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Abstract: The RAF/MEK/ERK signaling pathway regulates diverse cellular processes as exempli-
fied by cell proliferation, differentiation, motility, and survival. Activation of ERK1/2 generally
promotes cell proliferation, and its deregulated activity is a hallmark of many cancers. Therefore,
components and regulators of the ERK pathway are considered potential therapeutic targets for
cancer, and inhibitors of this pathway, including some MEK and BRAF inhibitors, are already be-
ing used in the clinic. Notably, ERK1/2 kinases also have pro-apoptotic functions under certain
conditions and enhanced ERK1/2 signaling can cause tumor cell death. Although the repertoire of
the compounds which mediate ERK activation and apoptosis is expanding, and various anti-cancer
compounds induce ERK activation while exerting their anti-proliferative effects, the mechanisms
underlying ERK1/2-mediated cell death are still vague. Recent studies highlight the importance of
dual-specificity phosphatases (DUSPs) in determining the pro- versus anti-apoptotic function of ERK
in cancer. In this review, we will summarize the recent major findings in understanding the role of
ERK in apoptosis, focusing on the major compounds mediating ERK-dependent apoptosis. Studies
that further define the molecular targets of these compounds relevant to cell death will be essential
to harnessing these compounds for developing effective cancer treatments.

Keywords: RAS/RAF/MEK/ERK signaling; apoptosis; DUSP/MKP; cancer treatment; ACA-28

1. Introduction

The MAPK signaling pathway, comprised of RAS, RAF, MEK, and ERK is an evo-
lutionarily conserved signaling cascade that plays a fundamental role in the control of
key cellular processes, including cell survival and proliferation. Aberrant activation of
RAS/RAF/MEK/ERK signaling is frequently found in various cancers, due to genetic
and epigenetic alterations, rendering them attractive therapeutic targets (Figure 1) [1–3].
Indeed, the majority of solid tumors are explicitly characterized by their mutations in
the RAS/RAF/MEK/ERK genes, wherein highly selective small molecule inhibitors of
BRAF and MEK1/2 are currently used for cancer therapy (Figure 1) [4–8]. RAS is one
of the most well-known proto-oncogenes and its gain-of-function mutations occur in ap-
proximately 30% of all human cancers [9]. RAF mutations are also frequent, particularly
in melanoma [10]. Intriguingly, mutations in MEK are less identified (melanoma 3–8%,
colorectal 3%) and ERK mutations have rarely been reported as drivers in human cancers
despite the well-recognized importance of ERK activation in cancer malignancy [11].

Contrary to the well-established role of ERK MAPK signaling in promoting cell prolif-
eration, survival, and tumorigenesis, growing evidence suggests that the RAF/MEK/ERK
signaling can mediate pro-apoptotic signaling in vitro and in vivo [12]. In addition, vari-
ous compounds with anti-cancer properties were shown to induce apoptosis in an ERK
activation-dependent manner [13]. These include betulinic acid, quercetin, piperlongu-
mine, kaempferol, and phorbol esters (DAG mimetics), and an increasing number of
the compounds have been reported to exert apoptosis-inducing effects through ERK
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activation [14–18]. Furthermore, ERK activity is implicated in the mechanisms of apoptosis
induced by several DNA-damaging chemotherapeutic reagents for cancer treatment as
exemplified by cisplatin or etoposide (or doxorubicin) [19–21]. In many cases, sustained
and marked ERK activation seems to be implicated in mediating apoptosis [22,23]. Im-
pressive data have particularly highlighted the importance of the cellular threshold for
active ERK1/2 levels in determining the growth arrest versus death responses mediated
by ERK1/2 signaling [24]. However, despite the growing evidence of the pro-apoptotic
role of ERK and the expanding repertoire of drugs capable of inducing ERK activation and
apoptosis, the mechanisms underlying this Janus-faced behavior of the ERK1/2 pathway
in terms of cell survival regulation remain to be fully elucidated. Recently, a chemical
genetic approach using yeast genetics has identified ACA-28 and its lead compounds as
ERK signaling modulators, and these compounds turned out to stimulate ERK signaling
thereby inducing apoptosis specifically in ERK-active cancerous situations [25,26]. Inter-
estingly, ACA-28 was shown to induce ERK activation and apoptosis, at least in part, via
downregulation of the dual-specificity phosphatase DUSP6, a negative feedback regulator
for the RAS–ERK pathway, which plays a critical role in determining the threshold of ERK
MAPK activation [27].

Figure 1. The regulation of RAF/MEK/ERK signaling pathway. The RAF/MEK/ERK signaling
pathway regulates diverse cellular processes through the phosphorylation of cytoplasmic and nuclear
proteins. Activated ERK1/2 translocates to the nucleus by Imp7 (Importin 7) and inactive ERK1/2 is
nuclear exported by Exp1 (Exportin 1). Serine/threonine phosphatases (PP2A and PP2Ca), tyrosine
phosphatases (PTP-SL), and dual-specificity phosphatases (DUSP6, 7) directly dephosphorylate
ERK1/2 in the cytoplasm. Dual-specificity phosphatases (DUSP1, 2, 5, and 9) dephosphorylate
ERK1/2 in the nucleus. Abnormal activation of RAF/MEK/ERK1/2 signaling is known in various
cancer cells. BRAF inhibitors (vemurafenib, dabrafenib, and encorafenib), and MEK inhibitors
(trametinib, cobimetinib, and binimetinib) prevent ERK1/2 activation and are currently used for
cancer therapy.
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Regarding the detailed information/literature on the anti-apoptotic role of the ERK
signaling pathway in proliferation and tumorigenesis, the molecular and structural regula-
tion of this pathway, or the possibilities of targeting this pathway for cancer therapeutics,
readers are directed to excellent reviews elsewhere [7,28–33]. In this review, we will sum-
marize recent advances regarding understanding the role of ERK in apoptosis with a special
focus on the role of DUSPs in this aspect.

2. Overview of the RAS/RAF/MEK/ERK1/2 Signaling Pathway

The RAS/RAF/MEK/ERK pathway (hereinafter referred to as the ERK cascade) is a
highly conserved signaling mechanism, which is used to connect extracellular signals from
cell surface receptors to machinery that regulates multiple critical physiological processes,
including growth, proliferation, differentiation, migration, and apoptosis (Figure 1) [28].
The unique feature of MAPK signaling regulation is its sequential phosphorylation cascade
which, in combination with feedback loops at multiple levels, allows tight regulation of
ERK signaling activity in physiological conditions.

The non-oncogenic MAPK cascade during normal growth conditions is finely regu-
lated to ensure that ERK activation and de-activation meet the requirements of transcrip-
tional and translational events for cell growth. ERK is activated by various extracellular
stimuli such as growth factors, cytokines, hormones, and heat or oxidative stresses through
receptor tyrosine kinases (RTKs) or EGFRs [34–38]. These receptors then transmit activat-
ing signals to the small GTPase RAS, which acts as a binary switch in growth signaling.
Upon stimulation by upstream receptors, RAS switches from the GDP-bound inactive form
to the GTP-bound active form. The activated RAS then goes through a conformational
change in its downstream effector-binding region, leading to the binding and regulation
of downstream effectors, including RAF. Activated RAF phosphorylates and activates
serine/threonine-protein kinases MEK1/2, which in turn phosphorylate and activate
ERK1/2 kinases [39].

It should be mentioned that there are several MAP3K isoforms (Raf-A,B,C, Mos, and
MEKK1/3), and some of the alternative spliced isoforms of RAF proteins, as exemplified
by a dominant-negative antagonist of A-Raf (DA Raf), antagonize their full-length counter-
parts and the downstream ERK pathway [40]. Interestingly, a splice isoform of human Raf1
that causes protein truncation and loss of the C-terminal kinase domain (Raf1-tr) exhibited
increased nuclear localization compared with full-length Raf1. Raf1-tr was shown to have
increased binding to DNA-dependent protein kinase (DNA-PK), which inhibits DNA-PK
function and causes amplification of irradiation- and bleomycin-induced DNA damage.
Importantly, the expression levels of Raf1-tr impacts cancer cells’ resistance/sensitivity
to bleomycin-induced apoptosis. Thus, these various isoforms and spliced variants exert
various cellular and pathophysiological functions, which may be mediated by antagonizing
their full-length counterparts [41]. Alternative spliced isoforms of MEK (ERK1b) and ERK
(ERK1c) exist as well [42], extending the signaling specificity of the cascade even further.

Activated ERK1/2 kinases phosphorylate numerous substrates which regulate cell
cycle progression, differentiation, and survival (Figure 1) [30]. These substrates include
cytosolic signaling proteins, p90 ribosomal S6 kinase (RSK) and MAPK-interacting ser-
ine/threonine kinase (MNK), as well as transcription factors, such as ETS domain-containing
protein Elk-1, proto-oncogenes c-FOS, c-Jun and c-Myc, and cyclic AMP-dependent tran-
scription factor ATF2, located in the nucleus [29]. RSK (also known as MAPKAP-K1)
and MSK (for mitogen- and stress-activated protein kinase) constitute a family of protein
kinases that mediate signal transduction downstream of MAP kinase cascades [43]. RSK is
activated by the ERK family in response to various stimuli as exemplified by growth factors.
In contrast, MSK is also activated by ERK in response to such stimuli, but in addition, it can
be activated by p38 family MAP kinases in response to various cellular stress stimuli and
pro-inflammatory cytokines/factors. In mammals, four RSK genes (RSK1-RSK4) and two
MSK genes (MSK1 and MSK2) have been identified. These enzymes were among the first
substrates of ERK to be discovered and have proven to be multifunctional mediators of ERK
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signal transduction. While the RSK isoforms promote cell survival through the inactivation
of several apoptotic effectors, RSK1 and RSK2 were also shown to phosphorylate and
inhibit upstream signaling components, including SOS1 and GAB2 [28]. Transcription
factors targeted by the RAS–ERK pathway regulate gene expression involved in cellular
proliferation, differentiation, and cell cycle progression (e.g., Cyclin D) [28,44,45]. Mul-
tiple distinct substrates of ERK1/2 have been identified to date in different subcellular
compartments including the cytosol, the nucleus, or the endomembranes [46].

