clinical radiological exams are
intended to expedite the interpretation of abnormal exams by
bringing these to prompt attention by on-duty radiologists. One
uniting feature of triage algorithms is their emphasis on exam-
level classification; determination of detailed features such as
location and size of abnormal findings is generally outside of the
scope of algorithms in this category.

The performance requirement for a minimum viable triage
algorithm is that its predictions are more accurate than random
guessing. For algorithms intended for a more central role,
e.g., augmenting the performance (accuracy) of radiologists
through human/computer collaboration, the performance bar
would likely be much higher. Still higher is the performance
level that would be required for algorithms intended for use
by non-radiologist clinicians for management decisions for
acute TBI patients. It is important to note that these various
performance bars are not defined by fixed metrics; rather,
they are subjective in nature and depend on the intended
“context of use” (128). Context of use is a key concept in FDA
regulation of medical devices and other products, essentially
providing a complete description of the intended clinical setting
and manner of use of a medical product. In the case of
algorithms for intracranial hemorrhage detection, context of use
could include factors such as the expertise level of clinicians
available to interpret acute head CT exams in a particular setting

(e.g., emergency department physicians, neurosurgeons, general
radiologists, or neuroradiologists), the typical turnaround time
for CT interpretation (minutes to an hour), and how much the
clinical management algorithm in a particular practice (e.g., the
decision to admit or discharge) relies on head CT results.

Prior work has addressed the task of intracranial hemorrhage
classification using a variety of technical approaches. Phong
et al. (107) evaluated three different popular neural network
architectures—LeNet (129), GoogLeNet (85), and Inception-
ResNet (130)—for intracranial hemorrhage classification. All
three models were widely used around the time of publication
and had previously achieved state-of-the-art performance on
benchmarked computer vision tasks. They were trained using
exam-level labels, and achieved very strong performance on the
intracranial hemorrhage classification task. However, the authors
manually selected positive images to include in the dataset, and
it is unclear whether negative images were also included. Patel
and Manniesing (108) developed a convolutional neural network
for intracranial hemorrhage classification using image-level labels
and also achieved strong performance. Both Majumdar et al.
(109) and Grewal et al. (110) proposed intracranial hemorrhage
classification models using pixel level-labeling.

These studies collectively explored a variety of labeling
strategies, from examination- to pixel-level labels. These
papers primarily focused on the technical side of intracranial
hemorrhage detection, exploring the effectiveness of various
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FIGURE 6 | A schematic of one way in which two sequential algorithms can be integrated into triage workflow for exam classification (23).

neural network architectures for hemorrhage detection and
experimenting with technical hyperparameters. Each of these
strategies demonstrated reasonable performances at minimum,
with some even achieving accuracy metrics exceeding 0.90 (107,
108). However, a likely limitation is that each of these studies
used a relatively small number of training and test cases (Table 1).
Small training sets often lack adequate examples of the entire
spectrum of imaging appearances of the pathology of interest,
and the resulting models often fail to generalize to other data.
In addition, performance results obtained on small test sets are
often noisy.

In order to demonstrate clear clinical utility, it is important
to demonstrate strong performance on larger datasets that are
also representative of the intended population. Jnawali et al. (111)
did this, collecting a large dataset of 40,367 head CTs to train
and evaluate a three-dimensional convolutional neural network
(3D-CNN) for intracranial hemorrhage classification. The model
achieved an AUC of 0.87. Although these results were promising
and obtained from experiments on large datasets, more work was
needed to reach the performance bar needed for clinical use.

One of the earliest works to study clinical integration
was a triage algorithm proposed by Prevedello et al. (23)
to draw attention to critical head CT exams for expedited
evaluation by a radiologist. They developed two sequential deep
learning algorithms, with the first dedicated to the detection
of intracranial hemorrhage, mass effect, and hydrocephalus,
and the second dedicated to detection of acute infarct. Each
exam was read by the two algorithms serially and marked
critical if either algorithm detected abnormalities (Figure 6).
The first algorithm was trained on cases annotated with one of
six possible examination-level labels: hemorrhage, mass effect,
hydrocephalus, suspected acute infarct, encephalomalacia, or
non-urgent/normal. For the first algorithm, the first three labels
were considered “positive” and the last three were considered
“negative.” During testing, the first algorithm classified cases
as “positive” or “negative” for at least one of the first three
imaging findings, demonstrating an AUC of 0.91. The second
algorithm dedicated to acute infarct detection achieved an AUC
of 0.81. Although hemorrhage, mass effect, and hydrocephalus
were grouped for the purposes of algorithm evaluation, and

performance on each distinct pathology was unknown, the study
was important because it was one of the earliest to report a
deep learning classification pipeline that could identify acute CT
exams that contained one or more of a diverse collection of
abnormal findings.

