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Proteome constraints reveal targets for improving
microbial fitness in nutrient-rich environments
Yu Chen1,2,† , Eunice van Pelt-KleinJan3,4,† , Berdien van Olst3,5,6 , Sieze Douwenga3,4 ,

Sjef Boeren3,6 , Herwig Bachmann3,4,7 , Douwe Molenaar3,4 , Jens Nielsen1,2,8,9,* &

Bas Teusink3,4,**

Abstract

Cells adapt to different conditions via gene expression that tunes
metabolism for maximal fitness. Constraints on cellular proteome
may limit such expression strategies and introduce trade-offs.
Resource allocation under proteome constraints has explained
regulatory strategies in bacteria. It is unclear, however, to what
extent these constraints can predict evolutionary changes, espe-
cially for microorganisms that evolved under nutrient-rich condi-
tions, i.e., multiple available nitrogen sources, such as Lactococcus
lactis. Here, we present a proteome-constrained genome-scale
metabolic model of L. lactis (pcLactis) to interpret growth on
multiple nutrients. Through integration of proteomics and flux
data, in glucose-limited chemostats, the model predicted glucose
and arginine uptake as dominant constraints at low growth rates.
Indeed, glucose and arginine catabolism were found upregulated
in evolved mutants. At high growth rates, pcLactis correctly
predicted the observed shutdown of arginine catabolism because
limited proteome availability favored lactate for ATP production.
Thus, our model-based analysis is able to identify and explain the
proteome constraints that limit growth rate in nutrient-rich envi-
ronments and thus form targets of fitness improvement.
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Introduction

The fitness of unicellular organisms is determined by adaptions to

environmental conditions (Goel et al, 2012b) and is optimized by

regulating metabolic processes that generally lead to higher growth

rates (Chubukov et al, 2014). Growth rates are finite, as the metabolic

processes supporting growth are constrained through limits imposed

by external conditions, e.g., nutrient availability, and internal factors

that relate to cell morphology, enzyme kinetics, and physicochemical

properties such as solvent capacities. In particular, constraints on the

allocation of the proteome, due to limited membrane area or intracel-

lular volume, have aided to understand metabolic adaptions of

microorganisms (Beg et al, 2007; Molenaar et al, 2009; de Groot et al,

2020), specifically, the overflow metabolism in Escherichia coli

(Zhuang et al, 2011; O’Brien et al, 2013; Basan et al, 2015) and the

Crabtree effect in Saccharomyces cerevisiae (Nilsson & Nielsen, 2016;

S�anchez et al, 2017; Chen & Nielsen, 2019).

However, much less is known about metabolic adaptations in

other organisms, and especially those cultivated under conditions

with multiple available substrates, such as in nutrient-rich environ-

ments like the gut or food. It was previously shown that anaerobic

“overflow” metabolism in the lactic acid bacterium Lactococcus

lactis, i.e., the transition from energy-efficient mixed acid fermenta-

tion to less energy-efficient lactic acid fermentation, is not accompa-

nied by changes in associated protein levels (Goel et al, 2015),

questioning the generality of the resource allocation paradigm.

However, consistent changes in both gene expression and metabolic

levels were observed in amino acid metabolism, prompting us to

revisit the cellular economics of L. lactis.

L. lactis is an important model lactic acid bacterium and work

horse for the dairy industry—production of cheese in particular

(Papadimitriou et al, 2016; Kok et al, 2017). Many strains are

1 Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
2 Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
3 TiFN, Wageningen, the Netherlands
4 Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
5 Host-Microbe Interactomics, Wageningen University & Research, Wageningen, The Netherlands
6 Laboratory of Biochemistry, Wageningen University & Research, Wageningen, The Netherlands
7 NIZO Food Research, Ede, The Netherlands
8 Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
9 BioInnovation Institute, Copenhagen N, Denmark

*Corresponding author. Tel: +46 317723804; E-mail: nielsenj@chalmers.se
**Corresponding author. Tel: +31 205989435; E-mail: b.teusink@vu.nl
†These authors contributed equally to this work

ª 2021 The Authors. Published under the terms of the CC BY 4.0 license Molecular Systems Biology 17: e10093 | 2021 1 of 13

https://orcid.org/0000-0003-3326-9068
https://orcid.org/0000-0003-3326-9068
https://orcid.org/0000-0003-3326-9068
https://orcid.org/0000-0002-6590-652X
https://orcid.org/0000-0002-6590-652X
https://orcid.org/0000-0002-6590-652X
https://orcid.org/0000-0001-8596-0171
https://orcid.org/0000-0001-8596-0171
https://orcid.org/0000-0001-8596-0171
https://orcid.org/0000-0003-3604-7524
https://orcid.org/0000-0003-3604-7524
https://orcid.org/0000-0003-3604-7524
https://orcid.org/0000-0002-0847-8821
https://orcid.org/0000-0002-0847-8821
https://orcid.org/0000-0002-0847-8821
https://orcid.org/0000-0002-8224-0993
https://orcid.org/0000-0002-8224-0993
https://orcid.org/0000-0002-8224-0993
https://orcid.org/0000-0001-7108-4545
https://orcid.org/0000-0001-7108-4545
https://orcid.org/0000-0001-7108-4545
https://orcid.org/0000-0002-9955-6003
https://orcid.org/0000-0002-9955-6003
https://orcid.org/0000-0002-9955-6003
https://orcid.org/0000-0003-3929-0423
https://orcid.org/0000-0003-3929-0423
https://orcid.org/0000-0003-3929-0423


auxotrophic for at least five amino acids (Jensen & Hammer, 1993;

Teusink & Molenaar, 2017), and thus, L. lactis strains are grown in

nutrient-rich environments where amino acids are usually in excess.

Many of these amino acids participate not only in anabolic

processes but also in catabolism to contribute to energy metabolism

(Fern�andez & Z�u~niga, 2006). For example, arginine catabolism

directly yields ATP and is tightly regulated (Crow & Thomas, 1982),

while other amino acids can contribute to pH or redox homeostasis,

saving ATP-costly alternatives (Nov�ak & Loubiere, 2000). It is,

however, not known whether proteome constraints guide choices in

non-sugar substrates, e.g., amino acids.

