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To optimize prevention and control of the Coronavirus Disease 2019 (COVID-19), we need to

understand why just a small number of infected individuals develop severe forms of COVID-

19. Whereas comorbidities such as obesity, type 2 diabetes (T2D), cardiovascular diseases

(CVDs), old age of patients, and their ethnicity are recognized as important contributors

toward worse disease outcome [1,2], it is still a matter of discussion what the common critical

factors are that directly interact with the Severe Acute Respiratory Syndrome Coronavirus 2

(SARS-CoV-2).

At a first glance, the correlations seem odd, since these comorbidities are not simply con-

nected to a single specific disorder and are not even COVID-19 specific—most of them were

reported for other viral infections as well, including the Middle East Respiratory Syndrome

(MERS) and H1N1 (swine flu). However, recently, we have argued that all of these comorbidi-

ties have something in common and are connected via viral–bacterial interactions, initiated by

translocation of bacterial products, such as lipopolysaccharide (LPS), from the gut into circula-

tion [1]. Indeed, increased plasma levels of LPS and LPS-binding protein (LBP) are found in

obesity and diabetes, and gut dysbiosis is involved in the pathogenesis of insulin resistance.

Low-level inflammation induced by systemic prevalence of bacterial products is involved in

vascular abnormalities, and LPS levels in circulation are significantly modified in CVD [3].

Further, the LPS levels in blood are almost doubled in older individuals compared to younger

individuals [4]. Finally, the age-adjusted levels of LPS significantly vary in different ethnic

groups, being the highest in South Asians. These levels are statistically lower in women than in

men in all ethnic groups [5].

Whereas gut microbiota may determine the predisposition of healthy individuals to

COVID-19 [6], direct virus–LPS interactions were not considered as a main pathophysiologi-

cal driver inducing these effects. However, viruses can bind to bacteria or directly to free LPS,

thereby enhancing their attachment to ACE2 receptors on the surface of host cells. Such inter-

actions can dramatically increase the viral infectivity and promote the development of hyper-

cytokinemia [1,7]. A formal demonstration that SARS-CoV-2 can directly interact with LPS

through its S protein was given in [8]. Whereas neither S protein nor LPS alone causes any

activation of the pro-inflammatory nuclear factor kappa B (NF-κB), the combination of S pro-

tein with even low levels of LPS dose dependently increases NF-kB activation and the subse-

quent cytokine response in monocytic cells in vitro [8].

Several clinical reports demonstrate significantly increased levels of endotoxins in the

plasma of severely affected COVID-19 patients. LPS levels were investigated in a prospective
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study on 19 patients with severe pulmonary forms of COVID-19; almost 90% of them had

increased LPS levels—40% demonstrated high and 30% demonstrated very high endotoxin lev-

els [9]. Application of mendelian randomization using 6,492 hospitalized cases and over 1 mil-

lion controls demonstrated that serum LBP levels strongly correlate with the hospitalization

rate of COVID-19 patients [10]. The plasma levels of LBP were also investigated in 39 hospital-

ized patients with severe COVID-19 with significant cardiac pathology; these levels were ini-

tially high and remained high during hospitalization [11].

A similar synergistic enhancement of hypercytokinemia was observed in a murine model of

infection with influenza virus pH1N1 [12] as well as with the Porcine Respiratory Coronavirus

(PRCV) model [13,14]. In both models, combinations of the virus with LPS caused the induc-

tion of severe SARS conditions, disproportional (up to 60 times elevated) hypercytokinemia in

lungs, and massive death of infected animals, although a single viral or LPS infection at the

same doses did not demonstrate such outcomes.

SARS-CoV-2 is not the first viral infection for which severity is connected to the LPS levels

in circulation in humans. LPS in circulation was causally connected to systemic immune acti-

vation during HIV infections [15]. A similar correlation was found for the dengue virus that

annually causes 50 to 100 million infections in tropical and subtropical countries: LPS, LBP,

and soluble CD14 levels in plasma of infected individuals are significantly higher than in

healthy controls, and the absolute LPS levels in plasma strongly correlate with disease severity

[16].

The baseline levels of LPS detected in individuals without viral infection but with comor-

bidities typical for severe COVID-19 are significantly lower than the LPS values detected in cir-

culation of severe COVID-19 patients. This suggests that SARS-CoV-2 infection can induce an

enhanced endotoxemia in compromised individuals. On the other hand, a “leaky gut” condi-

tion can be induced by SARS-CoV-2 infection in seemingly non-compromised individuals as

well. Thus, we have to differentiate between the “preexisting” and “induced” endotoxemia in

COVID-19 patients. Whereas preexisting endotoxemia in groups at risk for COVID-19 has

been intensely studied, the overall influence and degree of induced endotoxemia, especially in

connection to SARS-CoV-2, has not yet been properly investigated. The main question here to

be addressed is whether SARS-CoV-2 can effectively increase the permeability of the intestinal

barrier for bacterial products.