Positive and negative feedback plays a critical role in the maintenance of ERK activa-
tion balance and cellular homeostasis. The activity of the ERK MAPK pathway is tightly
regulated by the competing actions of upstream kinases and inhibitory phosphatases as
well as by the scaffolding proteins [30]. In mammals, scaffold proteins identified thus far
include KSR1/2, MORG1, IQGAP1/3, β-arrestins, and LAMTOR3 [28]. Scaffold proteins
fine-tune ERK signals and provide signal fidelity by isolating the ERK signaling complex
from external interferences. Especially, scaffold proteins play a central role as spatial
regulators of ERKs signals [47], by dictating ERK localization in the cell membrane and
endomembranes via interactions with ERK. Notably, in addition to scaffold proteins, ERK
signaling regulators also impact the spatio-temporal dynamics of the ERK signaling activity.
For example, MEK not only activates ERK but also anchors ERK in the cytoplasm. When
the signaling is in an inactive state, ERK is localized to the cytoplasm. In unstimulated
cells, MEK1 binds to ERK1/2. MEK1 contains a nuclear export signal (NES) that directs
its location and that of the MEK–ERK complex to the cytoplasm. The binding of MEK1 to
ERK may represent a mechanism for preventing the accumulation of ERK in the nucleus
where it could phosphorylate its nuclear substrates. The phosphorylation and activation of
MEK1 in response to mitogenic stimuli result in dissociation of the MEK–ERK complex
and the phosphorylation and activation of ERK by MEK1 [48]. The ERK cascade is inacti-
vated by the dephosphorylation of its components by several phosphatases. These include
serine/threonine phosphatases, such as PP2A and PP2Ca, tyrosine phosphatases, such as
PTP-SL, as well as dual-specificity phosphatases (DUSPs), such as DUSP6, and 7 (cytosol),
and DUSP1, 2, 5, and 9 (in the nucleus). DUSP5 can bind and sequester inactive ERK2 at the
nucleus [49], whereas DUSP6 can retain inactive ERK2 in the cytoplasm [50], thus affecting
the spatio-temporal dynamics of ERK signaling. Reciprocally, ERK activation affects DUSPs
at multiple levels, through transcriptional and post-transcriptional mechanisms [51–54].
For example, DUSP6 protein expression correlates with ERK signaling activation in lung
cancer cell lines, and regulation of DUSP6 is mediated at the promoter level by the ETS1
transcription factor, a well-known nuclear target of activated ERK. Another example of
the negative feedback regulation of ERK signaling includes direct negative regulation
of upstream kinases of the ERK signaling cascade by ERK phosphorylation. Activated
cytoplasmic ERK1/2 can directly phosphorylate EGFR, RAF, and MEK, which impairs
signaling as a rapid feedback response [55].

3. Targeting the Oncogenic Activation of the RAS/RAF/MEK/ERK Signaling for
Cancer Therapy
3.1. Roles of ERK Signaling in Proliferation and Survival

Unlimited cell proliferation and a lack of apoptosis are important biological character-
istics of tumors [56]. The ERK MAPK signaling cascade promotes proliferation and has
an anti-apoptotic effect. The ERK cascade activates transcription of several proliferative
signaling networks driven by FOS, Elk-1, Jun, and ETS family transcription factors, as well
as Myc (Figure 1) [29]. These factors support cancer cell proliferation by promoting cell
cycle entry, angiogenesis, and survival.

Apoptosis, or programmed cell death, is an essential process leading to the removal
of damaged cells without affecting normal cells, following DNA damage or during de-
velopment [57]. Apoptotic cell death is associated with several conserved features and
culminates in the activation of cysteine–aspartic proteases (caspases), which degrade cel-
lular components to prepare dying cells for clearance by phagocytes with minimal stress
to surrounding cells and tissues [58]. Dysregulation of apoptosis has a major role in the
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cause of various diseases, including neurodegenerative diseases, autoimmune disorders,
and cancer [59–61]. There are at least two broad signaling pathways that lead to apoptosis.
Namely, apoptosis is initiated by either internal or external stimuli and mediated via two
distinct pathways: the intrinsic pathway (mitochondria-mediated) and the extrinsic path-
way [62]. The intrinsic apoptosis pathway begins when an injury occurs within the cell,
which is mainly regulated by the B-cell lymphoma 2 (Bcl-2) family of intracellular proteins.
Intrinsic stresses such as oncogenes, direct DNA damage, hypoxia, and survival factor de-
privation, can activate the intrinsic apoptotic pathway. p53 is a sensor of cellular stress and
is a critical activator of the intrinsic pathway. The extrinsic pathway begins outside a cell
when conditions in the extracellular environment determine that a cell must die. Apoptotic
signaling through the extrinsic pathway engaged when extracellular ligands such as TNF
(tumor necrosis factor), Fas-L (Fas ligand), and TRAIL (TNF-related apoptosis-inducing
ligand) are attached to the extracellular domain of the DR (transmembrane receptors), i.e.,
the type 1 TNF receptor (TNFR1), Fas (also called CD95/Apo-1), and TRAIL receptors.

Genetic and pharmacological evidence suggests that ERK signaling mostly provides
prosurvival cues in response to serum and receptor tyrosine kinase (RTK) activation. The
Bcl-2 family controls apoptosis at the mitochondria by maintaining a balance between
pro-and anti-apoptotic members. The Bcl-2 family comprises anti-apoptotic (pro-survival)
and pro-apoptotic members. Pro-survival members, such as Bcl-xL, are structurally similar
to Bcl-2, whereas pro-apoptotic proteins Bax and Bak (Bcl-2 Antagonist Killer-1) are struc-
turally similar to Bcl-2 and Bcl-xL and antagonize their pro-survival functions. ERK1/2
signaling regulates the activities and levels of Bcl-2 family proteins such as the pro-apoptotic
protein BIM and the anti-apoptotic protein MCL-1, thereby promoting the survival of can-
cer cells. ERK1/2 activation can also inhibit apoptosis induced by the death receptors Fas,
or TNF (extrinsic death pathway). In contrast to ERK activation, manipulation to dampen
ERK1/2 signaling in response to these stimuli promotes apoptosis.

3.2. Roles of ERK Signaling in Tumor Development

In addition to the regulation of cellular physiological functions, such as cell prolifer-
ation, differentiation, and cell cycle, the ERK MAPK signaling is also involved in tumor
formation. Elevated activation of the ERK MAPK signaling pathway has been detected
in various human tumors, such as ovarian, colon, breast, thyroid, pancreatic, brain, and
lung cancers [63–65]. Continuous activation of the ERK MAPK signaling pathway can
promote the transformation of normal cells into tumors, while inhibition of the ERK MAPK
signaling pathway can inhibit tumor growth in vivo [66]. Furthermore, the ERK signaling
pathway plays a role in several steps of tumor development, including tumor invasion
and metastasis, degradation of the tumor extracellular matrix, angiogenesis, and tumor
cell migration. The phosphorylation by ERK of proteins such as myosin light chain kinase,
calpain, focal adhesion kinase, and paxillin promotes cancer cell migration. Therefore, aber-
rant activation of ERK MAPK signaling causes de novo cell transformation and promotes
tumor growth and progression.

3.3. Oncogenic Activation of ERK1/2 in Human Cancers

The MAP kinase cascade is probably the most important oncogenic driver of human
cancers. Aberrant activation of any signaling molecule that functions upstream of ERK1/2
would culminate in the constitutive activation of these kinases, leading to tumorigenesis.
Therefore, components of the ERK signaling cascade are considered attractive therapeu-
tic targets for cancer treatment and the blockade of this signaling module by targeted
inhibitors is an important anti-tumor strategy [1,5,7,33]. The ERK cascade is one of the
most commonly dysregulated pathways in human cancers. KRAS is the most commonly
mutated isoform in various tumor types, followed by NRAS and HRAS [67,68]. In particu-
lar, KRAS is mutated exclusively in pancreatic ductal adenocarcinoma. Oncogenic RAS
mutations exhibit stable GTP-binding and constitutive activation of RAS and downstream
RAF/MEK/ERK and PI3K/AKT signaling. Similarly, mutations involving BRAF, which are
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prevalent in malignant melanoma, exert an oncogenic effect by activating the downstream
MEK/ERK MAPK pathway, resulting in uncontrolled cellular proliferation. Unlike RAS
and BRAF, activating mutations in MEK are rarely found in human tumors. Intriguingly,
ERK mutations are very rare in the cancer genome, although a recent paper identified
ERK2 mutants as rare cancer-associated gain- and loss-of-function gene products [69].