Results

Construction and evaluation of pcLactis

We therefore developed pcLactis, a proteome-constrained genome-

scale metabolic model of L. lactis. We first updated a published

genome-scale metabolic model for L. lactis MG1363 (Verouden et al,

2009; Flahaut et al, 2013) mostly by adding transport capacities and

gene-protein-reaction associations (Dataset EV1). Second, we added

the gene expression processes, including transcription, stable RNA

cleavage, mRNA degradation, tRNA modification, rRNA modifi-

cation, tRNA charging, ribosomal assembly, translation, protein

maturation and assembly, and protein degradation (Fig 1A). By inte-

grating the two reconstructions, we obtained pcLactis, which

accounts for 725 protein-coding genes and 81 RNA genes in L. lactis

MG1363. According to the PaxDb database (Wang et al, 2015),

pcLactis accounts for approximately 60% of the total proteome by

mass (Dataset EV2). The model’s proteome therefore includes 40%

unmodeled protein of average amino acid composition. We

constrain each metabolic flux at the maximal rate of the associated

enzyme, which is a function of the enzyme concentration and turn-

over rate. Thus, we compute minimal enzyme levels to sustain

metabolic flux. Enzyme levels follow from mass balancing synthesis

rate and degradation and dilution by growth (Fig 1B). Total protein

synthesis rates are constrained by ribosomal translation capacity

and by a so-called total proteome constraint, i.e., a maximum size

of the proteome. We use inactive enzyme, again with average amino

acid composition, to fill up the total proteome in cases of low enzy-

matic activity, e.g., at low growth rates. It should be noted that the

inactive enzyme does not represent any specific enzyme but just

accounts for the sum of inactive fractions of all undersaturated

enzymes. Therefore, the inactive enzyme can be seen as the excess

capacity of the total modeled proteome, and the constraint of the

total modeled proteome is reached if the inactive enzyme is zero.

We used published proteomics and flux data from chemostats for

model evaluation, and simulated glucose-limited conditions by

minimizing the glucose concentration at a fixed specific growth rate

with an upper bound on the expression of the glucose transporter.

The model predicted the glucose uptake rates well (Fig 1C) and indi-

cated—as expected—increased saturation of the glucose transporter

with growth rate (Fig 1D). Additionally, pcLactis predicted a meta-

bolic switch from mixed acid to lactic acid fermentation, with corre-

sponding changes at the proteome level (Appendix Fig S1A), but at

a much higher growth rate than experimentally observed (Fig 1C).

However, experimental evidence showed that this metabolic switch

in L. lactis does not relate to considerable proteome changes (Goel

et al, 2015) and therefore the switch predicted by pcLactis probably

does not reflect the true reason for this change in glucose metabo-

lism. More importantly, pcLactis predicted that at a dilution rate (D)

higher than 0.5/h, the fraction of inactive enzyme becomes zero

(Fig 1E). In the model, this means that all available proteome space

is being actively used for metabolic function and that under such

conditions any flux change can only be brought about by changes in

protein levels, not enzyme saturation. This conclusion is supported

by the fact that most glycolytic enzymes reach the highest saturation

above D = 0.5/h (Goel et al, 2015) and that proteomics data showed

genome-wide protein reallocation when growth rate increased

beyond that point (Appendix Fig S2).

To identify the “active” constraints, i.e., constraints that limit the

growth rate in pcLactis, we applied a sensitivity analysis on the

proteome-constrained model. Glucose transport expression was an

active constraint at low growth rates and its sensitivity dropped at

the moment the inactive enzyme reached zero (Fig 1F). At that

point, the total proteome also became limiting. This reflects the

increased demand for proteome resource at high growth rates, both

for metabolic fluxes and protein translation machinery (Appendix

Fig S1A). Thus, around D = 0.5/h, the model switched from

glucose-limited to combined glucose and proteome–limited.

pcLactis identifies arginine uptake as the most-active constraint
on growth and captures arginine shift

In the model, the transition to proteome-limited growth was

reflected in amino acid metabolism, not in glucose metabolism.

However, including amino acid uptake in pcLactis was challenging

as the amino acid consumption could not be constrained by the

model due to insufficient data of expression and kinetics for amino

acid transport systems. This would lead to an overestimation of

uptake and growth rate when setting free exchange rates of all 20

amino acids to mimic the medium of L. lactis, where amino acids

are mostly in excess. However, published amino acid data (Goel

et al, 2015) showed that apart from aspartate and glutamate all the

detected amino acids were taken up linearly with growth rate (Fig 2

A). We therefore imposed growth rate-dependent upper bounds on

the uptake rates of all amino acids based on these measurements.

To distinguish anabolism and catabolism, we compared the uptake

of amino acids with their tRNA charging flux, which represents the

flux toward protein synthesis. To analyze the results, we performed

a so-called scaled reduced cost analysis, which is a sensitivity analy-

sis of the uptake bounds on the growth rate (Fig 2B).

The predicted uptake fluxes of most amino acids follow the

upper bound set by the experimental data. Many of those amino

acids were overconsumed and thus catabolized, in agreement with

model predictions (Fig 2A). Based on the scaled reduced cost analy-

sis, their catabolism contributed to growth rate (the mechanistic

basis of many of those were previously analyzed for Lactobacillus

plantarum (Teusink et al, 2006)). Those amino acids with little

impact on growth rate, based on the scaled reduced cost analysis,

are taken up by L. lactis according to protein synthesis demand.

Thus, pcLactis can explain overconsumption of specific amino acids

according to growth rate optimization. This is interesting, as many

of the catabolic products contribute to flavor formation in food

fermentations. Leucine, tryptophan, and to a lesser extent valine
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were exceptions (Fig 2A). In L. plantarum, leucine and valine cata-

bolism contributes to the redox balance, which requires a NADP-

dependent glutamate dehydrogenase (Teusink et al, 2006); L. lactis,

however, lacks this enzyme (Wels et al, 2019). The reason for over-

consumption of these amino acids thus remains to be unraveled.

When the total proteome becomes an active constraint at a

growth rate around 0.5/h, we observe a drop in several amino acid

overconsumptions in pcLactis. This is also reflected in a drop in

reduced cost of the respective amino acids (Fig 2), indicating that

the metabolic benefit was not high enough for the now-constraining

protein investment in the catabolic pathway. Experimentally, not all

amino acids dropped at this point, although data are more variable

at the highest growth rate. However, the most pronounced change

in flux was observed for arginine, whose catabolism directly yields

ATP. Arginine also had the highest (drop in) reduced cost. The

predicted changes in the fluxes of catabolic products ornithine and

ammonium (Appendix Fig S1B), and the concomitant changes in

protein levels of the pathway (Appendix Fig S1A) together with

experimental observations (Crow & Thomas, 1982; Goel et al,

2015), confirm that pcLactis correctly captured the switch in argi-

nine catabolism.

