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Abstract. Involvement of transglutaminase in myofi- 
brillogenesis of chick embryonic myoblasts has been in- 
vestigated in vitro. Both the activity and protein level of 
transglutaminase initially decreased to a minimal level 
at the time of burst of myoblast fusion but gradually in- 
creased thereafter. The localization of transglutaminase 
underwent a dramatic change from the whole cyto- 
plasm in a diffuse pattern to the cross-striated sarco- 
meric A band, being strictly colocalized with the myo- 
sin thick filaments. For a brief period prior to the 
appearance of cross-striation, transglutaminase was lo- 
calized in nonstriated filamental structures that coin- 
cided with the stress fiber-like structures. When 12-0- 
tetradecanoyl phorbol acetate was added to muscle cell 
cultures to induce the sequential disassembly of thin 

and thick filaments, transglutaminase was strictly colo- 
calized with the myosin thick filaments even in the 
myosacs, of which most of the thin filaments were dis- 
rupted. Moreover, monodansylcadaverine, a competi- 
tive inhibitor of transglutaminase, reversibly inhibited 
the myofibril maturation. In addition, myosin heavy 
chain behaved as one of the potential intracellular sub- 
strates for transglutaminase. The cross-linked myosin 
complex constituted approximately 5% of the total Tri- 
ton X-100-insoluble pool of myosin molecules in devel- 
oping muscle cells, and its level was reduced to below 
1% upon treatment with monodansylcadaverine. These 
results suggest that transglutaminase plays a crucial 
role in myofibrillogenesis of developing chick skeletal 
muscle. 

M 
YOBLAST differentiation is characterized by a 
well-defined sequence of events leading to the 
conversion of undifferentiated myoblasts to ter- 

minally differentiated myotubes. The spindle-shaped myo- 
blasts initially undergo a phase of proliferation while 
aligning along the long axes. This is followed by an irre- 
versible withdrawal from the cell cycle and fusion of the cell 
membrane to form a tube-like syncytium called the myotube, 
which then matures to become a functional muscle fiber. 
Concurrently with these cellular changes, muscle-specific 
myofibrillar proteins are synthesized and subsequently as- 
sembled into relatively invariant striated myofibrils (Fisch- 
man, 1970; Knudsen and Horwitz, 1977; Wakelam, 1985; 
Fischman, 1986; Bandman, 1992). Prior to the appearance 
of nascent myofibrils, non-striated bundles of microfila- 
ments which are similar to stress fibers in non-muscle cells 
appear. Sarcomeric configurations of contractile proteins 
are then organized on these pre-existing bundles of stress 
fiber-like structures (SFLSs), 1 and this sarcomeric forma- 
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tion proceeds from the periphery toward the center of the 
myotubes (Peng et al., 1981; Dlugosz et al., 1984; Antin et 
al., 1986; Wang et al., 1988). 

Although the expression of the myofibrillar proteins 
and their assembly into myofibrils have been extensively 
studied, little is known about the mechanism controlling 
the assembly of myofibrillar proteins and the molecular in- 
teractions that organize developing myofibrils. The struc- 
tural considerations and genetic analysis suggest that addi- 
tional components and reactions are required for the thick 
and thin filament assembly in vivo (Epstein and Fischman, 
1991). Furthermore, it has been reported that myosin- 
associated proteins of intracellular members of the N-CAM 
gene family, such as titin, C-protein, 86-kD protein, and 
myomesin, may function in intra- or inter-filamentous adhe- 
sive reactions within the myofibril (Einheber and Fischman, 
1990, 1991; Trinick, 1991). However, the possibility has 
never been suggested that constituents of the myofibril 
might be stabilized by cross-linking with each other during 
the formation of myofibrils, although several myofibrillar 
proteins serve as substrates for cross-linking enzyme like 
transglutaminase (Cohen et al., 1979; Maccioni and Are- 
chaga, 1986; Huang et al., 1992). 

Transglutaminases are calcium-dependent enzymes 
which catalyze the formation of covalent bonds between pro- 
tein-bound glutamine residues and primary amino groups, 
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resulting in protein-protein cross-linking or in amine in- 
corporation into proteins (Folk, 1980; Lorand and Conrad, 
1984). The transglutaminase-dependent cross-linking leads 
to protein polymerization stable and resistant to proteoly- 
sis, thereby increasing the resistance of tissues to chemical, 
enzymatic, and physical degradation. Membrane-bound 
forms of intracellular transglutaminases have been identi- 
fied in keratinocytes and their role in cornified envelope 
formation has been well documented (Rice and Green, 
1977; Thatcher and Rice, 1985; Chakravarty and Rice, 
1989). Secreted forms of transglutaminases are involved in 
the clotting of seminal vesicle secretory proteins of the ro- 
dents (Williams-Ashman, 1984) and in blood clotting (Laki 
and Lorand, 1948; Lorand, 1972). In contrast to the clearly 
defined function of transglutaminase (factor XIII) in 
blood clotting, the role of tissue transglutaminase, a cyto- 
solic enzyme present in a variety of cells, has not been es- 
tablished yet. Their general function, however, appears to 
be connected with maintaining the mechanical integrity of 
tissues (for review see Greenberg et al., 1991). 

An interesting observation has been reported that hista- 
mine or dansylcadaverine, a competitive inhibitor of trans- 
glutaminase, inhibits the myotube formation. In the treated 
cultures, myoblast fusion occurred but failed to elongate 
into normal myotubes resulting in the production of ab- 
normal multinucleated myosacs in vitro. Therefore, it has 
been suggested that transglutaminase plays an important 
role in stabilizing the cytoskeletal network of developing 
myotubes (Bersten et al,, 1983). To clarify further the role 
of tissue transglutaminase in chick myoblast differentia- 
tion, especially in myofibrillogenesis, we examined alter- 
ations in the activity and cellular localization of trans- 
glutaminase as well as its potential substrates. 