3.4. Anticancer Agents Targeting the ERK Cascade

These findings propelled the development of highly selective and potent small-
molecule inhibitors of kinases of the RAS-effector signaling cascades, including RAF,
MEK, or ERK inhibitors for cancer therapeutics [70]. RAF monomer (BRAF (V600)) in-
hibitors (such as vemurafenib, dabrafenib, and encorafenib) are clinically approved for the
treatment of BRAFV600 mutant melanoma (Figure 1) [33]. Given the critical role of MEK in
ERK phosphorylation/activation, acting downstream of RAS and RAF, it has become an
attractive drug target providing the promise of a novel therapy for RAS- and RAF-driven
tumors. Indeed, two MEK inhibitors (trametinib (GSK) and cobimetinib), either as single
agents or together with the RAF inhibitors (vemurafenib (Zelboraf; Genentech/Plexxikon)
and dabrafenib (Tafinlar; GlaxoSmithKline)), have been approved for the treatment of
patients with metastatic melanoma expressing the mutated RAF paralogue BRAF(V600E)
(Figure 1). Despite intensive efforts by the investigators to search for an effective RAS
inhibitor for more than three decades, oncogenic RAS mutants have been considered “un-
druggable” until recently due to their high affinity with GTP and the lack of a proper
binding pocket for small molecule inhibitor binding [71]. It has been demonstrated that
KRAS G12C could be targeted by using a covalent small molecule that docks in the switch II
pocket and cross-links with Cys12 [72]. Currently, several potent covalent inhibitors against
mutant-specific RAS (KRAS-G12C) are being developed and some of these molecules are
in clinical trials. In contrast to the advanced development and clinical evaluation of the
above-mentioned RAF and MEK inhibitors, only limited progress has been made in the
ERK inhibitor development and they are still undergoing clinical trials. In contrast to RAF
inhibitors, these inhibitors have a lower therapeutic index since they strongly inhibit this
signaling pathway in normal cells [72,73].

Therefore, the close association of the RAS–ERK signaling activation with various
clinical tumors together with the findings that the blockade of ERK signaling by spe-
cific inhibitors of RAF or MEK suppress tumor proliferation at the clinical level are
consistent with the well-recognized concept that RAS–ERK pathway activation exerts
anti-apoptotic functions.

4. Role for the ERK Cascade in Apoptosis

Notably, contrary to the well-recognized anti-apoptotic role of ERK1/2, accumulating
evidence showed that ERK1/2 can be also pro-apoptotic (Figure 2). This anti-survival
aspect of ERK1/2 has been observed in several physiological contexts, including neuronal
cell death [74], brain injury following ischemia [75,76], development, tumor-suppressive
mechanisms, and/or tumor responses to chemotherapy [77–81].

Here, we will focus on the possible mechanisms of the pro-apoptotic role of the ERK
pathway in cancers by listing and analyzing the major compounds/stimuli that induce
apoptosis by stimulating ERK1/2. We will also provide future perspectives on the potential
and limitations of these agents as a novel cancer therapeutic approach.

4.1. Compounds/Stimuli That Induce Apoptosis through ERK Activation

Various agents and stimuli, which have been reported to induce apoptosis through
activation of the ERK pathway are summarized (Table 1). The repertoire of the stim-
uli/compounds contains a broad spectrum ranging from H2O2, nitric oxide (donors), UV,
γ-irradiation, phorbol esters, glutamate, cadmium, zinc, bufalin, indomethacin, to antitu-
mor agents, including cisplatin, doxorubicin, etoposide, carboplatin, and taxol. The list of
the compounds or stimuli that can induce cancer cell death by activating ERK also includes
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various natural compounds including resveratrol, chelerythrine, shikonin, betulinic acid,
baicalein, icaritin, quercetin, piperlongumine, kaempferol, and recently identified ACA-28
and its lead derivatives.

Figure 2. Activation of ERK1/2 upstream factors or down-regulation of DUSP6/7 by various stimuli
(such as ROS) induces the activation of ERK1/2 in the cytoplasm. Activated cytoplasmic ERK1/2
induces the mitochondrial apoptosis or is translocated to the nucleus through the NPC (nuclear pore
complex). Down-regulation of DUSP1/5 by the stimuli (such as ROS) also induces the activation
of ERK1/2 in the nucleus. Consequently, either down-regulation of cytoplasmic or nuclear DUSPs
leads to the accumulation of activated ERK1/2 in the nucleus. Sustained ERK1/2 activation above a
certain threshold activates specific pro-apoptotic targets and induces apoptosis.

In most cases, the demonstration of whether the apoptosis is induced through ERK
activation is experimentally investigated either by the MEK inhibitor (PD98059, U0126),
ERK silencing, or the expression of the dominant-negative MEK. A paper used both MEK
inhibitor and DUSP 5/6 overexpression for ERK inhibition and apoptosis cancellation [82].
Special caution should be taken when considering the results in Table 1 that use old
generation inhibitors of MEK that are not as specific as the recently developed drugs were
used. For example, it was shown that PD98059 can directly affect mitochondria and induce
the production of reactive oxygen species [83]. Moreover, U0126 was shown to act as a
direct ROS scavenger [84], implicating potential side-effects of these inhibitors on ROS
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signaling. In contrast, Wan et al., confirmed that U0126 did not affect ROS increase induced
by 2’-dihydroxy-4,4’-dimethoxydihydrochalcone. Thus, the effect of MEK inhibitors on
ROS production remains controversial. Furthermore, future work will be needed if SiRNA
was used to reduce ERK activity without experiments to rule out the possible off-target
effects. Some recent papers used PD184352, which is a novel, potent, and highly selective
ATP non-competitive MEK1/2 inhibitor to confirm that the apoptosis is induced through
ERK activation [85,86]. Future work with rigorous confirmation will further validate the
properties of these compounds to induce ERK activation-dependent apoptosis.

Table 1. List of the compounds that induce ERK activation-dependent apoptosis.

In Vivo/Cellular Model Stimuli Inducing Cell
Death

Detected Time
Points of

Activated ERK

Timing of
Evaluating
Cell Death

Characteristics of Cell
Death

Evidence
Implicating MEK–ERK

in Cell Death

p53-
Dependent

p53
Activation

ROS
Induction Reference

RPTEC/TERT1 cells, Mouse
renal proximal tubular cells Cisplatin 72 h 48, 72 h

Caspase-3, Bcl-2,
Anneexin V, Propidium

iodide (PI)
Panduratin A no

information
no

information YES [87]

Nasopharyngeal carcinoma
(NPC) cell line (NPC-039

and NPC-BM)
Dehydrocrenatidine 24 h 24 h Caspase-3, -8, -9, Bak,

Bax, Bcl-xL, Bcl-2, PARP U0126 no
information

no
information NO [88]

Human proximal tubular
cell (HK-2) Urinary proteins 2, 8 h 48 h Annexin V U0126 no

information
no

information YES [89]

Mouse auditory cell line
(HEI-OC1) Cisplatin 24 h 24 h Caspase-3, TUNEL,

LC3-II U0126 no
information

no
information YES [90]

Human endometrial cancer
(EC) cell (Ishikawa,

HEC-1A)
Curcusone C 24 h 24 h Caspase-3, -9 U0126 no

information
no

information no information [91]

T24 Pterostilbene, Cisplatin,
Gemcitabine 48 h 48 h LC3-II, β-galactosidase

(senescence) U0126 NO no
information no information [92]

Human non-small cell lung
cancer (NSCLC) cell (A549,

NCI-H292)
Morusin 1, 2, 4, 8, 12, 24 h 48 h Caspase-3, PARP, LC3-II, U0126 no

information
no

information YES [93]

Human umbilical vein
endothelial cells (HUVECs)

Death-domain
associated protein

(DAXX) and inorganic
phosphate (Pi)

1 h 24 h Caspase-3 U0126 no
information

no
information no information [94]

LNCaP and PC-3 cells γ-tocotrienol (GT3) 6 h 12 h Caspase-3, -9 U0126 no
information

no
information no information [95]

Human gastric cancer cell
lines (SGC-7901, BGC-823) Ginsenoside Rg5 24 h 24 h Caspase-3, -8, -9, PARP,

LC3-II U0126 no
information

no
information YES [96]

A549 Derrone (DR) 3, 6, 12, 24 h 24 h Caspase-3, -8, PARP,
LC3-II U0126 YES no

information YES [97]

Human colorectal cancer
cells (HCT116 p53+/+ and

p53−/−)

6-(Methylsulfinyl)hexyl
isothiocyanate

(6-MSITC)

6, 12, 18, 24, 36,
48 h 48 h Caspase-3, PARP U0126 NO no

information no information [98]

HeLa HVJ-E infection 24 h 24 h Caspase-3, -9, LC3-II U0126 no
information

no
information no information [99]

RSC96

Mesenchymal stem cells
(MSC)-derived

extracellular vesicles
(EVs)

24 h 24 h Annexin V, Bcl-2, Bax U0126 no
information

no
information no information [100]

HL-60

Platinum complex
containing a piplartine
derivative cis-[PtCl(PIP-
OH)(PPh3)2]PF6 (where,

PIP-OH = piplartine
demethylated derivative;

and
PPh3 = triphenylphosphine)

no infromation 24, 48 h Annexin V, Caspase-3 U0126 no
information

no
information YES [101]

Non-small cell lung cancer
(NSCLC) cells (H1975,

A549)

M. tenacissima extract
(MTE) 24 h 24 h Caspase-3, PARP, LC3-II U0126 no

information
no

information no information [102]

Non-small cell lung cancer
(NSCLC) cells (PC9, H1975) Scutellarin 48 h 24, 48 h Annexin V, LC3-II U0126 no

information
no

information no information [103]

Colon cancer cell lines
(SW480, SW620, DLD-1) NSC95397 6 h 24 h Caspase-3, -7, -9, PARP U0126 NO no

information no information [104]

Human breast cancer cell
line (MDA-MB-231) Triptolide 2, 4, 8, 24, 48 h 48, 72 h Caspase-3, PARP U0126 no

information
no

information YES [37]