Small model reproduces metabolic shifts and
growth-limiting factors

We noted that the arginine switch preceded the onset of the

switch from mixed acid to lactic acid fermentation in pcLactis

(Appendix Fig S1C). We constructed a small model to analyze this

switching behavior, expecting that protein efficiency, i.e., ATP

produced per protein mass per time, was key (Chen & Nielsen,

2019). We defined three independent ATP-producing pathways,

glycolysis pathway with mixed acid fermentation or with lactate

A

C D

F

E

B

Figure 1. Overview of pcLactis and simulations of glucose-limited conditions.

A The model explicitly accounts for reactions of metabolism and gene expression processes. Metabolic reactions produce metabolites and energy for not only biomass
formation but also gene expression processes. The reactions of gene expression, on the other hand, synthesize RNA and proteins, which catalyze reactions of
metabolism and gene expression processes as machineries or enzymes. In addition, pcLactis accounts for degradation of mRNA and proteins as well as dilution of
biomass constituents during cell division.

B Coupling constraints in pcLactis. The coupling constraint allows for relating the reaction rate to the synthesis rate of its catalyst based on the reaction rate
equation and steady-state assumption, where turnover rates kcat of metabolic enzymes, catalytic rates k of machineries, and degradation constants kdeg of the
catalysts are needed.

C Simulated exchange fluxes compared with experimentally measured data (Goel et al, 2015).
D Simulated saturation of glucose transporter.
E Simulated inactive enzyme. The inactive enzyme is the sum of the enzymes that are synthesized but do not carry fluxes. The production of the inactive enzyme

indicates that total proteome is not constrained. The gray area represents where the proteome switch occurs in experiments (Goel et al, 2015), which is between 0.5
and 0.6/h.

F Sensitivity analysis for glucose transporter and modeled proteome at different growth rates. Color represents the sensitivity score. A higher score indicates a greater
impact of a given increase in the constraint on growth rate.
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formation, and arginine catabolism (Fig 3A), and estimated ATP

yield, protein cost, and protein efficiency (Fig 3B) for each path-

way using pcLactis. With these parameters, we formulated a linear

program to maximize ATP production flux subject to total

proteome constraints with flux bounds (Fig 3C). We varied glucose

uptake fluxes and found three distinct phases: when the total

proteome is not constrained both mixed acid fermentation and

arginine catabolism are used (phase A, Fig 3D), as mixed acid

fermentation has the highest ATP yield and arginine provides extra

ATP at no protein burden. Once the total proteome is constrained

(phase B, Fig 3D), the flux through arginine catabolism goes down

due to its lowest protein efficiency. When arginine catabolism is

completely inactive, mixed acid fermentation is traded in for

lactate formation (phase C, Fig 3D), as its protein efficiency is

lower than lactic acid fermentation. Furthermore, the small model

reproduced the sensitivity results in terms of the constraints on

glucose and arginine uptake (Fig 3D). Thus, the small model

captures the behavior of the full model, reinforcing earlier theoreti-

cal results that the number and nature of the active constraints

determine behavior, irrespective of the size of the network (de

Groot et al, 2019).

Predictions are robust to uncertainties of model parameters

The model simulations resulted in two findings. First, glucose

and arginine uptake limit growth when the total proteome is not

constrained. Second, the metabolic shift in arginine catabolism can

be interpreted by proteome constraints, but the shift from mixed

acid to lactic acid fermentation cannot. Given the fact that pcLactis

relies on a huge number of parameters, many of which were not

available and estimated from databases, we investigated whether

uncertainties of parameters can influence the two findings.

To this end, we varied each individual parameter of pcLactis

twofold (both up and down) and compared the resulting simulated

growth rate with the reference. We compared a glucose-rich condi-

tion and a glucose-limited condition in which the reference growth

rate is 0.5/h. Of the 845 parameters, only 24 led to variations > 1%

under the glucose-rich condition (Appendix Fig S3A), meaning that

uncertainties of most individual parameters have little effect on

maximal growth rate simulations. When simulating the glucose-

limited condition, where the total proteome is not constrained, we

found—as expected—that even less (six) parameters have an impact

on growth simulations (Appendix Fig S3B), only parameters acting

on glucose transport—the active constraint—affected growth rate.

Additionally, a large change in the modeled proteome size, such that

the model becomes proteome-constrained, was required to show an

effect. Accordingly, the finding that glucose and arginine uptake

could limit growth is robust to the uncertainties of most parameters,

e.g., turnover rates of metabolic enzymes.

The small model was used to test the robustness of our findings

to overall protein cost parameters on pathway levels, rather than

individual enzyme levels. We adjusted the protein costs of the path-

ways and upper limits on total proteome and arginine uptake, again

twofold in either direction, and examined the model behavior across

A B

Figure 2. Amino acid analysis with pcLactis shows importance of amino acid catabolism for growth as a function of active constraints.

A Simulated fluxes of amino acids compared with experimentally measured data. For each amino acid, simulated fluxes of uptake and tRNA charging are displayed
together with the measured uptake flux. The upper bound on the uptake is also displayed, which is the linear trendline of the experimentally measured data if the
amino acid is consumed rather than being secreted. The measured data are from the study (Goel et al, 2015).

B Scaled reduced cost analysis for uptake rates of amino acids at different growth rates. Color represents the scaled reduced cost value. A higher value indicates a
greater impact of a given increase in the amino acid uptake on growth rate.
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the range of glucose uptake rates. We found that glucose and argi-

nine uptake show high sensitivity scores when the upper limit of

proteome is not reached, independently of variations in the

parameters (Appendix Fig S4). This demonstrates the robustness of

the first finding. We further confirmed that the arginine shift can be

interpreted by proteome constraints: The decline of arginine uptake

once the total proteome is constrained was observed in almost all

cases in which parameters were adjusted (Appendix Fig S4).

Notably, the arginine shift delayed, but still in the proteome-limited

regime, when the protein cost of mixed acid fermentation pathway

increased (Appendix Fig S4A).

We conclude that the predicted changes in behavior, and the

governing constraints that explain them, are robust to individual

parameters, as well as to more global parameters that indicate the

overall pathway costs.

Experimental validations confirm glucose and arginine uptake as
evolutionary changes for fitness improvement

Given that the model predictions are based on optimization of

growth, we conjectured that the reduced costs that represent active

growth-limiting constraints, i.e., glucose and arginine uptake,

should provide targets for fitness improvements. For the simula-

tions, we used previously experimentally determined constraints on

the uptake of amino acids (Goel et al, 2015), and we predicted that

these could be improved under glucose-limited chemostat condi-

tions according to our simulations—with arginine as the prime

target (Fig 2). We therefore compared wild-type L. lactis MG1363

with a mutant strain (designated 445C1) that was selected during

long-term cultivation in glucose-limited chemostat conditions at

D = 0.5/h and that harbors a point mutation in the global carbon

catabolite repression regulator (CcpA) (Price et al, 2019). This

CcpA mutant shows a twofold increase in mixed acid fermentation

at the endpoint of the laboratory evolution experiment, while

fermentation toward lactate is decreased (Price et al, 2019). This

change in metabolism is consistent with the prediction that the

total proteome constraint is not yet active at 0.5/h: An active total

proteome constraint would provide a driving force toward lactate

formation as it has a higher protein efficiency than mixed acid

fermentation (Fig 3B).