Materials and Methods 

Materials 
Eagle's minimum essential medium (MEM), horse serum, and antibiotics 
were obtained from GIBCO BRL (Gaithersburg, MD). [3H]Putrescine 
(34.8 Ci/mmol) was obtained from Dupont-New England Nuclear (Wil- 
mington, DE), QAE-Sepharose from Pharmacia (Piscataway, N J), en- 
hanced chemiluminescence (ECL) reagent from Amersham Corp. (Ar- 
lington Heights, IL), and polyvinylidene difluoride (PVDF) membrane 
from Millipore Corp. (Bedford, MA). All other reagents including various 
kinds of antibodies were purchased from Sigma Chemical Co. (St. Louis, 
MO). The antibody against rabbit skeletal ~-actinin, a mouse monoclonal 
antibody (clone EA-53), reacts specifically with skeletal and cardiac mus- 
cle u-actinins. Monoclonal anti-rabbit skeletal myosin antibody (clone 
MY-32) specific for myosin heavy chain does not stain non-muscle myo- 
sin. Monoclonal anti-chick fitin (clone T-11) antibody reacts with skeletal 
and cardiac muscle titins and stains around the region of the A-I junctions. 

Antibody Production 
Transglutaminase was purified from adult chick liver as previously de- 

scribed by Brookhart et al. (1983). To prepare the antibody against trans- 
glutaminase, 1 mg of the purified enzyme was electrophoresed on 10% 
(wt/vol) polyacrylamide slab gels containing SDS under reducing condi- 
tion (Laemmli, 1970). After briefly staining the gels with Coomassie 
R-250, the bands corresponding to a molecular mass of about 84 kD were 
cut out, minced, and injected three times into albino rabbits with 3-wk in- 
tervals. Upon immunoblot analysis (Burnette, 1981), the resulting anti- 
body was found to specifically interact with the 84-kD band in the extracts 
of cultured chick myoblasts, the purified chick liver transglutaminase, and 
the guinea pig liver transglutaminase (Fig. 1 A). The same antibody, but 
not the preimmune serum, inhibited the activities of the purified chick 

liver transglutaminase in a dose-dependent manner (Fig. 1 B), indicating 
that the anti-transglutaminase antibody prepared in the present study is 
specific to soluble, tissue-type transglutaminase. For the production of 
anti-dansyl antibody, keyhole limpet hemocyanin was covalently labeled 
with dansyl chloride as described (Tijssen and Kurstak, 1979) and injected 
into albino rabbits as above. 

Myoblast Cultures 
Myoblasts from breast muscles of 12-d chick embryos were prepared as 
described previously (Chung and Kang, 1990). The cells were plated at a 
density of 5 × 105 cells/ml in MEM containing 10% (vol/vol) horse serum, 
10% (vol/vol) embryo extracts, and 1% (vol/vol) antibiotic/antimycotic 
solution. The culture medium was changed 24 h after the plating with the 
same medium but containing 2% embryo extract. For measurement of 
myoblast fusion, the cells were fixed with 1% (vol/vol) glutaraldehyde for 
30 min, stained with 10% (vol/vol) Giemsa solution for 30 rain, and ob- 
served under a microscope with a magnification of 250×. Cells were con- 
sidered fused only if there was clear cytoplasmic continuity and at least 
three nuclei were present in each myotube. When necessary, cytosine ara- 
binoside was treated to 72-120-h cultures, 12-o-tetradecanoyl phorbol ac- 
etate (TPA) to 96-h cultures, and monodansylcadaverine (MDC) to 24- 
80-h cultures at final concentrations of 10 ~M, 75 ng/ml and 70-200 I~M, 
respectively. After such treatment, indirect immunofluorescence assays 
were performed at appropriate time points. 

Transglutaminase Assay 
Myoblasts cultured for various periods were washed with buffer A (50 
mM Tris-HC1, pH 7.5, and 150 mM NaCI) containing 1 mM EDTA and 
1 mM DTI'. They were then harvested, sonicated at 4°C for 10 s, and cen- 
trifuged for 5 min at 10,000 g. The resulting supernatants, referred to as 
the cell extracts, were assayed for transglntaminase activity by measuring 
their ability to incorporate [3H]putrescine into N,N'-dimethylcasein (Pia- 
centini et al., 1988). Reaction mixtures contained 50 mM Tris-HCl (pH 
7.5), 20 mM DTT, 10 mM CaClz, 50 mM NaCI, 70 M [3H]putrescine (160 
Ci/mole) and 1 mg/ml N,N'-dimethylcasein. After incubation at 37°C for 
1 h, aliquots of the assay mixtures were spotted onto 3 MM filter papers 
(Watman Laboratory Products, Inc., Clifton, N J). The filter papers were 
washed three times with 10% (wt/vol) cold TCA and dehydrated with 
95% (vol/vol) ethanol. Radioactivity remained on the filter papers was de- 
termined using a liquid scintillation counter. 

Immunochemical Analysis 
Immunoblot analysis was done as described by Burnette (1981) with mi- 
nor modifications. The cell extracts (100 ~g protein) were electrophoresed 
on 8% slab gels containing SDS under reducing condition, and the pro- 
teins in the gels were transferred onto PVDF membranes. The mem- 
branes were incubated with 3% (wt/vol) BSA in TBST (100 mM Tris-HCl, 
pH 8.8, 150 mM NaC1 and 0.1% [vol/vol] Triton X-100). They were then 
reacted with the polyclonal antibody raised against transglutaminase (di- 
luted 1:200 with TBST containing 3% BSA) or with the monoclonal anti- 
body against rabbit skeletal a-actinin or myosin or against chick titin (1: 
500). After washing three times with TBST, the membranes were incu- 
bated with horseradish peroxidase-conjugated goat anti-IgG (1:3,000). 
Immunochemical detection was performed with ECL reagent by follow- 
ing the manufacturer's recommendation. 

To immunoprecipitate the MDC-incorporated proteins, 60-h cultures 
were treated with MDC at 5 p~M and incubated for the next 12 h. The cells 
were then washed three times with buffer A containing 10 mM EGTA and 
10 mM putrescine, solubilized by sonication, and centrifuged for 10 min at 
10,000 g. The resulting supernatants were incubated with preimmune se- 
rum and passed through a protein A-Sepharose column to eliminate non- 
specific binding. The eluates were centrifuged for 10 min at 10,000 g, and 
the supernatants were reacted with the anti-dansyl antibody overnight at 
4°C. The immune-complexes were precipitated with protein A-Sepharose, 
washed three times with buffer A containing 0.5% Triton X-IO0 and 0.6 M 
NaCI, and solubilized with 2% (wt/vol) SDS and 2% (vol/vol) [3-mercap- 
toethanol. The supernatant samples were then subjected to immunoblot 
analysis as described above. 