Titano et al. (24) expanded upon this by proposing the
integration of a deep learning system for radiological triage into
a simulated clinical environment. These authors described an
imaging triage system in which a 3-dimensional convolutional
neural network (3D-CNN) re-ordered exams in the queue for
radiological interpretation based on a much wider range of
abnormal findings. The algorithm was designed to re-order
exams so they would be reviewed on the basis of urgency
rather than order of completion. The 3D-CNN was exposed
to exams presenting with hundreds of head CT diagnoses
based on the Universal Medical Language System (UMLS)
concept universal identifiers, including intracranial hemorrhage,
and each diagnosis was mapped to critical or non-critical
categories depending on predetermined radiologist designations
(Figure 7A). The 3D-CNNwas trained on 37,236 head CT exams
labeled at the exam level and produced exam-level classification
outputs, demonstrating an AUC of 0.73 on 180 test images, when
compared to the “gold-standard” labels of physician reviews of
clinical reports. Exam re-prioritization resulted in a statistically
significantly larger number of critical exams at the top of the
queue, Figures 7B,C presents an example regarding how the
algorithm identifies and reprioritizes exams in real time. This
study was important because it demonstrated one of the earliest
attempts to use a large dataset to learn a broad comprehensive
range of pathologies. Because it involved a trial in a real-
time simulated environment, it also allowed authors to quantify
the speed of their algorithm in a hypothetical clinical setting
and reach the conclusion that the algorithms were 150x faster
than humans.

Expanding on this queue reordering study, Arbabshirani
et al. (25) developed a deep convolutional neural network that
was prospectively integrated into a radiological workflow for
3 months. The model’s role was to re-prioritize exams from
“routine” to “stat” if it detected an intracranial hemorrhage. Prior
to integration, the model was trained on a large scale dataset of
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FIGURE 7 | Incorporation of a reprioritization, or triage, algorithm into the radiological workflow in acute TBI (24). (A) Illustrates the broad range of pathological

findings represented in the head CT training data, and how they were classified into non-urgent and urgent categories. (B) Shows the typical order in which critical

(orange) and non-critical (gray) head CT exams would be interpreted by a radiologist before (left graph) and after (right graph) reprioritization by a deep learning

algorithm. The gray and orange dots represent discrete CT exams, while the shaded regions are the smoothed exam frequency distributions. (C) Is a schematic

representation of the algorithm’s prioritization process.

37,084 exams with examination-level annotations and reported
an AUC of 0.846 for intracranial hemorrhage classification.
Following this initial development phase, the algorithm was
integrated into the clinical workflow for 3 months. Over the
course of that time period, the algorithm processed exams with an
accuracy of 0.84. Exams prioritized as “stat” showed significantly
reduced time to interpretation compared to “routine” exams,
from a median time of 512–19min. The Titano et al. and
Arbabshirani et al. studies were two early papers that studied
the impact of integration of deep learning triage algorithms into
clinical settings.

Rather than perform broad critical and non-critical
classifications of CT exams, Chilamkurthy et al. (26) focused
instead on developing deep learning models that could
identify specific head CT abnormalities, including intracranial
hemorrhage subtypes (intraparenchymal, intraventricular,
subdural, extradural, and subarachnoid), calvarial fractures,

midline shift, and intracranial mass effect (Figure 8). The
authors collected large datasets (290,055 CT exams) for training.
The training and validation exams were labeled at the image
level. The exams in the test set, referred to as “CQ500,” were
each labeled by three highly experienced radiologists for the
presence of intracranial hemorrhage and its subtypes, midline
shifts, and skull fractures. Although exams were labeled at the
image level, the model produced predictions at the examination
level. The decision to leverage the more granular image training
label likely helped achieve better exam-level predictions at
test time.