To further validate predictions, we assessed protein allocation

and amino acid metabolism of wild-type and CcpA mutant, not stud-

ied before. We therefore re-cultivated both strains in glucose-limited

chemostats at D = 0.5/h and compared them at the proteome and

metabolic level (Fig 4A). Principal component analysis of the

proteomics data confirmed reproducibility (Appendix Fig S5).

Apparent catabolic and total carbon balances were between 89 and

100% (Dataset EV3). We also found increased mixed acid and

decreased lactic acid fermentation for the CcpA mutant compared

with wild type (Appendix Fig S6), in agreement with the published

data (Price et al, 2019).

The proteomics data showed that arginine catabolism, including

its uptake system is significantly upregulated in the CcpA mutant

compared with the wild type (Fig 4B, Appendix Fig S7). Conse-

quently, we found an increased arginine uptake flux in the CcpA

mutant (Fig 4C). Moreover, we found that no residual arginine was

detected anymore in its supernatant (Fig 4D) while other amino

acids could be still detected (Appendix Fig S8), even though some

had nonzero-reduced costs as well (Fig 2B), likely because metabo-

lism of these amino acids is not under control of CcpA (Zomer et al,

2007). Taken together, arginine could be the most effective amino

A D

B

C

Figure 3. The switches between ATP yielding pathways in L. lactis can be
explained from a protein efficiency point of view.

A A small model derived from pcLactis to investigate primary ATP-producing
pathways in L. lactis. The small model consists of three independent
pathways, including glycolysis pathway followed by mixed acid
fermentation, glycolysis pathway followed by lactic acid fermentation, and
arginine catabolism.

B Parameters of ATP-producing pathways inferred from pcLactis. ATP yield is
ATP generated per glucose (for pathway 1 and 2) or arginine (for pathway
3) consumed. Note that the ATP yield of the arginine pathway is 1.67,
which is due to the fact that besides one mole of ATP produced by the
carbamate kinase reaction, by degrading one mole of arginine L. lactis does
not have to export two moles of proton, which equivalently saves 0.67
mole of ATP that should have been consumed by ATP synthase to balance
protons. Protein cost is protein mass (unit: g/gCDW) required per substrate
flux (unit: mmol/gCDW/h) through the pathway. Protein efficiency is ATP
generated per protein mass per time with the unit of mmol of ATP per
gram of protein per hour.

C Linear programming to solve the small model. The objective function is to
maximize the total ATP production flux JATP, which is the sum of ATP
production fluxes of three pathways calculated by substrate uptake flux Ji
times ATP yield YATP,i. The model is subject to two constraints. One is the
total glucose uptake flux Jglc, which is the sum of the glucose fluxes toward
pathway 1 J1 and 2 J2. The other is the total proteome constraint, which
means that the sum of protein requirements of all pathways should be not
greater than the proteome allocation in the model. For each pathway, the
protein requirement is calculated by the protein cost pi times substrate flux
Ji. In addition, there are lower and upper bounds on the uptake flux of each
pathway. Specifically, J1 and J2 are unlimited while J3 has a limited upper
bound, which is assumed to be linearly correlated with total glucose
uptake flux Jglc based on experimental observation.

D Small model simulations for a range of glucose uptake flux. The top three
plots show that with increasing glucose uptake flux the decline in arginine
uptake occurs firstly once the inactive enzyme disappears, and
subsequently the switch from mixed to lactic acid fermentation. The
inactive enzyme is the difference between the total protein requirements
and the total proteome. The labels “A”, “B”, and “C” represent distinct
phases based on changes in simulated fluxes through pathways with
increasing glucose uptake flux: “A” corresponds to increase in both pathway
1 and 3, “B” decrease in pathway 3, and “C” decrease in pathway 1 while
increase in pathway 2. The bottom three plots show sensitivities of glucose
uptake, total proteome, and arginine uptake to the ATP production. The
simulation data are reused as transparent lines in Appendix Fig S4.
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acid on optimizing fitness under the chosen conditions as predicted

by our model.

We further found a significantly increased protein fraction of

glucose transporters in the CcpA mutant (P < 0.001) (Fig 4E), con-

firming that glucose uptake capacity was growth limiting in the wild

type. Even though the total proteome is not limiting at D = 0.5/h,

we did find changes in cytosolic protein fractions, notably the

glycolysis fraction (Fig 4E), while other proteins, not used by pcLac-

tis under glucose limitation, were downregulated, e.g., peptide

digestion and NADH oxidases (Fig 4B, Appendix Fig S7). These may

be part of the global catabolite repression effect of the CcpA muta-

tion without large fitness impact. Alternatively, upregulation of

A

C E

D

B

Figure 4. Proteome of the CcpA mutant, which has a higher fitness than wild-type L. lactis, is changed in the direction of optimality.

A Overview of experiments for comparing wild-type L. lactis MG1363 and CcpA-mutant 445C1 in glucose-limited chemostats at D = 0.5/h. Samples were taken for dry
weight measurements, external metabolite and amino acid analysis, and proteome measurements.

B Protein fold changes of the CcpA mutant over wild type. Log2 fold changes were calculated from LFQ values. P values were calculated based on 2-sided two-sample
t-tests with a FDR threshold of 0.05 and S0 equal to 1 (Tusher et al, 2001). Proteins outside the significance lines (FDR = 0.05, S0 = 1) are significantly changed in
expression. Example sets of proteins are highlighted and are labeled with their gene names.

C, D (C) Amino acid fluxes (mmol/gCDW/h) and (D) Residual concentration (mM) of arginine. The arginine uptake flux is increased to such extent that the residual
arginine concentration became undetectable in the CcpA mutant. Data points represent the individual chemostat fluxes and concentrations; bars are average
values (n = 4). Statistically significant differences between amino acid fluxes were calculated with two-sided t-tests and marked with * (P < 0.05).

E Protein fractions. Protein fractions were obtained by normalizing iBAQ values by the total sum of all values. The obtained protein fractions were then averaged
over the biological replicates (n = 4) for visualization. The fractions glucose transport, glycolysis, arginine pathway, and remaining fraction are significantly
different between the two strains (P < 0.001, calculated with two-sided t-tests).
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glycolysis may relieve inhibition on glucose transport, such as the

negative impact of fructose 1,6-bisphosphate on the PTS system, via

HPr (Deutscher et al, 2006).