To determine whether transglutaminase is indeed involved in cross- 
linking of any protein in developing muscle cells, 48-h cultures (15 100- 
ram plates seeded at a concentration of 107 cells/ml for each preparation) 
were incubated for 24 h in the presence and absence of 100 ~M MDC. Af- 
ter incubation, the cells were washed three times with buffer A containing 
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10 mM EGTA and 10 mM putrescine and then with 10 mM sodium phos- 
phate buffer (pH 7.5) containing 1% Triton X-100, 150 mM NaCI, and 0.t 
mM PMSF. The resulting samples were disrupted in a Dounce homoge- 
nizer and centrifuged at 15,000 g for 10 min. The pellet was washed with 
10 mM sodium phosphate buffer (pH 7.2) containing 0.6 M NaC1, 5 mM 
MgC12 and 0.l mM PMSF, solubilized by homogenization in 2% SDS and 
2% 13-mercaptoethanol, and subjected to electrophoresis on 3% slab gels 
containing SDS. The gel pieces containing the high molecular weight pro- 
teins (i.e., the proteins that stacked just beyond the gel wells) were cut out, 
minced and digested with 50 ~g/ml of trypsin for 10 rain at 37°C. The di- 
gested products were subjected to electrophoresis on 8% slab gel contain- 
ing SDS and then to immunoblot analysis using anti-myosin antibody. 

Immunofluorescence Microscopy 
Myoblasts grown on collagen (5 mg/ml)-coated coverslips were rinsed 
twice with PBS, fixed with 3.7% (wt/vol) paraformaldehyde for 10 min, 
and washed with 0.15 M glycine in PBS. For detection of titin, the cells 
were fixed with 95% ethanol. They were then permeabilized with 0.5% 
Triton X-100 in PBS for 5 min and blocked with 3% BSA in PBS. The re- 
suiting cells were incubated with appropriate combinations of the antibod- 
ies that had been diluted as above with PBS containing 1% BSA and 
washed several times with PBS. They were then stained with FITC- and/or 
TRITC-conjugated anti-IgGs (1:200). The samples were mounted with 
glycerol containing 10 mM o-phenylenediamine and observed under a 
fluorescence microscope (Olympus). 

Ligand Blot Analysis 
Myoblasts cultured for 60 h were disrupted by sonication, electropho- 
resed, and transferred onto PVDF membranes as described above. The 
membranes were incubated with 3% BSA in buffer A and then with 10 
ixg/ml of the purified chick liver transglutaminase in buffer A containing 
t0 mM CaC12 and 2 mM DTT. After washing with buffer A containing 10 
mM CaCI2 and 0.5% Triton X-100, the membranes were incubated with 
anti-transglutaminase antibody. Protein substrates interacted with trans- 
glutaminase were then visualized by treatment of ECL reagents. 

Quantification of Cross-linked Myosin 
Myoblasts cultured for 60 h were incubated for 12 h in the presence and 
absence of 70 ixM MDC. After incubation, the cells were suspended in 
PBS containing 0.5% Triton X-100, homogenized in a Dounce homoge- 
nizer, and centrifuged for 10 rain at 15,000 g. The resulting Triton-insolu- 
ble pellet was solubilized by boiling for 5 min in PBS containing 2% SDS 
and 2 % 13-mercaptoethanol. 

To separate the cross-linked, high molecular weight form of myosin 
from monomeric myosin molecules, the boiled sample (0.8 mg) was sub- 
jected to gel filtration on a Sephacryl S-300 column (0.75 × 40 cm) that 
had been equilibrated with PBS containing 2% SDS and 2% 13-mercapto- 
ethanol. Fractions of 0.8 ml were collected at a flow rate of 5 ml/h. Ali- 
quots of the fractions (30 Ixl each) were subjected to electrophoresis on a 
6% polyacrylamide slab gel containing SDS under reducing condition fol- 
lowed by immunoblot analysis using anti-myosin antibody. 

Proteins, that had been eluted in the void volume and therefore should 
have much larger sizes than monomeric myosin and could not be trans- 
ferred onto nitrocellulose membranes, were pooled and referred to as 
fraction-1. The fractions containing immunoreactive, monomeric myosin 
molecules were also pooled and referred to as fraction-2. Each of the frac- 
tions was then spotted on nitrocellulose papers using a dot-blot apparatus 
(Schleicher & Schuell, Inc., Keene, NH). After the sampling, the papers 
were washed sequentially with 1% glutaraldehyde, 1 M glycine, and PBS, 
They were then subjected to immunoreaction with anti-myosin antibody, 
Amounts  of myosin in the fractions were then quantified by scanning the 
sampling dots using a densitometer (model GS300; Hoefer Scientific In- 
struments, San Francisco, CA). 

Results 

Changes in the Transglutaminase Activity 
during Myogenesis 
Transglutaminase in cultured myoblasts has been sug- 
gested to play an important role in the formation of the 

normal elongated myotubes following the cell fusion (Ber- 
sten et al., 1983). In an attempt to clarify the role of trans- 
glutaminase in myofibrillogenesis, we first examined whether 
the enzyme activity changes during the course of the myo- 
genic process. Extracts were prepared from myoblasts that 
had been cultured for various periods and assayed for their 
ability to incorporate [3H]putrescine into N,N'-dimeth- 
ylcasein. As shown in Fig. 2 A, the enzyme activity initially 
declined, particularly at the time of burst of myoblast fu- 
sion, but gradually increased thereafter. We then exam- 
ined whether the changes in the enzyme activity are due to 
alterations in the expression of transglutaminase in differ- 
entiating myoblasts or to other unknown reason(s). Fig. 2 
B (panel c) shows that the protein level of the enzyme also 
decreases at the time of initiation of fusion and then in- 
creases gradually, indicating that the changes in the en- 
zyme activity are due to the fall-and-rise of the expression 
of transglutaminase during the culture periods. As a con- 
trol, the changes in the protein levels of myosin (panel a) 
and a-actinin (panel b) during the myogenic period are 
also shown. 

Similar changes in the activity of transglutaminase were 
detected in the extracts of breast muscle, which was ob- 
tained from 8-20-d chick embryos. The enzyme activity 
initially declined to a minimal level in the extract from 14-d 
embryos and then increased to become maximal in 18-20-d 
embryos (data not shown). Furthermore, the changes in 
the enzyme activity occurred almost in parallel with the al- 
terations in its protein level in the muscle extracts as deter- 
mined by immunoblot analysis using the anti-transgluta- 
minase antibody (data not shown). Since most myoblasts 
in skeletal muscle of 14-d embryos are known to start 
rapid fusion (Hermann et al., 1970), the changes in the 
transglutaminase activities in both the cultured cells and 
the embryonic muscle tissue appear to correlate with the 
myogenic differentiation. 