SARS-CoV-2 binds to the ACE2 receptor and induces endocytosis, leading to internaliza-

tion of the virus/ACE2 complex and thereby effectively triggering a down-regulation of cell

surface ACE2 content. ACE2 is widely expressed in many different types of cells, among them

cells in lungs, adipose tissue, and small intestinal enterocytes. These intestinal enterocytes can

thus extensively interact with SARS-CoV-2, demonstrating intestinal involvement. Relevant to

this discussion, SARS-CoV-2 RNA is found in stool samples of more than half of the hospital-

ized patients [17], and 8% to 13% of COVID-19 patients report diarrhea [18]. At the same

time, it is known that ACE2 has at least 2 other functions: negative regulation of the renin–

angiotensin system and facilitation of amino acid transport. Amino acids are strongly involved

in the regulation of the intestinal epithelial barrier function [19]; hence, a reduction of ACE2

content induced by interactions of these receptors with SARS-CoV-2 will significantly impair

the integrity of the intestinal barrier.

The intense discussion of hypercytokinemia in severe COVID-19 was so far mainly focused

on the expression of cytokines and almost completely ignored the corresponding feedback

mechanisms leading to their suppression. One of these feedback loops connected to LPS is

endotoxin tolerance (i.e., reduced cellular responses to repeated applications of endotoxins),

which, under quasi-physiological conditions, suppresses the induced endotoxemia. A closer

examination of cytokine expression in COVID-19 versus sepsis patients reveals a nonobvious
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behavior [20]. Whereas a relatively low spontaneous production of some cytokines is observed

in monocytes of COVID-19 patients with hyper-inflammation versus controls and in patients

with sepsis, additional LPS stimulation caused a strong further enhancement of expression of

all cytokines (especially of interleukin [IL]-1β) in COVID-19, but not in septic patients. This

observation raises the question whether the “endotoxin tolerance” may be weakened in

severely ill COVID-19 patients, thereby explaining the massive hypercytokinemia that does

not occur to the same extent in septic patients.

Endotoxin tolerance is an adaptive cellular response connected to suppression of the Toll-

like receptor 4 (TLR4). TLR4 is widely expressed in high-risk groups due to preexisting endo-

toxemia. Upon infection with SARS-CoV-2, these individuals frequently demonstrate hyper-

cytokinemia. This suggests that the development of endotoxin tolerance is impaired by

SARS-CoV-2. Indeed, it was reported that ACE2 exhibits a protective effect against LPS-

induced acute lung injury in mice [21]; hence, viral suppression of ACE2 can lead to a stronger

inflammatory responses in lungs.

Endotoxin tolerance is mechanistically connected to an up-regulation of the protein SRC

homology 2 domain-containing inositol-5-phosphatase 1 (SHIP1), whose deficiency makes

individuals much more susceptible to LPS [22]. LPS up-regulates SHIP1, thereby inducing a

compensatory response by suppression of TLR4 [22]. Important in this context, miR-155,

whose expression was recently associated with the development of COVID-19 symptoms [23],

is an established potent repressor of SHIP1 [24]. This microRNA is up-regulated during

inflammation, is crucial for the development of fibrosis in different tissues, and can also serve

as an oncogenic factor. MiR-155 levels are responsive to LPS with a short-term elevation fol-

lowed by a reduction to baseline during the development of endotoxin tolerance [25]. Some

viruses stimulate SHIP1 expression [26]. In contrast, the miR-155-3p and miR-155-5p iso-

forms are found to be up-regulated in SARS-CoV/CoV-2 infected human lung cells, by up to

16-fold and 3-fold, respectively [27]. Overexpression of miR-155-3p is also seen in lung epithe-

lia of COVID-19 patients [28]. Direct effects of SARS-CoV-2 on SHIP1 expression have not

yet been investigated in detail. However, based on the abovementioned experimental results, it

is most likely that SARS-CoV/CoV-2 induces a response that is opposite to that seen with

other viruses and leads to a suppression of SHIP1. Such a response will deteriorate the com-

pensatory effects on endotoxin tolerance and will contribute toward the disproportionate

“cytokine storm” typical for SARS-CoV-2.

COVID-19 in its severe forms is unquestionably a systemic disease. Whereas the main signs

of severity in this disease are associated with the development of systemic hypercytokinemia

and pulmonary complications, we suspect that more severe outcomes of COVID-19 must be

connected with a baseline predisposition toward a compromised state of the intestine (preex-

isting endotoxemia). Upon infection, a dramatic worsening of this state ensues, primarily

through a SARS-CoV-2-induced ACE2 deficiency leading to induced endotoxemia and a dete-

riorated endotoxin tolerance. The unique role that preexisting endotoxemia may play in the

development of severe COVID-19 leads us to postulate that standard measurements of LPS

and LBP in plasma, immediately upon receiving a positive COVID-19 test, could be a valuable

diagnostic help to identify individuals at risk of severe outcomes. This suggested that patho-

physiology can also direct us toward appropriate choices to intervene in this process, particu-

larly toward approaches that aim to bind and clear endotoxins from circulation. These could

be high-density lipoprotein (HDL) infusions and/or application of the agonists of peroxisome

proliferator-activated receptor gamma (thiazolidinediones) that are widely used in antidiabetic

therapy, compounds that can effectively reduce LPS in plasma and dramatically decrease endo-

toxin-induced cytokines [29,30]. Restoration of endotoxin tolerance through application of

known suppressors for miR-155 or stimulators for SHIP1 can be another interesting pathway
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to reduce hypercytokinemia. Future experimental and clinical research will be needed to test

the overall efficacy of these approaches. Furthermore, the pathophysiology proposed here may

also suggest preemptive approaches aimed to improve the preexisting endotoxemia in healthy

individuals and patients from groups at risk for severe outcomes.
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