This was the first study to evaluate model performance on
individual pathologies, to use very large datasets (>100,000 CT
exams), and to validate models on datasets representative of
the patient population. Overall, the model performances across
all pathologies were good, with the algorithm achieving an
overall AUC of 0.94 for intracranial hemorrhage on CQ500. In
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FIGURE 8 | Examples of accurate and erroneous predictions of abnormalities on head CT in acute TBI patients by a deep learning algorithm (26). Although individual

images are shown, the model classifies abnormalities at the head CT exam level. All images under Accurate Predictions (A–I) have arrows added to indicate the

abnormal lesion. All images under Erroneous Predictions (J–L) have arrows added to indicate the erroneous lesion predictions.
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Supplementary Materials, the authors indicated that they also
trained a separate localization model to perform segmentation
for intraparenchymal, subdural, and epidural hematomas, using
a set of 1,706 images labeled at the pixel level according to
hemorrhage subtype. Performance metrics and example images
for these segmentations were unavailable at time of publication.
The authors have also made the CQ500 test set publicly available
to facilitate benchmarking of algorithms developed in the future.

Subsequently, triage algorithms with the capability to
classify hemorrhages by subtype were described (112, 114, 115).
Lee et al. demonstrated promising classification results with
three hemorrhage subtype groupings (epidural/subdural,
subarachnoid, and intraparenchymal/intraventricular
hemorrhage) (114). As specific hemorrhage subtypes often
influence management decisions, and also have different
prognostic significance, later classification models were also
proposed that identify each of the five subtypes individually
(112, 115).

Aside from studies performed on CT, several studies have
proposed intracranial hemorrhage detection algorithms on MRI.
Most recently, Nael et al. (124) developed a set of deep CNNs
which were each purposed to identify a different pathology on
brain MRI, with intracranial hemorrhage as one such pathology.
The AUC for intracranial hemorrhage detection on the internal
and external test data was 0.90 and 0.83, respectively. Rudie et al.
(125) proposed a neural network system trained to diagnose 35
different neurologic diseases on brain MRI, including 5 and 3
acute intracranial hemorrhage exams in the training and test
sets, respectively. Previously, Al Okashi et al. (127) proposed
an ensemble learning system for hemorrhage detection on brain
MRI, but describes head CT images throughout the paper
as brain MRI images. Le et al. (126) proposed R-FCN as a
classification model for CT/MRI images to differentiate between
different hemorrhagic subtypes. However, their methods and
figures also use CT scans, such that the relevance to MRI is
unclear. Overall, algorithms developed for MRI in acute TBI are
currently limited.

Although studies have been performed on triage algorithms,
limitations remain. It is reasonable to assume that lower
performance standards for radiological triage algorithms are
acceptable, as all exams are ultimately reviewed by trained human
experts. However, this comes with the risk that missed critical
findings, particularly those with more subtle abnormalities, may
be reordered to the bottom of the queue, with an extended
delay in review of these studies if there is over-reliance on
the algorithm (131). This time delay could be exacerbated if
additional exams are added to the queue in real time and receive
higher priority. Explainability also remains important; if the
rationale behind critical or non-critical classifications is opaque,
it could be difficult for physicians to verify and trust algorithmic
outputs (132, 133). “Black box” algorithms such as these also
have the potential to lengthen overall readout times if radiologists
spend extra time reviewing normal studies that were flagged
as abnormal. In addition, lack of explainability may result in
difficulty disregarding artifacts and other questionable findings
in an exam that has been flagged as abnormal. This could lead
to overdiagnosis, a difficult problem noted in early studies of

the use of CAD in screening mammography (134). Finally, the
identification of hemorrhage locations and sizes is also critical in
order to inform neurosurgical decisions.

Localization Algorithms
Localization algorithms are trained to predict the locations of
abnormal imaging findings. In these algorithms, more general
exam-level classifications are also usually derived indicating the
overall presence or absence of the finding of interest anywhere
on the exam. Localization algorithms mitigate the explainability
problem, as their outputs specify lesion locations, such as by
direct annotation of the original CT images. They also leverage
the quantitative nature of algorithms, as detailed localizations
have the potential to produce volumetric outputs, which are
difficult and time-consuming for humans to measure accurately.
Although development of localization algorithms usually require
the denser, pixel-level labels, which are highly time-consuming
and costly to obtain, they have the potential for providing
information that is useful for clinical management decisions as
well as outcome prediction.