Cellular Localization of Transglutaminase 
during Myogenesis 
To determine the cellular localization of transglutaminase 
during the assembly of myofibrils, myoblasts were cul- 
tured for various periods and subjected to indirect immu- 
nofluorescence microscopy.The distribution of transglutami- 
nase was dramatically changed from the diffuse pattern to 
the definitively striated sarcomeric banding pattern. In 
24-h cultures, mononucleated myoblasts, which were still 
skeletal myosin-negative, exhibited diffuse fluorescence 
throughout the cytoplasm (Fig. 3 A, inset). Between 48 and 
72 h of the cultures, the enzyme appeared for a brief pe- 
riod as longitudinal arrays in immature multinucleated 
myotubes as well as in moderately elongated mononucle- 
ated myoblasts. The longitudinal arrays of transglutaminase 
at this stage (Fig. 3 C) appeared coincident with the peri- 
odically interrupted arrays of SFLSs stained with the anti- 
a-actinin antibody (Fig. 3 D). As the striated myofibrils in- 
creased within the myotubes, distinct banding pattern of 
transglutaminase as broad doublets emerged along the 
longitudinal filaments, which became increasingly segre- 
gated into bundles between myofibrils (Fig. 3 E). In addi- 
tion, it could also occasionally be seen in a fully elongated 
postmitotic mononucleated myoblast (Fig. 3 B). On the 
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Figure 1. Specificity of the polyclonal antibody raised against the 
purified chick liver transglutaminase. (A) Guinea pig liver trans- 
glutaminase (lane a), the purified chick liver transglutaminase 
(lane b) and the extract from 72-h cultures of chick myoblasts (lane 
c) were subjected to immunoblot analysis using the antiserum pre- 
pared against the purified chick liver transglutaminase. The size 
markers used were rabbit muscle myosin (205 kD), Escherichia coli 
13-galactosidase (116 kD), rabbit muscle phosphorylase b (97 kD), 
and egg albumin (45 kD). (/3) The activity of the purified chick 
liver transglutaminase was assayed in the presence of increasing 
amounts of the antiserum (O) or preimmune serum ((3). 

other hand, fibroblasts showed concentrated fluorescence 
along the intricate and fine filamental structures through- 
out the culture period (Fig. 3 B, inset). 

To determine more precisely the localization of trans- 
glutaminase doublet in sarcomeres, the cultured cells were 
also stained with anti-transglutaminase antibody (Fig. 4, A 
and C) and together with the antibody against et-actinin 
(Fig. 4 B) or myosin (Fig. 4 D). The transglutaminase 
bands were localized within the A bands as doublets 
flanked by the M lines. Furthermore,  they exactly coin- 
cided with the myosin doublets (Fig. 4, C and D). 

We then investigated the temporal  sequence of the ap- 
pearance of transglutaminase cross-striations by double 
immunofluorescence assays using the antibodies against 
transglutaminase and titin, which is known as one of the 

A 
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Figure 2. Changes in the activity and protein level of trans- 
glutaminase during differentiation of chick embryonic muscle 
cells in culture. (A) Extracts were prepared from the cells that 
had been cultured for the indicated period. Aliquots of the ex- 
tracts (100 txg each) were then assayed for their ability to incor- 
porate [3H]putrescine into dimethyl casein (O) as described un- 
der Materials and Methods. Extents of myoblast fusion were also 
determined (O). (B) Aliquots (100 ~g each) of the same extracts 
were electrophoresed on 8% polyacrylamide slab gels containing 
SDS and 13-mercaptoethanol, transferred onto PVDF mem- 
branes, and reacted with the antibody raised against anti-myosin 
(panel a), anti-tx-actinin (panel b), and the purified chick liver 
transglutaminase (panel c). Numerals on the top indicate the cul- 
ture periods. 

Figure 3. Changes in the cellular localization of transglutaminase 
during assembly of myofibrils. Chick myoblasts that had been 
cultured for various periods were subjected to indirect immuno- 
fluorescence microscopy as described under Materials and Meth- 
ods. The cells incubated with the antibodies against transglutamin- 
ase (A-C, E, and F) and a-actinin (D) were visualized by 
treatment of FITC-conjugated goat anti-rabbit IgG and TRITC- 
conjugated donkey anti-mouse IgG. (A) 24-h cultures. Replicat- 
ing myoblasts are shown in the inset. (B) 48-h cultures. Note the 
emerging sarcomeric banding pattern in a fully elongated myo- 
blast. A fibroblast stained with anti-transglutaminase antibody is 
also shown in the inset for comparison. (C and D) Double stained 
60-h cultures. SFLSs are shown in a punctate pattern upon stain- 
ing with anti-tx-actinin antibody. (E) 72-h cultures. (F) 96-h cul- 
tures. Note the difference in the distance between adjacent trans- 
glutaminase bands (long and short arrows). Bars, 10 ~m. 

earliest markers for sarcomere formation (Hill et al., 1986; 
Tokuyasu and Maher, 1987; Cotley et al., 1990). In the early 
mononucleated myoblasts (i.e., 40-h cultures), transgluta- 
minase was more intensely stained than titin by their re- 
spective antibodies (Fig. 5, A and B, arrowheads). In the 
elongated myoblasts and early myotubes, both transgluta- 
minase and titin appeared with about the same intensity as 
interrupted filamental structures that resemble SFLSs lon- 
gitudinally aligned along the cell edges (Fig. 5, A and B, 
arrows). As the cells further developed (i.e., 60-h cul- 
tures), a periodic, perpendicular disruption in the filamen- 
tal structures became evident and the structures that re- 
semble newly emerging primitive sarcomeres were elicited 
(Fig. 5, C and D). The thin bands on tandem arrays, 
stained with the anti-transglutaminase antibody, appeared 
to have almost constant lengths like those seen in fully ma- 
tured myofibrils. The anti-titin antibody showed more dis- 
crete, developing patterns of  sarcomere, but segregation 
of titin into doublets was not apparent yet. As the cells ma- 
tured (i.e., 80-h cultures), however, both transglutaminase 
and titin appeared as typical sarcomeric striations, of which 
transglutaminase is in the A bands and titin is in the A-I  
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Figure 4. Colocalization of transglutaminase and myosin in de- 
veloping myofibrils. 96-h cultures were fixed and incubated with 
the anti-transglutaminase antibody (A and C) plus anti-c~-actinin 
antibody (B) or anti-myosin antibody (D). Transglutaminase was 
then visualized by treatment of FITC-conjugated goat anti-rabbit 
IgG, and c~-actinin and myosin were by TRITC-conjugated don- 
key anti-mouse IgG. B and D are the double stained images of A 
and C, respectively. Arrowheads indicate the Z lines, and arrows 
show the M lines. Note the strict colocalization of transgluta- 
minase and myosin in every sarcomere. Bars, 5 Ixm. 