Human breast cancer cell
(MCF-7) Triptolide (TPI) 24 h 24 h Caspase-3, LC3-II U0126 no

information
no

information no information [105]

MKN45
Alpha,

2′ -dihydroxy-4,4′ -
dimethoxydihydrochalcone

48 h 48 h Annexin V, LC3-II U0126 no
information

no
information YES [106]

Non-small cell lung
carcinoma (NSCLC) (A549,

H226, H1299)
Artocarpin 0.5, 1, 2, 3, 4 h 6, 24 h Caspase-3 U0126, SB202190

dependent
and

independent
YES YES [107]

Murine macrophage cell
line RAW264.7

H. pylori secreted
protein HP1286

15, 30, 60, 90,
120 m 24 h Caspase-3 U0126 no

information
no

information no information [108]

HepG2 Cholix toxin (Cholix) 4, 8, 12 h 12 h Caspase-3, -9 U0126, SB20852,
SP600125

no
information

no
information YES [109]

Human ovarian cancer cell
lines (HEY, A2780) Baicalein (BA) 24 h 24 h LC3-II, PARP U0126, ERK siRNA no

information
no

information no information [110]

MGC-803 Equol 12, 24, 48 h 24 h Caspase-3, PARP, cIAP1 U0126 no
information

no
information no information [111]

A549

Derivatives of 6-
cinnamamido-quinoline-

4-carboxamide
(CiQ)

8 h 48 h Caspase-9, PARP, LC3-II
U0126,

dominant-negative
MEK1

NO no
information no information [112]

Human nasopharyngeal
carcinoma (NPC) cell lines

(HONE-1, NPC-039)

Polyphyllin G
(polyphyllin VII) 3, 6, 12 h 24 h Caspase-8, -3, -9, Bax,

Bcl-xL, Bcl-2, LC3-II U0126 no
information

no
information no information [113]

253J-Bv, T24 Co-treatment of
curcumin and cisplatin 3, 6, 24 h 24 h Caspase-3, Anneexin V U0126

dependent
and

independent
YES YES [114]
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Table 1. Cont.

In Vivo/Cellular Model Stimuli Inducing Cell
Death

Detected Time
Points of

Activated ERK

Timing of
Evaluating
Cell Death

Characteristics of Cell
Death

Evidence
Implicating MEK–ERK

in Cell Death

p53-
Dependent

p53
Activation

ROS
Induction Reference

Burkitt’s lymphoma
Ramos cells MytiLec 12, 24 h 24 h Caspase-3, -9,

Annexin V U0126 no
information

no
information no information [115]

Human umbilical vein
endothelial cells (HUVECs)

(SGC7901)
farrerol 24 h 24 h G0/G1 cell cycle arrest U0126 no

information
no

information no information [116]

Osteoblasts (OBs) Cadmium (Cd) 2, 3, 4, 5, 6 h 24 h Bax, Bcl-2, Caspase-3, -9,
PARP U0126 no

information
no

information

Decrease in
ROS

generation
[117]

HCT116 Physalin B 12, 24, 36 h 24 h Caspase-3, PARP, LC3-II U0126 no
information

no
information YES [118]

NIH/3T3 Paraquat 0.5, 1, 6, 12, 24 h 24 h Cytochrome c U0126 no
information

no
information YES [119]

Breast cancer cell lines
(MCF-7, BT474,

MDA-MB-231, SUM1315)

D Rhamnose β-hederin
(DRβ-H) 5, 30 m, 2, 6, 48 h 48 h Annexin V,

caspase-3, -8, -9 U0126 no
information

no
information no information [120]

A549 Pyocyanin (PCN) 5 m, 1, 3, 6, 12,
24 h 24 h Caspase-3 U0126 no

information
no

information YES [121]

Mouse TM4 Sertoli cells Nonylphenol (NP) 15, 30, 60, 180 m 24 h Sub G1, Caspase-3,
PARP, Bcl-2, Bax U0126 no

information
no

information YES [122]

HT-29 Piperlongumine
(PPLGM) 5, 10, 15, 30, 60 m 24 h Caspase-3 U0126 no

information
no

information no information [16]

BRL 3A Cadmium (Cd) 12 h 12 h Annexin V, Bax, Bcl-2 U0126 no
information

no
information YES [123]

Rat liver cells Corticotrophin-releasing
hormone (CRH) 8 h 8, 24 h Bax, Bcl-2 U0126 no

information YES no information [124]

MDA-MB-468 Allyl isothiocyanate
(AITC) 2 h 12 h Caspase-3, -9, Bcl-2,

Cytochrome c U0126 NO NO YES [125]

Mouse embryonic stem
(mES) cells

Sodium nitroprusside
(SNP) 4, 8, 12, 24 h 24 h Caspase-3, -8, -9,

Annexin V U0126 no
information

no
information YES [126]

SGC-7901 β,β-
Dimethylacrylshikonin 2, 4, 8, 12, 24 h 48 h

Caspase-3, -8, -9, Bax,
Bcl-xL, Bcl-2, PARP,

Cytochrome c
U0126 no

information
no

information no information [127]

H9c2 Cyclosporine A (CsA) 0.25, 0.5, 1, 4, 8, 12,
24 h 4 h Caspase-3, Bax, Bcl-2,

Annexin V, TUNEL U0126 no
information

no
information no information [128]

Breast cancer cell lines
(MDA-MB-231, KPL-3C) Olaparib 1, 12 h 12, 24 h Annexin V U0126 no

information
no

information no information [129]

Jurkat/NTAL(+) Methylprednisolone 5, 30 m 24 h Annexin V, Propidium
iodide (PI) U0126 no

information
no

information no information [130]

Jurkat Phorbol myristate
acetate (PMA) 24 h 16, 24 h DNA fragmentation U0126, PD98059 no

information
no

information no information [131]

Head kidney macrophage
(HKM) Arsenic 24 h 24 h Caspase-3 U0126 no

information
no

information YES [132]

LLC-PK1 Cysteinyl leukotrienes
(cysLTs) synthesis 0.5, 1, 3, 6, 12, 24 h 24 h Caspase-3, Bax, Bcl-2,

Cytochrome C U0126 no
information

no
information no information [133]

HeLa Phenethyl
isothiocyanate (PEITC) 8, 24 h 24 h Caspase-3, PARP U0126 no

information
no

information no information [134]

Human lung
adenocarcinoma A549 Pemetrexed 4, 8, 12, 24, 48 h 72 h Caspase-3, TUNEL U0126, PD98059, ERK

siRNA
no

information
no

information no information [135]

Human endometrial cancer
Hec1A Icaritin 3, 6, 12, 24 h 24 h

Caspase-3, -9, PARP,
Cytochrome c, TUNEL,

Annexin V
U0126 no

information
no

information no information [23]

Breast cancer MDA-MB-453
and MCF7 Icaritin 5, 15, 30 m, 1, 2, 4,

8, 12, 24 h 48 h Bcl-2, PARP, Annexin V U0126 no
information

no
information no information [136]

Renal tubular epithelial cell
(RTEC)

HIV-1 viral protein r
(Vpr) 5 d 5 d Caspase-3, -8, -9, PARP U0126 no

information
no

information no information [137]

Spinal cord
Spinal cord

ischemia/Reperfusion
(I/R) injury

3 h 24 h Caspase-3, TUNEL,
c-IAP2 U0126 no

information
no

information no information [138]

HL-60, U397, SK-MEL-1 Asteriscunolide A (AS) 0.5, 1, 2, 3 h 24 h Caspase-3, -7, -9, PARP U0126, PD98059 no
information

no
information YES [139]

Astrocytes Glutamate 3, 6, 9 h 24 h Caspase-3, TUNEL U0126, DUSP5, 6
over-expression

no
information

no
information no information [82]

Neuro-2a

4-Methyl-2,4-bis(4-
hydroxyphenyl)pent-1-

ene
(MBP)

0.5, 1, 2, 4, 6, 8 h 24 h
Sub-G1, Caspase-3, -7,

-9, -12, Bax, Bcl-2, PARP,
Cytochrome c

PD98059 no
information

no
information no information [140]

Human platelets Bisdemethoxycurcumin
(BDMC) 1, 2 h 1 h

Caspase-3, -8, -9, Bax,
BID, Bcl-2, Bcl-xL,

Cytochrome c
PD98059 no

information
no

information YES [141]

HeLa, MCF-7

N-Methyl and
N,N-dimethyl

bis(indolyl)hydrazide-
hydrazone analog

derivatives

no information 24 h Bak PD98059 YES YES YES [142]

Human ovary
adenocarcinoma (SKOV3)

CRT1 (Ent-18-acetoxy-
7β-hydroxy

kaur-15-oxo-16-ene)
24 h 24 h

Caspase-3, -7, -9, PARP,
Cytochrome c, Annexin
V, Propidium iodide (PI)

PD98059 no
information

no
information no information [143]

Human pulmonary
microvascular endothelial

cells (HPMECs)

Cigarette smoke extract
(CSE) 12 h 12 h

Caspase-3, TUNEL,
Annexin V, Propidium

iodide (PI)
PD98059 no

information
no

information no information [144]

Hepatocellular carcinoma
(HCC) (SMMC7721,

Bel7402)
Hispidulin 48 h 48 h

Caspase-3, Bax, Bcl-2,
Annexin V, Propidium

iodide (PI), TUNEL
PD98059 no

information
no

information no information [145]

Human osteosarcoma cells
(HOS) Honokiol (HNK) 24 h 24 h

Caspase-3, -9, Bcl-2,
Bcl-xL, survivin, PARP,
Annexin V, Propidium

iodide (PI), TUNEL

PD98059 no
information

no
information YES [146]

Human hepatoma (Hep3B) Desipramine 1, 2, 4, 8 h 24 h LDH PD98059 no
information

no
information YES [147]

Human neuroblastoma
(SH-SY5Y) Cearoin 12 h 12 h Caspase-3, Bax, Bcl-2,

PARP PD98059 no
information

no
information YES [148]

Human Glioma (U87) Valproic acid (VPA) 72 h 72 h

Hoechst 33342,
Caspase-3, -9, Bax, Bcl-2,
Cytochrome c, TUNEL,
Annexin V, Propidium

iodide (PI)

PD98059 no
information

no
information no information [149]

Human gastric cancer cells
(AGS) Agrimonolide (AM) 24 h 24 h

Caspase-3, -8, -9, Bax,
Bcl-2, Annexin V,

Propidium iodide (PI)
PD98059 no

information
no

information YES [150]

β-cell-derived cells
(RIN-m5F) Etoposide 15, 30, 60 m 24 h

SubG1, Caspase-3, -6, -7,
-9, Cytochrome c, Bax,

Bcl-2, Annexin V,
Propidium iodide (PI)

PD98059 no
information

no
information no information [19]
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Table 1. Cont.