Chang et al. (27) reported an approach to the task of
localizing acute intracranial hemorrhage, using a hybrid 3D/2D
convolutional neural network for exam-level classification and
hemorrhage segmentation derived from Mask R-CNN (135).
They collected a large training set annotated with bounding-
box labels around areas of hemorrhage that were verified by a
board-certified radiologist. The model demonstrated excellent
classification performance, achieving an AUC of 0.981 on the
test set. To incorporate localization information, semi-automated
pixel labels were produced for hematoma regions using level
set segmentation (136). The Dice coefficients for manual and
model segmentations for intraparenchymal, epidural/subdural,
and subarachnoid hematomas were strong, with decreasing Dice
indices in that order. Not surprisingly, the Dice coefficient
for subarachnoid hemorrhage was the smallest, as this type
of hemorrhage is the most difficult to segment accurately
since the bleeds tend to be amorphous with poorly-defined
boundaries. Hemorrhage volumes based on manual vs. model
segmentations were also computed, with very strong Pearson
correlation coefficients exceeding 0.95 for all three hemorrhage
subtype categories. Taking a similar approach to the localization
problem, Cho et al. (113) collected a pixel labeled dataset and
proposed a cascaded deep learning for hemorrhage subtype
identification and segmentation. The model also achieved strong
performances, with a classification accuracy of 0.979 and
segmentation precision of 0.802. These works were promising
as they demonstrated excellent performance in classification and
localization of hemorrhage, although segmentation examples
for more subtle or complex hemorrhages were not available at
the time of publication. In addition, the object detection and
region processing requirements associated with Mask R-CNN
are challenges, since hemorrhage is not discrete but is fluid
and takes on highly variable morphologies that are not as well-
suited to bounding-box labels. In addition, when pixel labels are
obtained with the assistance of a level set algorithm rather than
through manual labeling, the segmentations could be subject
to the biases of the level-set algorithm assumptions, carrying
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with it the possibility of reduced label quality particularly for
hemorrhage that is subtle, diffuse, and/or amorphous.

Lee et al. (28) used a different approach to the localization task.
Employing only image-level labels for training, the algorithm
predicted locations of abnormal findings using image-level
“heatmaps.” The authors collected a training set as well as
prospective and retrospective test sets. Each of the images
was labeled according to the hemorrhagic subtype present,
including intraparenchymal, intraventricular, subdural, epidural,
and subarachnoid hematomas. Using only image level labels, the
authors developed an understandable deep learning algorithm
that detects the presence of acute intracranial hemorrhage and
identifies it as one of five possible hemorrhage subtypes. The
algorithm achieved excellent performance with an AUC of 0.99
on the retrospective set and 0.96 on the prospective set. In
order to visualize the locations of predicted lesions, the system
generated probability heatmaps that used color to highlight high-
probability pixels for hemorrhage, along with the suspected
hemorrhage subtype (Figure 9). The input-output pairing in
this study is relatively uncommon. As seen earlier, the most
common strategies produce predictions with the same degree
of granularity as provided by the training labels. This system,
in contrast, predicts the general location of hemorrhage on
each image, despite training data consisting of only image-level
labels. This localization allows clinicians to directly inspect and
verify the predictions, avoiding the “black box” problem, and
enabling clinicians to independently evaluate and potentially
understand the rationale behind the algorithm’s predictions,
including possible reasons for error.

Kuo et al. (29) used a different approach, training a deep
learning model on CT exams with hemorrhage labeled at
the pixel level. The authors developed a patch-based fully
convolutional neural network, which was optimized to perform
joint classification and segmentation of intracranial hemorrhage.
The algorithm had an identical input-output pairing (i.e.,
input training data and output prediction data with identical
granularity of the labels). Training data consisted of 4,396 pixel-
labeled CT exams. Rather than outputting heatmaps with diffuse
boundaries, as seen with the Lee et al. study, this algorithm’s
segmentations provide high-resolution localization information
(Figure 10, left panel). The classification performance was
benchmarked against four radiologists on an independent
evaluation set, in which the network outperformed two of the
four radiologists, achieving an AUC of 0.991 for the classification
task and a Dice coefficient of 0.75 for the segmentation task. An
exploratory multiclass study was also conducted, in which the
model identified and segmented different hemorrhagic subtypes.
Segmentation visualizations from the multiclass study were
also shown (Figure 10, right panel). This study was important
because it included a broad selection of visualization examples,
demonstrating detailed intracranial hemorrhage segmentations
of intracranial hemorrhage and its subtypes. However, this
approach requires a dataset annotated at the pixel level, which is
highly time-consuming, expensive to obtain because it requires
highly-trained human experts, and difficult to scale. Despite
this, the study demonstrated the potential for deep learning
algorithms to achieve expert-level classification performance

and excellent segmentation, provided densely annotated data
are available.