We did not find a considerable change in the total protein

membrane fraction (Appendix Table S1), suggesting that the

membrane protein occupancy is independent of the tested condi-

tions and, given the need to transport many nutrients, possibly

maximally occupied. If fully occupied, an increase in one protein

would go at the cost of another protein. In the CcpA mutant, we

found an overrepresentation of significantly changed membrane

proteins (P = 0.030 compared with random distribution of signifi-

cantly changed proteins over membrane and cytosolic protein

fraction, Appendix Table S1), among which downregulation of

unused transport systems such as for peptides (Opp operon in

Fig 4B). The idea that the membrane is fully occupied with

proteins would also explain why amino acid uptake is not higher

in wild type. It is therefore anticipated to impose a constraint on

total membrane proteins in future simulations when transporter

kinetics are available.

Altogether, the experimental data support model predictions and

demonstrate that it is possible to integrate flux data with proteome-

constrained models to identify growth-limiting factors through

sensitivity analysis. These sensitivities are predictive for evolution-

ary change, providing deeper understanding of the driving forces

that shape regulatory strategies.

Discussion

It was previously shown that the metabolic shift from mixed acid

to lactic acid fermentation in L. lactis was not accompanied by

changes in protein expression of the corresponding pathways.

Another shift, however, i.e., the repression of arginine catabolism

at high growth rates, did coincide with the changes in protein

levels (Goel et al, 2015). We developed a proteome-constrained

model that can explain the inhibition of arginine catabolism at

high growth rates as a result of a proteome limitation (Fig 2A),

which is caused by a relatively lower protein efficiency of arginine

catabolism compared with other ATP-producing pathways (Fig 3

B). Therefore, our study demonstrates that also L. lactis appears to

abide to the microbial growth laws of cellular resource allocation

(Scott et al, 2010) after all. For this microorganism, that grows in

nutrient-rich environments, however, constraints involve amino

acid catabolism.

To cope with the many nutrients that L. lactis takes up in a

growth medium with all amino acids present, we used reduced cost

analysis, a well-known sensitivity analysis in constrain-based

modeling (Teusink et al, 2006). We applied it to a proteome-

constrained model and thus could balance the growth rate benefit of

each metabolic activity with its associated protein costs. In this

way, we identified the shifts in sensitivities in amino acid catabo-

lism, most notably in arginine metabolism, that explained its repres-

sion at high growth rate.

To further test the model, we conjectured that these sensitivities

should also point toward targets of growth improvements that selec-

tion should favor. We took advantage of a previous study where a

CcpA mutant of L. lactis was selected and shown to have higher fit-

ness under glucose-limited chemostats (Price et al, 2019). Here, we

cultivated wild type and the evolved mutant again in glucose-limited

chemostats at D = 0.5/h, where the model predicted that glucose

and arginine uptake were dominant at limiting growth rates, and

collected proteomics and flux data. We found that the evolved strain

indeed upregulated protein levels of glucose and arginine catabo-

lism. Therefore, we see the consistency between model predictions

and experiments.

In spite of such consistencies, we also found discrepancies

between experiments and model predictions. While pcLactis was

able to predict a metabolic switch between fermentation path-

ways, experimentally the metabolic switch occurs at a much

lower growth rate (Fig 1C). In the model, by design, the switch is

accompanied by changes in protein levels, while in the experi-

ments protein levels remain constant during the switch

(Appendix Fig S2). This points to metabolic regulation of the

switch, in line with the conclusion that protein costs cannot

explain the switch (Goel et al, 2015). An explanation of the meta-

bolic switch thus requires details on enzyme kinetics that are

beyond the current stoichiometric model. Previously, it has been

argued that the intracellular NADH/NAD+ ratio causes the meta-

bolic switch: The NADH/NAD+ ratio increases with increasing

glycolytic flux, which activates lactate dehydrogenase (LDH) and

inhibits glyceraldehyde-3-phosphate dehydrogenase (GAPDH),

which has NADH as a product (Garrigues et al, 1997; Even et al,

1999). This suggests that in order to sustain a high glycolytic

flux, L. lactis needs rapid reversion of NADH into NAD+, and

this would be better achieved by LDH than mixed acid forma-

tion. This may explain why glyceraldehyde-3-phosphate and

dihydroxyacetone phosphate have an inhibitory effect on pyru-

vate formate lyase (PFL) (Garrigues et al, 1997; Melchiorsen

et al, 2001), the first enzyme of the mixed acid branch: The

accumulation of these metabolites may indicate a bottleneck in

GAPDH activity and the need to switch to LDH to lower the

NADH/NAD+ ratio. An alternative model proposed that differen-

tial protein costs of the two branches, caused by ATP inhibition,

could cause a metabolic switch to occur while protein levels

stay constant (de Groot et al, 2019). Current explanations for

this metabolic switch thus remain speculation and require more

detailed kinetic studies.

In addition, a few discrepancies come from amino acid predic-

tions. Besides arginine, pcLactis also indicated other amino

acids having a switch in the uptake rate in the proteome-limited

regime, which were not found to be downregulated in the

experiments. Most prominent are glycine, threonine, and serine

(Fig 2). The predicted switch in glycine uptake is caused by a

model artifact that consists of a (flux-limited) folate cycle that

converts NADP+ into NADPH at lower growth rates and switches

direction at higher growth rates. Fluxes are small, however, and

thus the impact is limited (Fig 2). Threonine can be converted

by threonine aldolase (GlyA) to glycine and acetaldehyde (Aller

et al, 2015), and the reduction in acetaldehyde to ethanol allows

more acetate and hence ATP to be produced from pyruvate,

explaining the positive effect of its catabolism on growth. The

experimental data at D = 0.6/h are inconclusive (Goel et al,

2015), however, and the reduced costs are lower than that of

arginine and serine.

Serine catabolism also has a beneficial effect on growth: Serine is

converted to pyruvate via a deaminase reaction catalyzed by SdaA

ª 2021 The Authors Molecular Systems Biology 17: e10093 | 2021 7 of 13

Yu Chen et al Molecular Systems Biology



and SdaB, and subsequent conversion to acetate would yield 1 ATP.

The model indeed predicts maximal uptake of serine, consistent

with the data. The much higher critical growth rate for the

decrease in serine uptake (and catabolism) than for arginine cata-

bolism can be explained by the lower protein costs for serine

than for arginine (Appendix Table S2). Based on the reduced cost

analysis, serine was predicted to have a significant impact on

growth (Fig 2B), but the CcpA mutant decreased serine uptake

(Fig 4C). This is probably the result of the relatively short evolu-

tionary time, which allowed only the mutation with the highest

selection coefficient to be selected, which was in CcpA. The

higher ATP yield of arginine, but its lower proteome efficiency,

explains why arginine is under glucose repression and serine is

not. We suspect that the decrease in serine flux is the result of

product inhibition by the CcpA-induced changes in mixed acid

fermentation, but we can only speculate.