In Vivo/Cellular Model Stimuli Inducing Cell
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Detected Time
Points of

Activated ERK

Timing of
Evaluating
Cell Death
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Implicating MEK–ERK

in Cell Death

p53-
Dependent

p53
Activation

ROS
Induction Reference

HT-29 Simvastatin 24 h 48 h Caspase-3, Bax, Bcl-2 PD98059 no
information

no
information no information [151]

Ardiac myocytes (H9c2) Doxorubicin (DOX) 2, 6, 12, 24, 48 h 24 h, 48 h TUNEL, Annexin V,
Propidium iodide (PI) PD98059, ERK siRNA YES YES no information [152]

RAW 264.7 cells Cypermethrin 15, 30 m 48 h Annexin V, Propidium
iodide (PI) PD98059 no

information YES YES [153]

Male Sprague–Dawley rats,
Primary hippocampal

neuron cells

Early brain injury (EBI)
following subarachnoid

hemorrhage (SAH),
oxyhemoglobin

(OxyHb)

6, 12, 24, 48 h 24 h Caspase-3, -8, -9, PARP,
TUNEL PD98059 YES YES YES [154]

Neuroblastoma cells
(neuro-2a) Honokiol (HNK) 48, 72 h 72 h BrdU PD98059 no

information
no

information YES [155]

Human extravillous
cytotrophoblast

(EVCT)-derived cells
(HTR-8/SVneo, HPT-8)

Coplanar
polychlorinated

biphenyls (Co-PCBs)
24 h 24 h Annexin V, Propidium

iodide (PI) PD98059 no
information

no
information no information [156]

Human multiple myeloma
(MM) cells (U266) Cinobufagin (CBG) 3 h 24 h

Caspase-3, Bcl-xL, Bcl-2,
PARP, Survivin,

Annexin V, Propidium
iodide (PI)

PD98059 no
information

no
information YES [157]

Lung adenocarcinoma cells
(A549)

Triptolide
(TP)/Hydroxycamptothecin

(HCPT)
24 h 24 h

Caspase-3, -9,
Cytochrome c, Bax,
Bcl-2, Annexin V,

Propidium iodide (PI)

PD98059 no
information

no
information no information [158]

Human leukemia cells
(HL-60) Bromo analogue (TBr) 6, 12, 24 h 24 h

Caspase-3, -8, -9, PARP,
Bax, BID, Bcl-2, Sub-G1,
Annexin V, Propidium

iodide (PI)

PD98059 no
information

no
information no information [159]

Human alveolar cells
(A549) Acetochlor (ACETO) 6, 12, 24, 48 h 72 h

Caspase-3, -9, PARP, Bak,
Bax, BID, Bad, MCL-1,

Bcl-xL, Bcl-2, Annexin V,
Propidium iodide (PI)

PD98059 no
information

no
information YES [160]

PC12 Perfluorohexanesulfonate
(PFHxS)

0.5, 1, 3, 6, 9, 16,
24 h 24 h Caspase-3, Propidium

iodide (PI), TUNEL PD98059 no
information

no
information YES [161]

Prostate cancer cells (PC3) MHY-449 24 h 24 h
Caspase-3, -8, Bax, Bcl-2,

PARP, Annexin V,
Propidium iodide (PI)

PD98059 NO no
information no information [162]

Neuro-2a As2O3 15, 30, 60 m 24 h Caspase-3, -6, -7, -9, -12,
PARP, Bax, Bcl-2, PD98059 no

information
no

information YES [163]

Gastric cancer cells
(SGC7901, MGC803)

Interferon-α
(IFN-α)/5’-Deoxy-5-

fluorouracil
(5’-DFUR)

24, 48 h 24 h, 48 h Caspase-3, -9, PARP PD98059, ERK siRNA no
information

no
information no information [164]

Osteosarcoma cells (G292) Capsaicin 2, 6 h 24 h Caspase-9, Annexin-V PD98059 no
information

no
information no information [165]

Rat chondrocyte Mechanical stress (0.5
MPa) 24 h 24 h

Caspase-3, -9, Bax, Bcl-2,
Annexin V, Propidium

iodide (PI), TUNEL
PD98059 no

information
no

information no information [166]

Leukemia cells (KBM-5) Tanshinone IIA (Tan IIA) 6, 12, 18, 24 h 24 h Sub-G1, PARP PD184352 no
information

no
information no information [85]

Rat hepatic stellate cell
(HSC-T6) Tanshinone IIA (Tan IIA) 6 h 24 h Sub-G1, Caspase-3, -9,

PARP, Bax, Bcl-2 PD98059 no
information

no
information YES [167]

Cerebellar granule cells
(CGCs)

Perfluorooctane
sulfonate (PFOS)

5, 10, 15, 30 m, 1,
3, 6 h 24 h Hoechst 33342,

Caspase-3 PD98059 no
information

no
information no information [168]

Human oral squamous cell
carcinomas (YD-10B) Fomitoside-K 4, 8, 12, 24 h 24 h

Caspase-3, -9, PARP, Bax,
Bcl-2, Survivin,

Propidium iodide (PI)
PD98059 no

information
no

information YES [169]

Human myeloid leukemia
cells (K562) Calactin 6, 12, 24 h 12 h, 24 h

Caspase-3, -8, Caspase-9,
Bax, Bcl-2, Annexin V,
Propidium iodide (PI)

PD98059 no
information

no
information no information [170]

Human gastric cancer cells
(CS12) Euphol 4, 24, 48, 72 h 48 h, 72 h Caspase-3, Annexin V,

Propidium iodide (PI) PD98059 no
information

no
information no information [171]

Human oral squamous cell
carcinoma (OSCC) cells

(YD-8)

P. densiflora leaf
essential oil (PLEO) 4, 8 h 8 h Caspase-9, PARP, Bax,

Bcl-2 PD98059 no
information

no
information YES [172]

Osteoblasts (Saos-2) CdCl2 3, 4, 18 h 48 h, 72 h APO Percentage dye PD98059 no
information

no
information no information [173]

Human hepatoma (HepG2) ZL11n 24 h 24 h
Caspase-3, Bax, Bcl-2,

Annexin V, Propidium
iodide (PI)

PD98059 no
information

no
information no information [174]

Amygdala region in SPS
rats

Single-prolonged stress
(SPS) 1 h 1 h, 7 d Bax, Bcl-2, TUNEL PD98059 no

information
no

information no information [175]

Human myeloid leukemia
cells (K562) Ormeloxifen (ORM) 1, 3, 6, 24 h 48 h

Caspase-3, -9, Bax, Bcl-2,
Annexin V, Propidium

iodide (PI), TUNEL
PD98059 no

information
no

information no information [176]

HK-2 Cyclosporine A (CyA) 1, 3, 6, 24 h 24 h Hoechst 33258 PD98059 no
information

no
information no information [177]

PC12 Parathyroid hormone
(PTH) 24, 48, 72 h 24, 48, 72,

96 h
Caspase-3, Propidium

iodide (PI), DNA ladder PD98059 no
information

no
information no information [178]

HCT116 Qizhen capsule (QZC) 15, 30, 60 m 24 h, 48 h
Caspase-3, -9, Bax, Bcl-2,

PARP, Annexin V,
Propidium iodide (PI)

PD98059 no
information

no
information no information [179]

Human melanoma cells
(A375SM), mouse xenograft

model
Shikonin 24 h 24 h

Bax, Bcl-2, PARP,
Annexin V, propidium

iodide (PI), TUNEL
no information no

information
no

information no information [180]

Rat hepatocytes
Di-(2-

ethylhexyl)phthalate
(DEHP)

24 h 24 h

Caspase-3, PARP, Bad,
Bax, Bcl-2, Bcl-xL,

Annexin V, Propidium
iodide (PI)

PD98059 no
information

no
information

YES (ROS
independent) [181]

Human leukemia cell line
(K562) Prodigiosin 48 h 24, 48 h Caspase-3, -8, -9,

Annexin V, LC-3 PD184352 no
information

no
information YES [86]

4.2. Mechanisms of ERK-Induced Apoptosis

Depending on the cell types and the nature of the stimuli, ERK activation is associated
with the intrinsic apoptotic pathway characterized by the release of cytochrome c from the
mitochondria and activation of initiator caspase-9, or with the extrinsic apoptotic pathway,
which relies on the activation of an initiator caspase-8.
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In vivo studies showed that ERK1/2 kinases act upstream of caspase-3 in cisplatin-
induced cell death in renal cells [87,182]. Furthermore, cisplatin-induced apoptosis re-
quired ERK activation to induce mitochondria membrane depolarization and cytochrome
c release, and caspase-3 activation. Several studies suggested that ERK may act on mito-
chondria to induce cytochrome c release through a pro-apoptotic molecule Bax and/or
p53. Cisplatin or H2O2-induced expression of Bax and p53 were decreased by the ERK
pathway inhibition [183–185].