More recently, there has been interest in the use of algorithms
to quantify intracranial hemorrhage volumes. Although lesion
volumes can hold important prognostic significance and have
been established to correlate with mortality and functional
outcome (137, 138), they are difficult to obtain accurately.
Hematoma volumes are currently estimated using the ABC/2
method; however, this form of measurement assumes an
elliptical hematoma and is not suitable for most types of acute
intracranial hemorrhage in TBI (139). As segmentation models
began to show stronger performance, interest in volumetric
analysis of intracranial hemorrhage increased. Some studies
focused only on computing total intracranial hemorrhage (116,
118) while others computed separate volumetric outputs for
different hemorrhage subtypes (117, 119, 120). While the
multiclass volumetric studies demonstrated promising results,
many grouped multiple pathoanatomic lesion subtypes into the
same category, although different subtypes often require very
different clinical management steps. Other studies either did
not report or combined results for lesion subtypes that are
difficult to segment or detect, such as subarachnoid or petechial
hemorrhages. Finally, many studies used small tests due to
the difficulty of obtaining ground truth manual segmentations,
which raises the possibility of poor generalizability. While
initial results are promising, more work is needed to develop
algorithms that can perform volumetric analysis in an accurate,
reproducible, and comprehensive way.

SKULL FRACTURES

CT is the preferred imaging modality for the diagnosis of acute
skull and facial fractures. Since non-displaced skull fractures
without intracranial hemorrhage heal without intervention,
automated skull fracture detection has received less attention
than intracranial hemorrhage detection and is a relatively less-
explored area. Automated skull fracture detection is challenging
since the typical non-displaced skull fracture is a tiny feature
(often < 1mm in size) on any single CT image, and can only
be differentiated from normal venous channels and sutures (140,
141) by its appearance over multiple contiguous images. Most
prior attempts at skull fracture detection have used traditional
morphological processing techniques. Shao and Zhao (142) used
region-growing and boundary-tracing to define the skull, and
optimal thresholding techniques to detect the fractures. Zaki
et al. (143) used fuzzy c-means (FCM) clustering and line tracing
to localize the fractures. Yamada et al. (144) used a black-hat
transformation (technique to highlight dark objects of interest in
a bright background) to identify the fractures. However, none of
these approaches have made a transition into clinical use.

In more recent years, researchers have applied deep learning
strategies to approach skull fracture detection. Chilamkurthy
et al. (26) used an algorithm trained on image-level labels to
perform exam-level detection of calvarial fractures, achieving an
AUC of 0.96 on the CQ500 test set. Heimer et al. (145) trained a
collection of deep learning models to identify skull fractures on
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FIGURE 9 | An example of a deep learning algorithm to localize intracranial hemorrhage and predict its subtype (28). Figure depicts the algorithmic output for a single

head CT exam. (A) Demonstrates the probability determined by the algorithm for presence of each subtype of intracranial hemorrhage on each image. A 40%

probability was designated as the minimum probability threshold to indicate the presence of a hemorrhage subtype on an image. The legend to the right shows the

intracranial hemorrhage subtype that corresponds to each color. The boxes around the slice numbers indicate the example slices shown in the row of images below

the graph, with the colors of the boxes indicating hemorrhage subtype(s) present on each image. Colored arrows on the images indicate the general prediction

location and hemorrhage subtype. In (B), a probabilistic heatmap is superimposed on the brain to indicate a more specific region of prediction. (C) Displays prediction

bases, which are the most relevant training images for specific hemorrhage subtypes. These can be examined by human practitioners to gain insight into the main

drivers, or “rationale,” behind the algorithm’s predictions, thereby increasing explainability.