junctions (Fig. 5, E and F). Thus, a temporal and topographi- 
cal correlation in the sarcomeric cross-striation appears to 
exist in the distribution of fitin and transglutaminase in 
elongated mononucleated myoblasts and multinucleated 
myotubes. 

Association of Transglutaminase with Myosin 
Thick Filaments 

The colocalization of transglutaminase and myosin as re- 
vealed by immunofluorescence assay suggests that the en- 
zyme is in association with myosin thick filaments in sar- 
comeres. Moreover, the distance between the adjacent 
transglutaminase bands appears to vary depending on the 
degree of contraction-relaxation of myofibrils, while the 
width of each transglutaminase doublet remains constant 
(see Fig. 3 F, arrows). To clarify further the association of 
transglutaminase and myosin thick filaments, TPA was 
added to the cultures and its effect on localization of trans- 
glutaminase was examined again by indirect immunofluo- 
rescence microscopy. It has well been documented that 
TPA induces the sequential disassembly of myofibrils, in 
which et-actin thin filaments are disrupted first and myosin 
thick filaments later (Lin et al., 1987, 1989). The 96--120-h 
cultures that had not been exposed to TPA showed a typi- 
cal sarcomeric pattern when stained with the antibodies 
against myosin, ct-actinin, titin, and transglutaminase (see 
above). By 5 h after TPA treatment to 96-h cultures, c~-acti- 
nin began to form the cortical ct-actinin containing bodies 
(CABs) (Fig. 6 B) which consist of c~-actin and sarcomeric 
~-actinin core rimmed with vinculin and talin (Lin et al., 
1987). Thus, it appears that the I - Z - I  complexes have 
been disrupted from sarcomeres, in accord with the earlier 
demonstrations by Lin et al. (1987). Although the actin 

Figure 5. Localization of transglutaminase and titin during as- 
sembly of myofibrils. Myoblasts cultured for 40 h (A and B), 60 h 
(C and D), and 80 h (E and F) were incubated with anti-trans- 
glutaminase (A, C, and E) and anti-titin (B, D, and F) antibodies. 
Transglutaminase was then visualized by treatment of FITC-eon- 
jugated goat anti-rabbit IgG, and titin was by TRITC-conjugated 
donkey anti-mouse IgG. Note the temporal and topographical 
correlation in the distribution of transglutaminase and titin in sar- 
comeric cross-striations. Arrowheads indicate the early mononu- 
cleated myoblasts, in which transglutaminase is stained more in- 
tensely than titin. Arrows show the nonstriated filamental 
structures that resemble SFLSs. Bars, 10 Ixm. 

thin filaments were disrupted, the staining with the anti- 
myosin antibody elicited normal tandem A bands (Fig. 6 
H). As expected, the transglutaminase doublets also re- 
mained intact and longitudinally aligned (Fig. 6, A and G). 
By 12 h, CABs were almost completely disappeared (Fig. 
6 D), indicating that elimination of I - Z - I  complexes, sar- 
comeric et-actin and ~-actinin, has been completed (Lin et 
al., 1987). During the same period, however, most of both 
transglutaminase and myosin in tandem A bands were not 
much perturbed and maintained their linear alignment 
(Fig. 6, I and J). By 20 h, morphology of the cells com- 
pletely changed into closely packed multinucleated myo- 
sacs and CABs as well as sarcomeric a-actinin structures 
disappeared (Fig. 6, E and F). Both myosin and trans- 
glutaminase relocalized into amorphous patches instead of 
tandem A bands (Fig. 6, K and L). Some myosaes exhib- 
ited dispersed thick filaments along the edges of the amor- 
phous patches with transglutaminase and myosin being 
strictly colocalized. These observations clearly suggest that 
transglutaminase is associated with myosin thick filaments. 

Effects o f  Transglutaminase Inhibitors 
on Myofibril Assembly 

To investigate the involvement of transglutaminase in myo- 
fibril assembly, 24-h cultures were treated with MDC, a 
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Figure 6. Effects of TPA on the localization of transglutaminase, 
tx-actinin and myosin in myofibrils. TPA was added to 96-h cul- 
tures at a final concentration of 75 ng/ml. After the treatment, the 
cells were further cultured for the next 5 h (A, B, G, and H), 12 h 
(C, D, L and J) and 20 h (E, F, K, and L). They were then fixed 
and incubated with antibodies against transglutaminase (A, C, E, 
G, I, and K), e~-actinin (B, D, and F) and myosin (H, J, and L). 
Transglutaminase was then visualized by treatment of FITC-con- 
jugated goat anti-rabbit IgG, and a-actinin and myosin were by 
TRITC-conjugated donkey anti-mouse IgG. A, C, E, G, 1, and K 
are the double stained images of B, D, F, H, J, and L, respec- 
tively. Arrows (B) indicate cortical a-actinin containing bodies 
(CABs). Note that both the transglutaminase and myosin bands 
still remain intact while the Z lines are disrupted in the cells 
treated with TPA for 12 h. Bars, 10 txm. 

competitive inhibitor of transglutaminase, at a final con- 
centration of 200 txM and further cultured for the next 
48 h. In accord with the observation by Bersten et al. 
(1983), the MDC-treated cells formed compact multinu- 
cleated myosacs with little cytoplasm. Upon  immunofluo- 
rescence assays using the antibodies against transgluta- 
minase, myosin, e~-actinin, and titin, these myosacs showed 
no discernible staining pattern but some condensed fluo- 
rescence in their cytoplasm (data not shown). 