ERK also regulates the extrinsic pathway and mediates apoptosis induction. Inhibition
of ERK reduced TNF-α expression, caspase-3 activation, and apoptosis in renal tissues [186].
Furthermore, inhibition of ERK activity by a MEK inhibitor U0126 abolished the increase
in IL-1β mRNA induced by brain ischemia [187]. Thus, ERK may promote the expression
of death ligand thereby mediating apoptosis via the extrinsic pathway.

In addition, ERK can promote cell death by suppressing the survival signaling path-
ways, including PI3K/AKT signaling [188,189]. Shinha et al. reported that ERK activation
in response to survival factor deprivation may lead to cell death via the suppression of the
survival mediated by the Akt signaling pathway [188]. Similar cross-talk between ERK
and Akt signaling pathways, the two major signaling pathways relevant for survival as
well as tumorigenesis was reported by various reports [190].

4.3. DNA Damage and p53 in the ERK Activation-Induced Apoptosis

DNA-damaging agents/stimuli are one of the largest groups that induce apoptosis
via ERK activation. Chemotherapeutic agents, such as etoposide, adriamycin, platinum
compounds (cisplatin), or ionizing and ultraviolet irradiation activate ERK1/2 and induced
apoptosis in primary cells and various cancer cell lines [191,192]. Inhibition of ERK1/2
activity by the MEK inhibitor PD98059 attenuates apoptosis induced by DNA-damaging
agents, while forced activation of ERK by the constitutively active MEK1 mutant sensitizes
cells to DNA damage-induced apoptosis [191]. DNA damage is well known to activate
p53 via ATM and ATR, two members of the PI3K family. Tumor protein p53 is a nuclear
transcription factor that regulates the expression of a wide variety of genes involved in
apoptosis, growth arrest, or senescence in response to genotoxic or cellular stresses. DNA
damage induces a rapid increase in p53 protein levels and a subsequent increase in its
transcriptional activity [193]. This then leads to the transcriptional activation of a number
of genes whose products trigger cell-cycle arrest, DNA repair, or apoptosis, including
pro-apoptotic Bcl-2 family members. The p53-mediated apoptosis pathway is one of
the major apoptosis signaling pathways involving the stimulation of both the extrinsic
and intrinsic pathways. p53 transcriptionally upregulates pro-apoptotic genes, Bax, Noxa,
PUMA (p53-Upregulated Modulator of Apoptosis), and BID [194]. p53 has also been shown
to transcriptionally repress the anti-apoptotic genes Bcl2, Bcl-xL, and Survivin [195,196].
Furthermore, p53 stimulates apoptosis via extrinsic pathway by upregulating mRNA
encoding Fas and DR5 in response to DNA damage, thereby promoting cell death through
caspase-3 [194].

Then, what is the functional connection between ERK activation and p53 in mediat-
ing DNA damage-induced apoptosis? Some studies showed that apoptosis induced by
various DNA damaging agents correlates with p53 upregulation and modulation of Bcl-2
family protein in a MEK-dependent manner, suggesting that ERK activation stimulates
p53 transactivation [107,114,142]. Consistently, the upregulation/accumulation of p53 by
ERK activation is associated with p53 phosphorylation by ERK at Ser15 (although this
Serine residue is not followed by a proline and thus does not represent a typical consensus
phosphorylation site for ERK), which stabilizes p53 by inhibiting the association with
Mdm2, a ubiquitin ligase for p53 [197]. In addition, phosphorylation of the Thr55 residue
of p53 by ERK2 is implicated in the doxorubicin-induced p53 activation and cell death
in MCF-7 breast cancer cells [198]. Furthermore, manipulating p53 activity or expres-
sion by various approaches, including p53 siRNA, a dominant-negative p53 mutant, p53
inhibitor Pifithrin-alpha, p53-deficient cells, also showed that ERK-activated apoptosis
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requires p53 expression [107,114,142,152,154,199]. These reports support the role of ERK in
p53-mediated apoptosis in cancer cells.

However, Tang et al., reported that etoposide-induced ERK activation takes place
downstream of ATM and is independent of p53 [191], based on the findings that the
MEK inhibitor failed to abolish p53 stabilization upon DNA damage and that the ERK
activation in response to etoposide requires ATM but not p53. Similarly, RAS-mediated
activation of ERK by cisplatin induces cell death independently of p53 in osteosarcoma and
neuroblastoma cell lines, and activated ERK has been implicated in doxorubicin-mediated
cell death, independent of p53 status [20,21].

Conversely, p53 may act as one of the upstream regulators of ERK activation for
the induction of apoptosis in carboplatin-treated cervical cancer cells [200]. The authors
reported that a requirement of ERK activation in carboplatin-induced apoptosis in SiHa and
CaSki cells and that abrogation of p53 transactivation activity by a p53 inhibitor (Pifithrin-
α) or dominant-negative mutant of p53 resulted in a decrease in activation of ERK in
carboplatin-treated cells [200]. Another example of p53-mediated ERK activation includes
ERK1/2 activation mediated by the Nutlin-3-induced mitochondrial translocation of p53.
Nutlin-3, an MDM2 antagonist, induced the phosphorylation of EGFR, (MEK)1/2, and
ERK1/2 in U2OS human osteosarcoma cells, which was canceled by p53 silencing [201].

Moreover, Heo et al. reported that DNA damage induced both the phosphorylation
of p53 at Ser 15 and ERK [202]. Inhibition of p53 by a dominant-negative mutant or in
p53−/− fibroblast cells abolished ERK phosphorylation and ERK inhibitor prevented
p53 phosphorylation, indicating that phosphorylations of p53 and phospho-ERK are in-
terdependent with each other. These results indicate that ATM mediates interdependent
activation of p53 and ERK through the formation of a ternary complex between phopsho-
p53 and phospho-ERK in response to DNA damage to cause growth arrest. Thus, ERK’s
role in phosphorylating p53 in response to DNA-damaging drugs seems to be dependent
on the cell line being treated.

Collectively, ERK activation plays an important role in DNA damage-induced apopto-
sis dependently or independently of p53.

4.4. ROS and ERK Activation-Induced Cell Death

Another important signature shared by many stimuli/compounds capable of inducing
ERK-mediated apoptosis is their property of simulating ROS. These include chemical
oxidants such as H2O2, and nitric oxide donors, or heat, cisplatin, etoposide, doxorubicin,
indomethacin, cearoin, icaritin, triptolide, and piperlongumine (Table 1). Especially, a close
association between DNA damage-inducing stimuli/compounds and ROS production
was reported [203]. In most cases, the demonstration of the implication of ROS in the
mechanism of ERK-induced apoptosis is experimentally performed with the use of different
ROS inhibitors [17,188,204–210].

For example, triptolide-treatment induced ERK activation in a dose- and time-dependent
manner in MDA-MB-231 breast cancer cells [37]. ERK activation was crucial in mediat-
ing triptolide-induced caspase-dependent apoptosis. Triptolide-induced ERK activation
modulated the expression of the Bcl-2 protein family member Bax but was not involved
in the downregulation of Bcl-xL expression. ROS act upstream of ERK activation, as the
MEK inhibitor U0126 did not inhibit the generation of ROS induced by triptolide treatment.
Sensitization of anti-tumor agents by a compound associated with ROS-mediated ERK
activation was also reported [211]. Curcumin potentiates antitumor activity of cisplatin in
bladder cancer cell lines via ROS-mediated activation of ERK1/2 [114]. Importantly, NAC
(ROS scavenger) and U0126 (MEK inhibitor) inhibited upregulation of p53 and apoptosis
as well as downregulation of survival proteins induced by co-treatment with curcumin
plus cisplatin. Thus, co-treatment with curcumin and cisplatin synergistically induced
apoptosis through ROS-mediated activation of ERK1/2 in bladder cancer.

It has long been recognized that an increase of ROS can induce or mediate the activa-
tion of the MAPK pathways, including ERK MAPK [212], and various cellular stimuli that
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induce ROS production can activate MAPK pathways in multiple cell types [213]. Although
the precise mechanism(s) for the ROS-mediated ERK activation remains unknown, ROS can
activate ERK signaling at least in two ways. Namely, activation of EGFRs, and deactivation
of MAPK phosphatases (MKPs or DUSPs). ROS can specifically and reversibly react with
proteins, altering their activity, localization, and half-life [214]. It is most likely that the
signaling molecule action of ROS may depend upon their ability to react with the cysteine
residues of a certain group of target proteins. ROS can rapidly oxidize the highly reactive
thiol groups to form a disulfide bond.

Indeed, many growth factors such as EGFRs or PDGFRs, as well as MKPs/DUSPs,
have cysteine-rich motifs, and they can be targets of ROS. EGFRs lie upstream of ERK and
are most commonly activated through ligand-induced dimerization or oligomerization
and are generally involved in the regulation of cell proliferation, survival, migration, and
differentiation [215]. Interestingly, ROS have been shown to activate EGFRs even in the
absence of its ligand [216], which is referred to as “receptor transactivation”. Moreover,
it has been reported that oxidation of the upstream activators of ERK MAPK, including
RAS, RAF, or PKC can be activated by ROS [207,208,217–221]. Thus, ROS can activate ERK
signaling via oxidation/activation of the upstream regulators of ERK MAPK.