postmortem computed tomography (PMCT) exams, achieving
an average AUC of 0.895 on a test set of 150 cases, half of
which contained skull fracture. Ning et al. (146), developed an
attention-based multi-scale architecture (AMT-ResNet) for skull
fracture detection, achieving 0.903 accuracy and 0.922 recall on
a test set of 1,236 images with and 1,300 without skull fracture.
Kuang et al. (147) proposed another neural network architecture
(Skull R-CNN) based on modification of Faster R-CNN (148)
to improve detection of smaller objects, achieving a test AP of
0.60 on a small test set of 10 cases. However, studies of deep

learning models for skull fracture detection remain preliminary,
with relatively small datasets and no studies to date that have
demonstrated performance level or capabilities that would be
consistent with practical utility in a clinical setting.

INTRACRANIAL MASS EFFECT

Intracranial mass effect occurs when space-occupying lesions
(hematomas, tumors, enlarged ventricles, vasogenic, or cytotoxic
edema) result in significant displacement of a portion of the
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FIGURE 10 | Examples of intracranial hemorrhage detection, classification, and segmentation by a convolutional neural network (CNN) (29). (Left) Binary

segmentations, in which the model indicates the presence or absence of intracranial hemorrhage only. (A,D,G,J). The first column shows the original head CT images.

(B,E,H,K) The middle column shows the same images with orange shading of pixel-level probabilities >0.5 for intracranial hemorrhage as determined by the CNN.

(C,F,I,L) The third column shows the original images with a blue outline drawn by an expert neuroradiologist around all areas of intracranial hemorrhage. (Right)

Multiclass segmentations, in which the model not only detects intracranial hemorrhage but additionally indicates the hemorrhage subtype. (A,D,G,J,M,P) The first

column shows original head CT images. (B,E,H,K,N,Q) The second column shows the algorithm’s predictions. Each subtype is indicated by a different color, where

subdural hematoma is green, brain contusion is purple, and subarachnoid hemorrhage is red. (C,F,I,L,O,R) The third column shows the “ground truth” labels drawn

by expert neuroradiologists.

brain, or when brain swelling due to diffuse insults such
as encephalitis or hypoxic-ischemic injury results in elevated
intracranial pressure. Severe intracranial mass effect is an
emergency and may require medication, extraventricular drain
placement, or craniectomy to avoid loss of brain tissue and/or
reduced perfusion of the brain. Intracranial mass effect in the
setting of acute closed head injury usually takes the form
of midline shift and/or downward cerebral herniation due to
subdural or epidural hematoma, or large brain contusions that

often develop surrounding vasogenic edema in the subacute

stage. Despite the clinical importance, however, works studying
the automated detection of intracranial mass effects are limited.

The first algorithm in the previously described double-
algorithm framework of Prevedello et al. (23) detected
acute intracranial hemorrhage, intracranial mass effect, and
hydrocephalus, achieving an AUC of 0.91. However, the three
abnormalities were ordered in a hierarchical structure (acute
hemorrhage > mass effect > hydrocephalus), such that each
CT exam was labeled with only the highest-ranked category
during training, and the reported accuracy was for all three
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abnormalities collectively. Therefore, the model accuracy for
intracranial mass effect alone was unknown. In addition, the
representation of intracranial mass effect in the datasets was low:
only 13 of the 246 training/validation cases and 5 of the 130
test cases were “positive” for intracranial mass effect. A practical
problem in developing algorithms in this area is that intracranial
mass effect is a relatively uncommon CT finding compared to
intracranial hemorrhage, making it more difficult to collect the
quantity of data needed to achieve strong performance.

As described earlier, Chilamkurthy et al. (26) developed a deep
learning algorithm to simultaneously detect intracranial mass
effects including midline shift, demonstrating an AUC of 0.92 on
the CQ500 test set. The model was trained with 699 CT exams
(320 exams positive for mass effect), for which each image was
labeled by a radiologist for the presence or absence of intracranial
mass effect. Finally, Monteiro et al. (119) developed a deep
learning algorithm to segment vasogenic edema surrounding
hemorrhagic contusions.