In conclusion, we develop a fine-grained proteome-constrained

model of L. lactis and show that sensitivity analysis with the

model enables identification of testable targets for improving

microbial fitness in complex nutrient environments. We find

that, besides glucose, arginine uptake is a growth-limiting factor

of L. lactis up until a critical growth rate where protein costs

start to outweigh its metabolic benefit. Arginine can be consid-

ered as an alternative ATP source, and its regulation is also

analogous to the responses of microbes upon mixtures of carbon

substrates, including catabolite repression by a preferred carbon

source—glucose in our case. Simultaneous utilization is only

observed for mixtures of substrates present at low concentrations

(Lendenmann et al, 1996; Okano et al, 2019), or when they

enter metabolism at different sites (more precisely, their co-

consumption is part of one elementary flux mode (de Groot

et al, 2019)) and metabolic benefits outweigh protein costs

(Hermsen et al, 2015). We believe that our findings, approaches,

and the proteome-constrained model can help to interpret and

explain complex co-utilization phenotypes in microbes that grow

in complex nutrient environments.

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or source Identifier or catalog number

Experimental models

MG1363 (Lactococcus lactis ssp. cremoris) Gasson (1983), Wegmann et al (2007)

445C1 (derivative of MG1363) Price et al (2019)

Chemicals, enzymes and other reagents

CDMpc with 25 mM glucose Price et al (2019)

Norvaline Sigma-Aldrich N7502-25G

Phthaldialdehyde Sigma-Aldrich P1378-25G

Trypsin Roche 11047841001

Software

MetaDraft v0.7.2 http://doi.org/10.5281/zenodo.2398336

CBMPy v0.7.25 https://doi.org/10.5281/zenodo.3485023

Python 2.7 https://www.python.org/

Cobratoolbox https://github.com/opencobra/cobratoolbox/

Matlab https://mathworks.com/

GECKO toolbox https://github.com/SysBioChalmers/GECKO

Soplex v4.0.0 https://soplex.zib.de/

MaxQuant v1.6.6.0 Cox & Mann (2008)

Perseus v1.6.2.1 Tyanova et al (2016)

Other

HPLC Shimadzu system

Agilent Zebra Eclipse plus solvent saver 3.0 × 150 × 3.5 column Agilent

Needle sonicator MPE

Pall 3K omega filter Sigma-Aldrich, The Netherlands

AppliSens pH sensor Applikon

LTQ-OrbitrapXL Thermo Scientific

EASY-nLC1000 Thermo Scientific
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Methods and Protocols

Proteome-constrained model construction
The detailed construction procedure is described in the Appendix.

Firstly, we updated the existing genome-scale metabolic model of L.

lactis MG1363 (Verouden et al, 2009; Flahaut et al, 2013) in terms of

transport reactions and gene-protein-reaction (GPR) associations by

using MetaDraft (http://doi.org/10.5281/zenodo.2398336), a tool

that reconstructs genome-scale metabolic networks based on previ-

ous manually curated ones by homology between genes, and subse-

quently manual curation. For non-spontaneous reactions with

missing GPRs, we assigned a “dummy” protein as their catalysts to

eliminate potential bias toward using them in simulations. Then, we

split reactions with isozymes into multiple reactions that each is

catalyzed by one isozyme, and reversible reactions into forward and

reverse direction. In addition to updating and reformulating meta-

bolic reactions, we formulated reactions for transcription, stable

RNA cleavage, mRNA degradation, tRNA modification, rRNA modifi-

cation, tRNA charging, ribosomal assembly, translation, protein

maturation, protein assembly, enzyme formation, and protein degra-

dation. Additionally, we formulated dilution reactions for RNA and

enzymes to represent their dilution to daughter cells during cell divi-

sion. Lastly, we modified the biomass equation of the metabolic

model, i.e., removed protein and RNA from the equation as they

were represented by dilution reactions, and added an unmodeled

protein to account for all the other proteins that are not synthesized

by the model. The genome-scale metabolic model was updated using

CBMPy (https://doi.org/10.5281/zenodo.3485023), while pcLactis

was constructed using the COBRA toolbox (Heirendt et al, 2019).

Constraints and kinetics parameters
In addition to classical constraints of GEMs, e.g., mass balance and

bounds on reaction rates, two protein constraints are imposed

including a fixed bound on the total modeled proteome and an

upper bound on the abundance of glucose transporter (Appendix).

The fraction of modeled proteome was estimated according to the

PaxDb database (Wang et al, 2015), where abundance of each

protein is collected. The data are however available only for L. lactis

IL1403, and thus, we performed BLASTp for mapping protein IDs

between L. lactis IL1403 and MG1363. As a result, we obtained a list

of proteins in L. lactis MG1363 with available abundance data

(Dataset EV2). It should be noted that we filtered out the proteins of

blocked reactions that would never carry fluxes in the model.

In addition, pcLactis accounts for coupling constraints that relate

enzymes and machineries to their catalytic functions. In pcLactis,

such constraints are imposed for coupling enzymes to metabolic

reactions, RNA polymerase to transcription reactions, ribosomes to

translation reactions, and so on. All the coupling constraints are

detailed in the Appendix. In order to determine coefficients in the

coupling constraints, we automatically retrieved turnover rates of

metabolic enzymes from the BRENDA database (Jeske et al, 2019)

using the GECKO toolbox (S�anchez et al, 2017) but also manually

adjusted some according to literatures. In addition, we estimated

catalytic rates of gene expression machineries, including ribosome,

RNA polymerase, mRNA, and tRNA, in the same way as done for

ME-Model of E. coli (O’Brien et al, 2013) based on reported data

(Beresford & Condon, 1993; Nov�ak & Loubiere, 2000) for L. lactis.

Detailed description can be found in the Appendix.