By contrast, the function of MKPs/DUSPs is to dephosphorylate and, therefore,
inactivate ERKs, p38 MAPKs, and JNKs. Hydrogen peroxide activates MAPK pathways,
which leads to the induction of MKP-1 expression, and MKP-1 expression correlates
with the inactivation of MAPK pathways [222]. Moreover, overexpression of MKP-1
renders MCF-7 cells resistant to hydrogen peroxide-induced cell death by inhibiting MAPK
activation, while loss of MKP-1 by downregulation via small interfering RNA (siRNA)
or deletion of the MKP-1 gene sensitizes cells to hydrogen peroxide-induced cell death
through MAPK activation. This suggests that the expression levels of the MKP-1 affect
MAPK activation and the sensitivity of the cells to apoptosis induced by hydrogen peroxide.

Importantly, oxidation of catalytic cysteine within the active site of DUSPs inacti-
vates phosphatase activities of DUSPs as well as various tyrosine phosphatases [223,224].
In addition, intracellular ROS accumulation activates ERK, which triggers proteasomal
degradation of DUSPs. Indeed, ROS have been shown to inhibit phosphatase activities of
ERK-directed phosphatases, DUSP1 and DUSP6, by oxidation of their catalytic Cys residues.
Furthermore, intracellular ROS accumulation such as hydrogen peroxide causes DUSP6
phosphorylation on Ser159 and Ser197 residues, leading to ubiquitination and degradation
of DUSP6 in ovarian cancer cells. This oxidation and/or degradation-mediated inactiva-
tion/downregulation of DUSPs might contribute to the sustained ERK signaling activity, a
hallmark of ERK-dependent apoptosis, which will be described later.

4.5. DUSP and Negative Regulators of the ERK Cascade in the ERK Activation-Induced
Cell Death

The importance of DUSP regulation in the ERK activation-mediated cell death was
reported by Sugiura’s lab following their discovery of a novel ERK signaling modulator
ACA-28 and its lead compound ACAGT-007. These compounds exhibited the property
of inducing ERK-dependent apoptosis in human melanoma cells [25,26]. ACA-28 was
isolated through a chemical genetic approach to search for compounds that can modulate
ERK MAPK signaling using the fission yeast model system based on the counteractive
genetic interaction between calcineurin and MAPK Pmk1 in S. pombe [26,225]. The unique
feature of ACA-28 was to induce ERK-dependent apoptosis specifically in ERK-active
human melanoma cell lines, but not in normal human melanocyte (NHEM). Similarly,
using HER2-overexpressing A4-15 cells as a model system to recapitulate the cancerous
situation with aberrantly active ERK, ACA-28 was shown to induce ERK-dependent apop-
tosis specifically in HER2-overexpressing cells, but not in the parental NIH/3T3 cells.
Moreover, the IC50 of ACA28 against melanoma cell lines (SK-MEL-28) was much superior
to that against normal cells (10.4 µM vs 5.2 µM, respectively). These results suggest that
ACA-28 preferentially kills melanoma cells, and the mechanisms of the selective toxicity
depend on the ERK activation status of each cell line. The analysis of DUSP6, a major



Cells 2021, 10, 2509 14 of 29

ERK phosphatase in the cytosol, based on the assumption that DUSP6 regulation may be a
key event to determine the ERK activation status, revealed that DUSP6 expression levels
correlate with ERK activation status [27]. Namely, DUSP6 was overexpressed in HER2-
overexpressing ERK-active cells as compared with NIH/3T3 cells. Furthermore, the MEK
inhibitor U0126 abolished ERK activation, which led to DUSP6 downregulation. Notably,
ACA-28 was shown to downregulate DUSP6 protein, at least in part, via the proteasome,
and induced apoptosis in A4-15 cells by stimulating ERK phosphorylation. Consistently,
DUSP6 silencing specifically induced apoptosis in ERK-active HER2 overexpressing cells,
but not in NIH/3T3 cells. Thus, ACA-28 induced DUSP6 downregulation in cancer cells
with highly active ERK, thereby inducing ERK hyperphosphorylation and cell death. Our
study, together with the following papers showed that despite their predictive role as
tumor suppressors, the ERK-inhibitory MKPs/DUSPs can be linked to tumor progression,
in other words, ERK-active cancer cells are addicted to DUSPs for growth. Thus, control-
ling the DUSP expression can be a novel measure for cancer therapy. Consistent with
the concept that DUSPs can be tumor-promoting, the MKP/DUSP inhibitor NSC 95397
reduced cell viability and anchorage-independent growth of colon cancer cell lines through
inhibition of proliferation and apoptosis induction by regulating cell-cycle-related proteins
and caspases [103]. Further, by using the MEK inhibitor U0126, the authors provided mech-
anistic evidence that the antineoplastic effects of NSC 95397 were achieved by inhibiting
MKP/DUSP activity followed by ERK1/2 phosphorylation. Thus, MKP/DUSP inhibition
by NSC 95397 might serve as an effective therapeutic intervention for colon cancer through
regulating MKP/DUSP and ERK1/2 pathways.

Intriguingly, Unni et al. showed that synthetic lethality induced by co-expression
of mutant KRAS and EGFR is mediated through hyperactivation of ERK in lung adeno-
carcinoma cells, implying that tumors with mutant oncogenes in the RAS pathway must
retain the ERK activity to avoid toxicities that hamper tumor growth [226,227]. DUSP6
was upregulated in EGFR- or KRAS-mutant lung adenocarcinoma cells with high ERK
phosphorylation levels, which enables tumor cell growth by suppressing hyperactive ERK.
Consistently, knockdown or inhibition of DUSP6 elevated phosphorylated ERK and re-
duced the viability of lung adenocarcinoma cells with either KRAS or EGFR oncogenic
mutations, indicating that cancer cells with ERK hyperactivation with oncogene activation
are addicted to DUSP high-expression for their viability.

An additional example of the negative regulators of the ERK cascade in the ERK-
dependent apoptosis includes Spry proteins, a family of endogenous proteins that nega-
tively regulate the ERK signaling pathway. Intriguingly, similar to DUSP proteins, some
cancer cells, including glioblastoma, are dependent on Spry proteins for their growth by
adaptation, which makes Spry proteins play an onco-promoting role contrary to their
original role as a negative regulator of the EGFR-activated ERK signaling pathway. The
authors concluded that an antitumoral effect of SPRY2 inhibition is based on excessive
activation of ERK signaling and DNA damage response, resulting in reduced cell prolifera-
tion and increased cytotoxicity, proposing SPRY2 as a promising pharmacological target
in glioblastoma patients [228]. Altogether, compounds targeting negative regulators of
the ERK cascade, such as DUSP6 and SPRY proteins, might offer a treatment strategy for
certain cancers by inducing the toxic effects of RAS-mediated hyperactive ERK signaling.

4.6. Kinetics and Distribution of Phosphorylated ERK and Cell Death

In general, direct activation of the ERK cascade is always transient, peaking at
5–10 min after stimulation and reducing back to basal level 30–90 min thereafter. The
second and third waves of activation may appear at later time points, due to autocrine
loops or other ERK-required processes, such as mitosis [229]. Several compounds listed in
Table 1, including H. pylori secreted protein HP1286, Etoposide, Qizhen capsule, Perfluo-
rooctane sulfonate, Perfluorohexanesulfonate, and Cypermethrin induced ERK activation
at an early stage, such as 5–15 min upon compound treatment, and U0126 abolished ERK
activation and canceled apoptosis. However, various agents implicated in ERK-dependent
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apoptosis have also been reported to induce sustained ERK activation (Table 1). These
include kaempferol, Cadmium, and Pemetrexed [17,117,123,135]. For example, Tong et al.
reported that Icaritin causes sustained ERK1/2 activation and induces apoptosis in human
endometrial cancer cells [23]. Icaritin treatment induced the expression of pro-apoptotic
protein Bax with a concomitant decrease of Bcl-2 expression. Furthermore, icaritin induced
sustained phosphorylation of ERK1/2 in Hec1A cells, and a MEK inhibitor U0126 blocked
the ERK1/2 activation by icaritin and abolished the icaritin-induced growth inhibition and
apoptosis. This type of long-term effects can arise from the indirect effect of other signaling
pathways on the ERK activation, including the ROS-mediated oxidation and inactivation
of DUSPs and other tyrosine phosphatases PP1/2A as described above (ROS and ERK
Activation-induced Cell Death). It should be noted that many papers listed in Table 1 lack the
information on the short-term effects of the compounds on ERK activation as the authors
investigated ERK activation at time points wherein apoptosis was investigated (ex, 24 h).
So, future work will be needed to acquire precise information in this regard.

Interestingly, transient versus sustained phosphorylation of ERK has been involved in
the underlying mechanism to determine the anti-versus pro-apoptotic effects of the sex
steroid estradiol. 17β-estradiol transiently induced ERK phosphorylation in osteocytic
cells, whereas the estradiol-induced ERK phosphorylation in osteoclasts was sustained
for at least 24 h [230]. Conversion of sustained ERK phosphorylation to a transient one
abrogated the pro-apoptotic effect, whereas prolongation of ERK activation converted the
anti-apoptotic effect of 17β-estradiol to a pro-apoptotic one. The authors also analyzed
the effect of the nuclear export system using leptomycin (the exportin inhibitor) and
further suggested that the length of time that phospho-ERKs are retained in the nucleus
is responsible for the pro-versus anti-apoptotic effects of estrogen. This study suggested
the intriguing possibility that not only the kinetics but also the subcellular distribution of
phosphorylated ERK and its substrates in each compartment may be critical in determining
the fate of the cells for anti- versus pro-apoptosis. This concept is consistent with the
finding that sustained ERK activation alone, such as in models expressing constitutively
active forms of upstream kinases, is not sufficient to promote cell death [231–238]. Similar
sustained nuclear ERK activity was reported with apoptosis induced by tamoxifen, zinc,
and doxorubicin [204,239,240].