When 60-h cultures were treated with M D C  at 70 ~M, 
most of the fully elongated myoblasts and immature myo- 
tubes were turned into abnormal multinucleated myosacs 
within 12 h after the treatment. The myosac was devoid of 
myofibrils but displayed SFLSs as shown by staining with 
antibody against c~-actinin (Fig. 7 B). Furthermore,  arrays 
of the SFLSs coincided with the longitudinally oriented 
fine filarnental structures stained with the anti-transgluta- 

Figure 7. Effects of MDC on myofibril assembly. MDC was 
added to 60-h cultures at 70 ~M and further cultured for the next 
12 h. The cells were then fixed and incubated with the antibodies 
against transglutaminase (A, C, and E), c~-actinin (B), myosin 
(D), or titin (F). Transglutaminase was visualized by the treat- 
ment of FITC-conjugated goat anti-rabbit IgG and a-actinin, my- 
osin and titin were by TRITC-conjugated donkey anti-mouse 
IgG. A, C, and E are the double stained images of B, D, and F, re- 
spectively. Note that the nonstriated filamental structures are co- 
incided with SFLSs. Bars, 10 tzm. 

minase antibody (Fig. 7 A). Myosin and titin were colocal- 
ized with transglutaminase in non-striated thin fibrillar struc- 
tures, which largely ran parallel to the long axes of the 
myosacs (Fig. 7, C-F). These effects of M D C  could be re- 
versed upon removal of the agent (Fig. 8, A and B) and the 
normal sarcomeric pattern for each constituent became 
again evident within the following 24 h (Fig. 8, B, inset). 
However,  when M DC was treated to the fully matured 
myotubes (i.e., 80-h cultures), it showed little or no effect 
on the myofibrillar structure (Fig. 8, C and D). These re- 
sults clearly suggest that M D C  interferes with the myo- 
fibril assembly by blocking the activity of transglutaminase 
and consequently arrests myotubes in the premyofibril 
stage. Thus, transglutaminase may play an important role 
in myofibrillogenesis, possibly by cross-linking certain myo- 
fibrillar proteins. 

Identification of Protein Substrates 
for Transglutaminase 

In order to identify potential substrates for transglutamin- 
ase, ligand blot analysis was performed as described under 
Materials and Methods. Proteins in the extracts of  60-h 
cultures were separated by polyacrylamide gel electro- 
phoresis in the presence of SDS and 13-mercaptoethanol, 
transferred onto P V D F  membranes,  and incubated with 
and without the purified transglutaminase and then with 
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Figure 8. Reversible effects of MDC on myotube formation. (A) 
MDC was added to 60-h cultures at 70 IxM and incubated for the 
next 12 h. (B) The cells incubated with MDC were freed of the 
drug and further  cultured for 24 h. (C) 92-h cultures in normal 
medium. (D) 80-h cultures were treated with 70 IxM and further  
incubated for the next 12 h. After  the cultivations, the cells were 
rinsed with PBS, fixed with 1% glutaraldehyde, dried, and 
stained with Giemsa solution. The insets in /3 and D show the 
cells incubated with anti-transglutaminase antibody and visual- 
ized by subsequent  t reatment  with FITC-conjugated goat anti- 
rabbit  IgG. Note the normal sarcomeric pattern. The magnifica- 
tion of the insets is the same as that  of Fig. 7. Bar, 200 Ixm. 

the ant i - t ransglutaminase antibody.  As  shown in Fig. 9 A, 
a major  band of about  200 kD strongly in teracted with the 
ant ibody.  A n  addi t ional  major  band of  84 kD was de tec ted  
in the same membranes ,  but  this turned  out to be an en- 
dogenous  t ransglutaminase in the extract,  since it could 
also be de tec ted  without  the t rea tment  of the purif ied en- 
zyme. A few minor  bands were also de tec ted  but  without  
consistency. However ,  all the prote in  bands except the en- 
dogenous  t ransglutaminase band were abol ished when 
E G T A  and putrescine were s imultaneously t rea ted  with 
the purif ied t ransglutaminase to the membranes .  These re- 
sults clearly suggest that  t ransglutaminase interacts  pre- 
dominant ly  with the 200-kD polypept ide  perhaps  by exert-  
ing its enzymatic  activity. 

It has been  repor ted  that  the rod  por t ion  of myosin mol- 
ecules can serve as a substrate  for microbial  t ransglutami-  
nase (Huang et al., 1992). In addit ion,  the present  demon-  
strations that localization of transglutaminase in sarcomeres 
exactly coincides with that  of myosin suggest that  trans- 
glutaminase may use myosin as its major  substrate.  There-  
fore, it appears  possible that  the 200-kD polypept ide  iden- 
tified by l igand blot  analysis is the myosin heavy chain. To 
test this possibility, extracts from the 60-h cultures that  
had been  exposed  to 5 IxM M D C  for 12 h were subjected 
to immunoprec ip i ta t ion  using the ant i-dansyl  antibody.  
MDC- inco rpo ra t ed  prote ins  were then e lec t rophoresed  in 
the presence of SDS and [3-mercaptoethanol,  t ransferred 
onto P V D F  membranes ,  and incubated with the ant ibod-  
ies against  various myofibri l lar  proteins,  such as myosin,  
a-act inin,  and titin. As  shown in Fig. 9 B, the 200-kD pro-  
tein that  must  have been  dansyla ted  and hence precipi-  
ta ted by the anti-dansyl  an t ibody strongly reac ted  with 

Figure 9. Identification of a substrate for transglutaminase. (A) 
Extracts that had been prepared from 60-h cultures were electro- 
phoresed on 8% slab gels and transferred onto PVDF mem- 
branes. The membranes were incubated with the purified chick 
liver transglutaminase in the presence of 10 mM Ca 2+ and 1 mM 
DTT (lane b) or 10 mM each of EGTA and putrescine (lane c) 
and then with anti-transglutaminase antibody. After the incuba- 
tions, the immunoreactive protein bands in the membranes were 
visualized by the treatment of ECL reagents. As a control, the 
sample was prepared as above but without the treatment of trans- 
glutaminase (lane a). TG indicates the position of the endoge- 
nous transglutaminase migrated and the letter M shows the major 
200-kD band reacted with the antibody. (B) To identify the 200- 
kD polypeptide, 60-h cultures were further incubated for the next 
12 h in the absence (lane a) and presence (lane b) of 5 ixM MDC. 
The cells were disrupted by sonication and subjected to immuno- 
precipitation using the anti-dansyl antibody. The precipitates 
were then electrophoresed on 8% slab gels containing SDS under 
reducing condition, transferred onto PVDF membranes, and re- 
acted with the anti-myosin antibody. (C) To examine the pres- 
ence of the cross-linked products which contain myosin mole- 
cules in the developing muscle cells, both untreated cells (lane a) 
and MDC-treated cells (lane b) were extracted with Triton X-100 
(1%) and high salt (0.6 M NaC1). The remaining material was 
electrophoresed as above and the high molecular weight polymer 
in the gel well was digested with trypsin, followed by immunoblot 
analysis. Note that MDC reduced the amount of myosin-contain- 
ing high molecular weight polymers. The size markers were the 
same as those used in Fig. 1. 

anti-myosin ant ibody but  not  with others. These results in- 
dicate that  the 200-kD prote in  is the myosin heavy chain. 