Simulations with pcLactis for anaerobic glucose-limited conditions
Since growth rate is integrated into coupling constraints in linear

programming, it should be used as input for simulations. Therefore,

we used a binary search workflow to obtain the minimal extracellu-

lar glucose concentration that leads to a feasible solution for any

given growth rate to simulate glucose-limited conditions. This

approach is based on the Michaelis–Menten equation with a fixed

upper limit on the concentration of the glucose transporter:

qS ¼ kcat½E�σ¼ kcat½E� S

KM þS
, ½E�≤ upper bound

in which qS is the glucose uptake rate, kcat is the turnover rate of

the glucose transporter adopted from E. coli (Szenk et al, 2017),

[E] is the concentration of the glucose transporter, σ is the satura-

tion of the glucose transporter, S is the extracellular glucose

concentration and KM is the Michaelis constant obtained from the

study (Price et al, 2019). The upper bound on the concentration of

the glucose transporter was estimated using pcLactis, i.e., the mini-

mal concentration that gives a feasible solution for the maximal

growth rate. According to the Michaelis–Menten equation, search-

ing for the minimal extracellular glucose concentration is equal to

searching for the lowest saturation σ, which is equivalent to mini-

mizing the glucose uptake rate when the upper bound of the

concentration of the glucose transporter is hit.

The binary search solved successive individual linear programs,

which maximizes the production of the dummy protein subject to

stoichiometric and coupling constraints. Lower and upper bounds of

some reactions were also constrained. Notably, amino acid

exchange fluxes were constrained by growth rate-dependent upper

bounds based on experimental data (Goel et al, 2015). In addition,

biomass dilution reaction, which represents the dilution of other

biomass components than modeled protein and RNA, was fixed

according to the growth rate. Due to the anaerobic condition, we

blocked two reactions, i.e., oxygen exchange reaction and pyruvate

oxidase reaction. In addition, we blocked one alcohol dehydroge-

nase reaction catalyzed by the isozyme llmg_0955, and two glucose

transport reactions due to low protein levels (Goel et al, 2015).

Simulations were solved using Soplex 4.0.0 (https://soplex.zib.de/).

Small model and simulations
The small model was extracted from pcLactis, which contains three

pathways including glycolysis pathway with mixed acid fermenta-

tion, glycolysis pathway with lactic acid fermentation, and arginine

catabolism.

We estimated ATP yield, protein cost, and protein efficiency for

each pathway. Firstly, we identified the flux distribution of each

pathway by solving a linear program with the metabolic part of

pcLactis. For each simulation, the upper bound on ATP mainte-

nance reaction was set free in order to account for ATP consump-

tion. For mixed acid fermentation, the linear program is to

maximize ATP maintenance reaction subject to a fixed glucose

uptake rate of 1 mmol/gCDW/h. For lactate acid fermentation, the

linear program is to maximize lactate production subject to a fixed

glucose uptake rate of 1 mmol/gCDW/h and ATP maintenance reac-

tion rate of 2 mmol/gCDW/h. For arginine catabolism, the linear

program is to maximize ATP maintenance reaction subject to a

fixed arginine uptake rate of 1 mmol/gCDW/h. Accordingly, we
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calculated ATP yield for each pathway, i.e., the flux of ATP mainte-

nance reaction over uptake rate of substrate. Secondly, we esti-

mated the protein cost for each pathway based on the flux

distribution, which is the protein cost of each reaction in the path-

way times the corresponding flux value. The protein cost of a reac-

tion is molecular weight of the corresponding enzyme over its

turnover rate (Chen & Nielsen, 2019) and therefore can be extracted

from pcLactis. Lastly, the protein efficiency of each pathway is ATP

yield over protein cost.

With the parameters, we generated a linear program of fluxes

through the three pathways, which is to maximize ATP production

flux subject to constraints on uptake fluxes of substrates, i.e.,

glucose and arginine, and total proteome. We performed the simula-

tions for a wide range of glucose uptake fluxes.

Scaled reduced cost analysis
We performed the scaled reduced cost analysis (Teusink et al, 2006)

for uptake rate of each amino acid on growth rate with pcLactis.

The scaled reduced cost Ri of the growth rate µi with respect to the

uptake rate of an amino acid qi is calculated as: Ri = (Δµ/Δq)(qi/µi).
We imposed a small increase in the uptake rate of each amino acid

Δq = 0.01 to investigate the change in growth rate Δµ.

Sensitivity analysis
We performed sensitivity analysis for two constraints with pcLactis,

i.e., the glucose transporter and modeled proteome, on growth rate.

The sensitivity score Si of the growth rate µi with respect to a given

constraint ci is calculated as: Si = (Δµ/Δc)(ci/µi). With pcLactis, we

imposed a small increase Δc = 0.01 in the glucose transporter and

modeled proteome to investigate the change in growth rate Δµ at

different conditions. We also performed sensitivity analysis with the

small model for glucose uptake, proteome allocated to the small

model and arginine uptake using the small increase Δc = 0.01 to

investigate the change in ATP production rate qATP, i.e., the sensitiv-

ity score Si is calculated as: Si = (ΔqATP/Δc)(ci/qATP).

Strains and media
Lactococcus lactis ssp. cremoris MG1363 is a plasmid cured deriva-

tive of strain NCDO712 (Gasson, 1983; Wegmann et al, 2007). Strain

445C1 is a derivative of MG1363 isolated after prolonged cultivation

in a chemostat (Price et al, 2019). Cultivation of strains was

performed in chemically defined medium for prolonged cultivation

(CDMpc) (Price et al, 2019), supplemented with 25 mM glucose as

limiting carbon source at 30°C.

Chemostat cultivation
Proteome, metabolite, and amino acid samples were obtained from

four steady-state chemostats. Chemostat cultivation took place in

300 ml bioreactors with 270 ml working volume, under continuous

stirring (using magnetic stirrers), while standing in 30°C water

baths. The headspace was continuously flushed with 5% CO2 and

95% N2. pH was controlled at 6.5 using 2.5 M NaOH. The pH

probe was calibrated before and after the pre-culture in the reac-

tor. CDMpc with 25 mM glucose was added at a rate of 2.25 ml/

min. Superfluous liquid was continuously removed from the top of

the reactor to maintain a volume of 270 ml. This results in a dilu-

tion rate of 0.5/h. The flow rate of each medium pump was cali-

brated right before inoculating the reactor and checked again at

the end of the experiment. The exact volume of liquid in each

reactor was determined at the end of the experiment by weighing

the reactor liquid.

To start up a chemostat culture, 5 ml CDMpc with 25 mM

glucose was inoculated with glycerol stocks of the respective strains,

taken from a −80°C. This was directly added to the reactor contain-

ing 265 ml fresh 25 mM glucose CDMpc. The reactor was operated

in batch mode (no medium addition, pH regulated, effluent pump

on, 30°C, continuous stirring, headspace sparged) for 24 h, allowing

the cells to reach the stationary phase. This was verified by observ-

ing that the pH remained constant without the addition of 2 M

NaOH. After 24 h, the medium pump was switched on. The chemo-

stat was operated for 8 volume changes before samples were taken.