STROKE

Ischemic stroke, which makes up 85% of all stroke incidents,
results when blood flow is hindered due to arterial blockage
and can cause permanent brain tissue damage (149). TBI has
been previously identified as a risk factor for ischemic stroke
(150–152); head injuries may lead to cerebrovascular damage
through vascular shearing mechanisms, as well as compression
of the anterior cerebral arteries due to subfalcine herniation or
posterior cerebral arteries due to downward cerebral herniation.
Acute stroke incidence in acute TBI patients is low, affecting
∼2.5% of moderate and severe TBI patients (45). As with
acute intracranial hemorrhage and intracranial mass effect in
acute TBI, rapid detection and treatment of acute stroke is
needed to achieve favorable outcomes (153, 154). Although
a comprehensive discussion of machine learning techniques
for detection of acute stroke is beyond the scope of this
targeted review, a brief discussion of algorithmic approaches for
automated stroke detection follows.

There is a considerable body of work focusing on the
algorithmic detection and segmentation of acute ischemic stroke
(92, 103, 155–161), although not specifically within the context of
TBI. As with computational approaches to image recognition in
acute TBI, older studies used rule-based and traditional machine
learning techniques (162, 163), and descriptions of deep learning
approaches to this problem have appeared only in the past several
years. Unlike acute TBI, acute stroke is commonly diagnosed
using a number of different imaging modalities and protocols,
including non-contrast head CT, CT perfusion of the brain,
CT angiography of the brain and neck, and MRI. Wang et al.
(164), one of the earliest studies using deep learning in this
area, reported a deep symmetry CNN that achieved promising
stroke segmentation results on brain MRI, though using a very
small sample size of eight patients. Subsequently, Zhang et al.
(103) reported a CNN that performed acute stroke segmentation
on diffusion-weighted imaging (DWI) with a Dice coefficient of
0.79, using training and test sets of 90 subjects each. Recently,

Liu et al. (92) reported and publicly released a deep learning
model that segmented acute ischemic stroke lesions on diffusion-
weighted imaging (DWI) with a Dice coefficient of 0.76, similar
to interrater agreement among human experts. The model was
tested on a dataset of 2,348 DWI images, apparently the largest
test set reported to date for this application. The model was
also evaluated on an external dataset for generalization, and
generally outperformed its peer models. Aside from applications
in diagnosis of acute stroke on imaging, deep learning algorithms
have also been proposed to predict stroke expansion across
time (165–167) and identify ischemic stroke subtype (168,
169). As in acute TBI, these could eventually be useful for
improved prognostic assessments and more personalized clinical
management recommendations.

CHALLENGES AND FUTURE DIRECTIONS

Despite major recent advances in computer algorithms for
analysis of images in acute TBI, there remain significant
challenges and opportunities for expanded use of these
algorithms in clinical settings. Firstly, while algorithms for
intracranial hemorrhage detection have been developed
with accuracy levels acceptable for triage, more widespread
clinical use of these algorithms is unlikely until algorithms
for the reliable detection of other important abnormalities
such as intracranial mass effect, acute and subacute infarct
(including both large-territory and small-vessel infarcts and
hypoxic/ischemic injury), bony fractures, and edema have
been developed. While there have been algorithms developed
for the above abnormalities, they remain limited and less
thoroughly explored. In addition, while a limited number of
localization algorithms for acute intracranial hemorrhage have
been demonstrated, the need for localization and explainability
applies to other pathologies such as intracranial mass effect,
acute infarct, and fractures. Algorithms need to reliably
identify all intracranial hemorrhage and skull fractures,
including bilateral or subtle abnormalities, as these are
important for surgical management decisions in TBI, and
the failure to do so can lead to devastating consequences
(170, 171). High-resolution pixel-level localization also
raises the possibility of objective quantitative measurements
of abnormal features, which could be used to improve
clinical practice guidelines in the pursuit of precision and
evidence-based medicine.

Generalization of strong model performance, to institutions
other than those that provided training data for the model,
is also a challenge. When algorithms trained on data
from one institution are applied to data from another
institution, the performance degrades to varying degrees.
This is attributable to differences in hardware and other
technical parameters that greatly affect the appearance of
the images. For an algorithm to be widely deployed, it must
remain robust to variations in image appearance across
institutions, as well as with ongoing technical innovations in
CT scanner hardware and image post-processing techniques
over time.
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Aside from challenges with algorithm development, another
impediment to progress in the field is the lack of dataset
standardization. Research teams often collect their own
datasets, which can vary by important factors such as dataset
size and degree to which it accurately reflects the patient
population for intended use. This lack of standardization
makes it challenging to compare different models head-to-
head, and can also make it difficult to measure progress
in the field through rigorous benchmarking. Although
CQ500 (26) was a publicly released dataset, several factors
hinder more widespread use. Because CQ500 was released
without the accompanying training set, research teams
would still be required to collect their own training data,
which would differ from CQ500 due to variations in
technical hardware, scanning protocols, and image post
processing techniques. Large, high-quality datasets are usually
not released, due to the sensitivity of medical data and
institutional restrictions.