To de te rmine  whether  myosin molecules can indeed be 
cross-l inked by intracel lular  t ransglutaminase,  48-h cul- 
tures were incubated for 24 h in the presence and absence 
of M D C  and subjected to analysis for the appearance  of 
trypsin-sensitive, high molecular  weight prote in  complexes 
that  could be s tained with anti-myosin antibody.  Since the 
prote in  complexes before  trypsinization s tacked just be- 
yond the wells of a 3 % polyacrylamide  gel containing SDS 
and [3-mercaptoethanol (data  not  shown), their  sizes ap- 
pea red  to exceed 2,000 kD. Fig. 9 C shows that  amounts  of 
the trypsinized, high molecular  weight complexes interact-  
ing with anti-myosin ant ibody are greatly reduced in the 
M D C - t r e a t e d  cells, in which the activity of t ransgluta-  
minase  must have been inhibited. Fur thermore ,  the total  
amount  of the prote ins  obta ined  before  trypsinization 
from the cells t rea ted  with M D C  was also significantly re- 
duced (i.e., by about  40%) as compared  with that  from the 
unt rea ted  cells, despi te  the fact that  the M D C  t rea tment  
showed little or no effect on the total  number  of nuclei in 
the cells when counted  24 h after the t rea tment  (data  not  
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shown). These results indicate that myosin heavy chains 
are used as a substrate for transglutaminase in developing 
muscle cells, although it remains unclear whether the pro- 
tein molecules are cross-linked with each other or with 
other myofibrillar proteins. 

Quantification of Myosin Molecules Cross-linked 
by Transglutaminase 

To quantify the myosin molecules that had been cross- 
linked by transglutaminase during myofibrillogenesis, the 
TritonAnsoluble proteins of the cultured myoblasts were 
solubilized by boiling in SDS and [3-mercaptoethanol and 
separated into two fractions using a Sephacryl S-300 col- 
umn: fraction-1 recovered from the void volume and frac- 
tion-2 containing monomeric myosin molecules. Whether 
or not the cells were treated with MDC, we could not de- 
tect any monomeric form of myosin in the fraction-1 upon 
immunoblot analysis using anti-myosin antibody (Fig. 10 
A, lanes 1 in panels b and c). However, when the same 
fraction-is containing high molecular weight proteins were 
spotted on nitrocellulose papers, they showed immunore- 
action with the antibody in a dose-dependent manner (Fig. 
10 B, lanes 1 in panels b and c). Furthermore, the fraction-1 
obtained from MDC-treated cells contained significantly 
lower amount of the immunoreactive materials than that 
from control cells. As a control, the purified myosin mole- 

Figure 10. Separation of cross-linked myosin from monomeric 
myosin molecules. The Triton-insoluble proteins were obtained 
from 60-h cultures that had been incubated in the absence (pan- 
els b) and presence (panels c) of 70 p~M MDC for the next 12 h. 
The resulting proteins were solubilized by boiling in PBS contain- 
ing 2% SDS and 2% [3-mercaptoethanol and chromatographed 
on a Sephacryl S-300 column equilibrated with the same buffer. 
(A) The fraction-1 recovered in the void volume (numbers 1) and 
the fraction-2 containing monomeric myosin (numbers 2) were 
subjected to electrophoresis on 6% polyacrylamide slab gels con- 
taining SDS and 13-mercaptoethanol followed by immunoblot 
analysis using anti-myosin antibody. (B) Increasing amounts of 
the same fractions (i.e., 5, 20, 80, and 320 Ixl from top to bottom) 
were spotted on nitrocellulose papers using a dot-blot apparatus 
and incubated with the antibody and then with horseradish per- 
oxidase-conjugated anti-IgG. The purified myosin was treated as 
above as a control (panels a). 

cules were also subjected to boiling in SDS, gel filtration, 
and immunoblot and dot-blot analyses as described above. 
As shown in Fig. 10 (lanes I in panel a of A and B), there 
was no self-aggregation of monomeric myosin molecules 
to generate the fraction-l-like proteins through the entire 
experimental procedure. 

The percentage of myosin in the fraction-1 (i.e., cross- 
linked myosin) out of total amount of the Triton-insoluble 
myosin molecules was then estimated by scanning the 
spots in Fig. 10 B using a densitometer. Upon three inde- 
pendent experiments, the cross-linked myosin in non- 
treated cells was calculated to be 4.9% of the total myosin 
molecules while that in MDC-treated cells was reduced to 
0.89%. These results suggest that MDC blocks the myo- 
fibril assembly perhaps by inhibiting the activity of trans- 
glutaminase and hence by interfering with the formation 
of the small cross-linked fraction of myosin in developing 
muscle cells. 

Discussion 

In smooth, cardiac, and skeletal muscle tissues of guinea 
pig, a protein with acyl transfer activity has been identified 
and shown to be antigenically similar to the transglutamin- 
ase isolated from liver (Chung, 1972). Also the presence of 
transglutaminase activity in chick embryonic myoblasts 
has been demonstrated (Bersten et al., 1983). We report 
here that both the activity and protein level of trans- 
glutaminase in cultured chick myoblasts change during the 
course of myogenic differentiation. Noteworthy is the find- 
ing that the enzyme activity falls to a minimal level at the 
time of the onset of myoblast fusion and then increases 
gradually. Although there is no direct evidence, the initial 
decrease in the transglutaminase activity is interesting 
when considered in light of the earlier observations. For 
example, the proliferating myoblasts have a well-devel- 
oped and highly interconnected internal filament net- 
works. When the cells leave the proliferation cycle and 
prepare for fusion, cytoskeletal networks are extensively 
reorganized and destabilized (Fulton et al., 1981; Shimada 
and Isobe, 1986). The decreased transglutaminase activity 
may account for this reorganization and destabilization of 
cytoskeletal network. However, the activity of trans- 
glutaminase does not seem to be directly related with the 
fusion itself, since myoblasts treated with the inhibitors of 
the enzyme are capable of fusion although the morphol- 
ogy of the cells change into abnormal multinucleated myo- 
sacs (Bersten et al., 1983). 