Samples were taken from the effluent of the reactor. Retention time

in the effluent tube was < 2 min. Sample tubes were kept on ice

while sample was being collected. For each strain, four replicate

chemostats were cultivated.

Sampling procedures and measurements
For extracellular metabolite concentration measurements (for both

reactor broth and sterile medium), 2 ml samples were centrifuged at

27,237 g for 3 min at 4°C, and the supernatant was filtered through

a 0.22 µm polyether sulfone filter (VWR international) and stored at

−20°C until further analysis. Extracellular concentrations of lactate,

acetate, formate, ethanol, and glucose were determined by high-

performance liquid chromatography (HPLC) as described previously

(Goel et al, 2012a).

Extracellular concentrations of amino acids were determined by

HPLC on a Shimadzu system with: LC-20AD pumps, DGU-14A

degasser, SIL-10ADvp autosampler, CTO-10ASvp oven, SCL-10Avp

system controller, and RF-10AXL fluorescence detector. Separation

occurred on an Agilent Zebra Eclipse plus solvent saver

3.0 × 150 × 3.5 column over a period of 38 min per sample, with

an isocratic flow of two eluents both at a flow rate of 0.64 ml/min.

Eluent 1 had composition: 0.142% w/v NaHPO4, 0.381% w/v

Na2B4O7�10H2O, 0.0325% w/v sodium azide in deionized water (DI

water); and eluent 2 had composition: 45% v/v methanol, 45% v/v

acetonitrile in DI water. Samples were prepared by mixing 25 µl
sample with 875 µl DI water, 25 µl Borate buffer (0.6% w/v boric

acid, 0.4% w/v NaOH, pH 10.2), and 25 µl 1 mM Norvaline as inter-

nal standard. For amino acid derivation, 3 µl phthaldialdehyde

(Sigma-Aldrich), i.e., OPA, was automatically added 3 min before

sample injection (5 µl) into the column. Concentrations were deter-

mined by comparison of sample peak areas to those of a calibration

curve identically run with representative amino acid concentrations.

Proteome samples were collected in low protein binding tubes,

centrifuged at 27,237 g for 3 min at 4°C. The supernatant was

discarded, and the pellet was frozen in liquid N2 prior to storage at

−20°C until further analysis.

For dry weight measurements, 10 ml broth was collected and fil-

tered over a pre-dried (3 days, 60°C) pre-weighed 0.2 µm cellulose

nitrate filter (Whatman GmbH). The filter was then washed once

with 10 ml demineralized water and dried (3 days, 60°C), before

weighing again.

Fluxes (qi in mmol/gCDW/h) were calculated as:

qi ¼D � Ci,supernatant�Ci,medium

� �
=Xbiomass, where D is the dilution rate

(/h), C the concentration of compound i (mM) and Xbiomass the

biomass concentration (g/l).
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Proteome measurements
Proteins were isolated using the FASP method as described previ-

ously (Wiśniewski et al, 2009). In short, cell pellets were suspended

in 100 mM TRIS pH 8 to a concentration of 7.5E8 cells/100 µl and
lysed using a needle sonicator (MPE). Proteins obtained from 4.5E8

lysed cells were reduced with 15 mM dithiothreitol for 30 min at

45°C and subsequently alkylated in 20 mM acrylamide for 10 min at

room temperature under denaturing conditions (100 mM TRIS

pH8 + 8 M Urea). The alkylated sample was transferred to an

ethanol-washed Pall 3K omega filter (Sigma-Aldrich, The Nether-

lands) and centrifuged for 36 min at 13,523 g. The filters were

washed with 130 µl 50 mM ammonium bicarbonate and centrifuged

again before overnight digestion with 100 µl 5 ng/µl trypsin (Roche)

at room temperature. The digested peptides were eluted by centrifu-

gation for 30 min, subsequent addition of 100 µl 1 ml/l HCOOH in

water, and again centrifugation for 30 min. pH was adjusted to pH 3

using 10 v/v% trifluoroacetic acid.

nLC-MS/MS analysis was done with a Thermo EASY nLC1000

connected to a Thermo LTQ Orbitrap XL as described previously (Lu

et al, 2011; Wendrich et al, 2017). Raw datafiles were analyzed

using MaxQuant (version 1.6.1.0) and searched against the L. lactis

MG1363 database (UniProt) and frequently observed contaminants.

In addition to the standard settings, Trypsin/P with a maximum of

two missed cleavages was set as the digestion mode, acrylamide

modifications on the cysteines were set as a fixed modification, and

methionine oxidation, protein N-terminal acetylation, and aspara-

gine or glutamine deamidation were set as variable modifications. A

false discovery rate of 1% at protein and peptide level was allowed,

and the minimum required protein length was set at 7. At least two

peptides were required for protein identification of which at least

one peptide was required to be unique in the database. Identified

proteins were quantified with MaxQuant’s LFQ algorithm (Cox et al,

2014).

Proteomics data analysis
Statistical analysis on the MaxQuant output was performed with

Perseus version 1.6.2.1. Proteins were accepted when they were

represented in at least three of the four biological replicates in at

least one strain. For statistical analysis, log10 transformed LFQ

values were used and zero values were replaced by taking random

values from a normal distribution with mean (measured values per

biological sample −1.8) and variation (0.3 * standard deviation of

the measured values per biological replicate) to make calculations

possible. We then performed a 2-sided two-sample t-tests using the

log10 normalized LFQ intensity columns of CcpA mutant and wild

type with a FDR threshold of 0.05 and S0 equal to 1 (Tusher et al,

2001). Fold changes of CcpA mutant over wild type were calculated

by dividing LFQ intensity columns of CcpA mutant by wild type. A

principal component analysis of the LFQ data was used to assess the

reproducibility of the data. Further analysis steps were done with

Python. For fractions of protein groups, we used sums of intensity-

based absolute quantitation (iBAQ) protein fractions, which were

obtained by normalizing iBAQ values by the total sum of all values

per biological replicate. Two-sided two-sample t-tests were

performed on biological groups of proteins between the wild-type

and CcpA-mutant strain. Furthermore, a two-sided Fisher exact test

was performed on the number of significantly changed proteins and

unchanged proteins in the membrane and rest of the cell. For this,

the protein fractions were first averaged over the biological repli-

cates.

Data availability

The datasets and computer code produced in this study are available

in the following databases:

• Models and scripts: GitHub (https://github.com/SysBioChalme

rs/pcLactis).

• Mass spectrometry proteomics data: the ProteomeXchange

Consortium via the PRIDE (Vizca�ıno et al, 2016) partner reposi-

tory with the dataset identifier PXD021956 (https://www.ebi.ac.

uk/pride/archive/projects/PXD021956).

Expanded View for this article is available online.
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