In the clinical setting, the development of accurate algorithms
for medical image recognition also opens the potential for
improved prognostic models, improved metrics for monitoring
disease progression, and more specific patient selection criteria
for clinical research studies. Outcome studies that include
imaging findings (in addition to demographic and clinical
variables) as predictors often take into account the presence or
absence of certain imaging abnormalities, as it is challenging
to incorporate granular imaging information in a scalable
and reproducible way (172, 173). The qualitative presence
or absence of abnormalities can be extracted from clinical
radiology reports, or from an additional dedicated radiological
interpretation performed for research purposes. However, more
sophisticated TBI classification schemes are a critical need
in order to develop effective therapies for acute TBI (34).
In TBI and other disorders, patient outcomes often vary
widely based on more granular information such as number,
size, subtype, and location of abnormalities, that is available
but not generally accessible from imaging studies on a
large scale. Models that can quantify intracranial hemorrhage
volumes and predict intracranial hemorrhage subtypes have
been and are continuing to be studied for this purpose (118–
120). In addition, the quantitative analysis of other features,
including brain parenchyma CT densities (174, 175), regional
brain volumes and atrophy (176), DTI (53, 54), and deep
learning-based anatomical segmentation on MRI (177, 178)
will also have a future role in improved clinical management
and prognostication.

RELEVANCE TO PRECISION AND
EVIDENCE-BASED MEDICINE

Precision medicine aims to “transform healthcare through
use of advanced computing tools to aggregate, integrate
and analyze vast amounts of data. . . to better understand
diseases and develop more precise diagnostics, therapeutics
and prevention.” (179). The capability to extract clinically

relevant features from medical images has the potential to
enable integration of imaging into precision medicine by
transforming medical imaging into an increasingly quantitative
and objective science.

For example, the FDA does not consider radiological
interpretation, even by highly-trained human experts, to meet
its definition of a “biomarker” as a “defined characteristic that
is measured as an indicator of normal biological processes,
pathogenic processes, or biological responses to an exposure or
intervention...” (128). Biomarkers must be quantitative, objective
and reproducible measures (180–183). Biomarkers such as blood
test results and genomic data are reproducible and quantitative
in nature. In contrast, human interpretation of medical images,
even when performed by trained experts, remains subjective,
making it difficult to aggregate their content into precision
medicine. Indeed, the FDA regards human interpretation of
imaging as a “clinical outcome assessment” (COA) (128), defined
as a test with results that may vary considerably due to differences
in subjective interpretation by human observers, as a result of
differences in their judgment and experience. Thus, the use of
automated methods to extract quantitative information from
medical images has the potential to accelerate the development
of FDA-qualified imaging biomarker tests (184, 185), which
are currently nearly non-existent in TBI. This in turn could
for the first time enable aggregation of imaging biomarkers
with clinical, genomic and other patient data across centers
to answer important questions regarding prognosis and best
treatment practices in TBI and other neurological diseases
(186).

Along similar lines, despite the increasing use of clinical
practice guidelines to encourage uniformity in clinical
management, clinical practice guidelines that include
information from radiological images continue to rely
almost exclusively on human interpretation. Evidence-based
medicine involves the “conscientious, explicit, and judicious
use of current best evidence in making decisions about the
care of individual patients” and relies on the integration of
“individual clinical expertise with the best available external
clinical evidence from systematic research” (187, 188). As
artificial intelligence algorithms for TBI image analysis mature,
there is potential to improve practice guidelines using more
reproducible data extracted from images. For example, a
“midline shift” of 5mm or more correlates with worse patient
outcome (189, 190) and is one criterion used in the decision
to perform decompressive craniectomy (191). Automated
methods have the potential to promote the development of
more advanced, granular metrics of intracranial mass effect
that lead to practice guidelines that are better tailored to
individual patients.
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