When the replicating myoblasts leave the proliferating 
stage, they are rapidly elongated, coordinately synthesize 
myofibrillar proteins, and start to assemble long, fine myo- 
fibrils, irrespective of fusion (Chi et al., 1975a, b; Hill et al., 
1986; Lin et al., 1994). In this early stage of myofibril as- 
sembly, many myofibriUar proteins, such as ct-actinin (Jo- 
kusch and Jokusch, 1980; Endo and Masaki, 1984) and tro- 
pomyosin (Holtzer et al., 1972), are detected in association 
first with nonstriated and subsequently with striated myo- 
fibrils. Of interest is the finding that transglutaminase is 
also distributed in the nonstriated filamental structures 
prior to its appearance in cross-striations. These thin, lon- 
gitudinally arrayed filamental structures stained with the 
anti-transglutaminase antibody are likely the SFLSs, which 
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are characterized by a punctate pattern upon staining with 
the anti-ct-actinin antibody. It is widely accepted that 
SFLS provides the initiation site for myofibril formation 
(Dlugosz et al., 1984; Antin et al., 1986; Wang et al., 1988; 
Handel et al., 1989; van der Ven et al., 1993). Therefore, it 
is possible that transglutaminase may play an important 
role from the early stage of myofibril formation. 

Shortly after the appearance of nonstriated filamental 
structures, transglutaminase was detected in definitively 
sized sarcomeres in association with the myosin thick fila- 
ments. Several lines of evidence support the conclusion 
that transglutaminase and myosin are associated with each 
other in sarcomeres: (a) the indirect immunofluorescence 
assay revealed that transglutaminase was localized in the 
sarcomeric A band as a doublet flanked by the M line, and 
the double staining revealed that transglutaminase and 
myosin were strictly colocalized in the A band; (b) irre- 
spective of whether myofibrils contract or relax, the width 
of transglutaminase bands appeared constant, while the 
distance between the doublets varied depending on the 
degree of contraction; (c) when the myofibrils were per- 
turbed with TPA, which induces selective and sequential 
disassembly of thin and thick filaments, transglutaminase 
showed a nearly identical behavior to myosin thick fila- 
ments. 

In a previous report, Huang et al. (1992) have demon- 
strated that skeletal myosin can serve as a substrate for 
transglutaminase. The rod portion of myosin filaments 
from rabbit skeletal muscle was quickly cross-linked with 
each other by the action of microbial transglutaminase and 
hence the cross-linked myosin filaments could no longer 
be extracted by high salt concentrations. In addition, hu- 
man plasma transglutaminase (fibrinoligase or factor XIIIa) 
has been shown to be capable of cross-linking rabbit skele- 
tal myosin filaments to form high molecular weight cova- 
lent polymers of myosin (Cohen et al., 1979). Using ligand 
blot analysis, we also found that the purified chick liver 
transglutaminase interacts most specifically with the 200- 
kD myosin heavy chain but not in the presence of E G T A  
or putrescine. Furthermore, the 200-kD protein molecules 
in the developing myofibrils were found to be exclusively 
labeled with MDC, which is widely used as a fluorescent 
tracer for the glutamyl substrates of transglutaminase 
(Selkoe et al., 1982; Tokunaga et al., 1993). Therefore, we 
suggest that myosin heavy chain is one of the potential in 
vivo substrates of chick myoblast transglutaminase. 

When myofibrils are isolated from muscle, most of the 
proteins can be solubilized by SDS under reducing condi- 
tions (Etlinger et al., 1976). However, there has been little 
attention to how much of the myosin in myofibrils is cross- 
linked by transglutaminase and hence can not be solubi- 
lized by SDS. In the present studies, we demonstrate that 
the cross-linked myosin constitutes approximately 5% of 
the total Triton X-100-insoluble myosin molecules. Of 
particular interest is the finding that treatment of MDC to 
cultured myoblasts prevents the formation of the cross- 
linked myosin. Since MDC inhibits the assembly of myo- 
fibrils in developing muscle cells but not interferes with 
the structure of mature myofibrils (i.e., 60- versus 80-h cul- 
tures; see Fig. 8, A and D), this small cross-linked fraction 
of myosin may be critical in the process of myofibril as- 
sembly, such as in maintaining the stability of the A band. 

In this regard, an important, unanswered question is 
whether myosin molecules are cross-linked with each 
other or with other myofibrillar proteins. If in case the re- 
action site of transglutaminase is limited only to myosin 
molecules, it seems hard to expect that a low level of ran- 
dom cross-linking of myosin rods plays a critical role in 
myofibril assembly. Therefore, it is tempting to speculate 
that the reaction site may be in specific area of the A band, 
such as the zone of interconnection in myosin thick fila- 
ments covering the cross-bridge bearing region (Squire 
and Harford, 1982; Magid et al., 1984; Suzuki and Pollack, 
1986). There have been a number of implications that the 
inner two thirds of the zone of interconnection coincides 
with a set of transverse strips equally spaced at 43 nm, har- 
boring the A band-associated proteins, such as C-proteins, 
H-proteins, and X-proteins (Squire and Harford, 1982; 
Dennis et al., 1984; Bahler et al., 1985; Suzuki and Pollack, 
1986). In addition, it has been reported that titin has the 
substructure with a 43 nm periodicity in the A band (Ftirst 
et al., 1989) and interacts with the A band-associated pro- 
teins as well as the myosin filaments in vitro (Ftirst et al., 
1992; Koretz et al., 1993; Soteriou et al., 1993). Thus, it 
seems possible that transglutaminase may be involved in 
cross-linking of myosin molecules to the A band-associ- 
ated proteins and/or titin. To address the question whether 
these proteins are in situ substrates for transglutaminase, 
detailed studies on ultrastructural localization of the en- 
zyme as well as direct biochemical analysis are required. 
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