In this regard, DUSPs again play key roles in determining both the kinetics and
the distribution of phosphorylated ERK1/2. For example, DUSP6 not only serves as
inactivating enzyme for ERK1/2, but it also serves as an anchor for inactive ERK in the
cytosol and even participates in the transport of dephosphorylated ERKs from the nucleus
to the cytosol [241]. In line with this, Kim et al. found that ROS produced during senescence
of human primary fibroblasts inactivate the cytosolic ERK phosphatase DUSP6, resulting
in cytoplasmic sequestration of active ERK.

Downregulation of DUSPs similar to what was observed with ACA-28 in cancer cell
lines has been reported with camptothecin (CPT) in colon cancer [242]. Lee et al. reported
that MKP1/DUSP1 inhibition and sustained ERK1/2 activation were implicated in CPT-
induced human colon cancer cell death [242]. The authors found that CPT promoted nuclear
accumulation of active ERK and prolonged ERK activity through inhibition of MKP1,
implicating the function of the RAS/RAF/ERK pathway activation in cancer cell death.
Among several colon cancer cell lines, CPT was shown to selectively increase the activation
of ERK1/2 in HCT116 cells by downregulating MKP1 protein levels posttranscriptionally.
Importantly, CPT-induced repression of MKP1 alters the nuclear-cytoplasmic location of
activated (phosphorylated) ERK1/2 as evidenced by the nuclear accumulation of phospho-
ERK1/2 upon CPT treatment. Thus, enhanced nuclear phospho-ERK1/2 levels were
associated with MKP downregulation. These data imply that CPT-induced MKP1 protein
degradation prevents the inactivation of phospho-ERK1/2 by nuclear MKP1, allowing
ERK1/2 activity to be sustained in the nucleus (Figure 2).

An additional example of the role of DUSPs in the spatio-temporal ERK signaling
activation and their implication in tumorigenesis was demonstrated by Kidger et al. [243].
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DUSP5 both inactivates and anchors ERK in the nucleus. The authors reported that the
MKP DUSP5 terminates ERK signaling in the nucleus but, surprisingly, promotes ERK
activation in the cytoplasm by relieving feedback inhibition of upstream RAF and MEK
kinase activation mediated by ERK phosphorylation of each kinase (Figure 2). Impor-
tantly, DUSP5 nuclear localization is required for its effect to control cytoplasmic ERK
Phosphorylation. Paradoxically, DUSP5 facilitates oncogenic mutant BRAFV600E-driven
cell proliferation and transformation, suggesting that DUSP5 plays an oncogenic role in
BRAFV600E-driven cancers. Consistently, BRAFV600E expression combined with Dusp5
deletion causes ERK hyperactivation and proliferative arrest, thus indicating that DUSP5
can be a novel therapeutic for cancer therapy. Notably, DUSP5 deletion does not influence
normal cell proliferation in primary MEFs. Furthermore, mice entirely lacking DUSP5 de-
velop normally and display no obvious adult phenotype, suggesting that the physiological
role of DUSP5 may only be fully apparent in the event of stress or pathological challenge.

In normal cells, the subcellular localization of ERK is also tightly regulated by scaffold
proteins [244,245]. Consistently, in addition to DUSPs, several cytoplasmic ERK anchor-
ing proteins, such as DAPK, PEA-15, and Bik, have been implicated in the mechanisms
of ERK1/2-mediated cell death [238,246,247]. Activated ERK interacts with these cyto-
plasmic anchor proteins, which sequester active ERK1/2 in the cytoplasm. Inhibition of
ERK1/2 nuclear localization impairs ERK1/2-mediated survival signals and augments
the pro-apoptotic signals of DAPK by ERK phosphorylation of the cytoplasmic DAPK.
Consistently, mouse testes deficient in PEA-15 exhibited nuclear ERK activation [248].
Cytoplasmic sequestration of active ERK by binding to PEA-15 has been reported to induce
autophagy, whereas sustained cytoplasmic ERK activity induces senescence in human
primary fibroblasts. Thus, anchoring proteins for ERK, including docking phosphatases can
be involved in the mechanisms of ERK-dependent cell death by affecting the distribution
of phosphorylated ERK1/2 either in the cytosol or the nucleus, thereby determining the
cell fate for various modes of cell death.

4.7. The Cellular Threshold for ERK-Dependent Cell Death

In addition to the kinetics of ERK activation, Park’s lab provided evidence regarding
the threshold of active ERK that determines the ERK-dependent apoptosis versus growth
arrest [24]. The authors reported that ERK1/2 overexpression switches Raf-induced growth
arrest responses to caspase-dependent apoptotic death responses. Upon titration of active
ERK levels by the MEK1/2 inhibitor AZD6244 reverts the death responses to growth arrest
responses, suggesting that a cellular threshold for active ERK1/2 levels exists and affects
the cell fate between death and growth arrest. Interestingly, kinase activity is necessary
for ERK1/2 to mediate death signaling. Therefore, ERK1/2 mediates death signaling
depending on kinase activity and specific physical interactions.

Consistent with these findings, our lab reported the unique feature of ACA-28 to
induce apoptosis preferentially in ERK-active cancer cells, including melanoma cell lines
(SK-MEL-28, SK-MEL-2, and MeWO) or HER2-overexpressing cells, but not in normal
melanocyte or NIH/3T3 cells, respectively. These results suggest that cancerous situations
with higher ERK phosphorylation levels were favorable for ACA-28 to induce apoptosis,
consistent with a cellular threshold hypothesis. Thus, the high-ERK activation status in
each cell may be a critical determinant/prerequisite for ERK-dependent cell death.

4.8. ERK Activation and Other Types of Cell Death

In this review, we focused on the pro-apoptotic function of the ERK signaling pathway,
especially in the context of cancer cells. Recent studies highlighted the importance of the
ERK cascade in various types of cell death other than apoptosis, including autophagy-
dependent cell death, necroptosis, ferroptosis, pyroptosis, and parthanatos [249]. Impor-
tantly, ERK activation can also mediate other types of cell death or growth inhibitory
mechanisms, including autophagy or oncogene-induced senescence [250–253]. Autophagy
is an evolutionarily conserved catabolic process where cytoplasmic components and intra-
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cellular organelles are sequestered into autophagosomes and transferred to the lysosome
for degradation [254]. Autophagy was initially identified as a cell survival mechanism as it
constitutes an adaptive response to different kinds of stress by which the cells avoid cell
death. However, in some settings, it can also contribute to a form of cell death, described as
type II programmed cell death. In cancer settings, autophagy can also perform a dual role,
protecting cell survival or contributing to cell death. In some tumor cells, autophagy can
be a protective response enabling survival against anticancer treatments through blockade
of the apoptotic pathway. Meanwhile, other tumor cells undergo autophagic cell death in
response to cancer therapies [255].

Interestingly, some of the compounds executing ERK-dependent cell death (Table 1)
simultaneously induce apoptosis and autophagy. These include cisplatin, ginsenoside
Rg5 (Rg5), triptolide, morusine, scutellarin, and derrone (Table 1). For example, morusin
induced a pro-apoptotic effect through the intrinsic mitochondrial apoptotic pathway and
pro-autophagic effect as evidenced by the cytochrome c release and caspase-3 cleavage, as
well as the increased level of LC3-II and decreased level of SQSTM1/p62, respectively [95].
ROS-mediated ERK signaling activation may constitute an underlying mechanism func-
tionally connecting apoptosis and autophagy since the NAC treatment canceled both types
of cell death associated with several compounds such as Rg5, moursine, physalin B, and
derrone. For example, physalin B, a naturally occurring secosteroid, induces mitochondria-
mediated ROS generation, which leads to the ubiquitin-proteasome pathway inhibition and
incomplete non-canonical autophagy response [118]. Autophagosome/lysosome fusion
is blocked due to the inhibition of functions of microtubules and F-actin microfilaments,
leading to autophagy substrates accumulation which accelerates apoptosis. Besides, MAPK
pathways are sustainedly activated and partially mediate autophagy response and apopto-
sis in physalin B-treated cells. Similarly, derrone, one of the major compounds of unripe
fruits, induces autophagic cell death through induction of ROS and sustained ERK acti-
vation in the non-small cell lung cancer cell line [97]. In addition, activation of ERK-p53
and ERK-mediated phosphorylation of Bcl-2 is involved in autophagic cell death in several
cancer cell lines, thus indicating that both ROS and p53 can also contribute to simultaneous
induction of ERK-induced apoptosis and autophagic cell death.

What is the connection between autophagy and apoptosis? In the case of Rg5, sup-
pression of apoptosis weakens Rg5-induced autophagy, while inhibition of autophagy at-
tenuates Rg5-induced apoptosis in gastric cancer, indicating that Rg5 could simultaneously
induce autophagic and apoptotic cell death in gastric cancer and that the two processes
stimulate each other via activating ROS-mediated MAPK pathways [96]. Meanwhile,
curcumin treatment induced autophagy via the ERK1/2 signaling pathway activation to
protect chondrocytes from apoptosis [256], thus indicating the complicated interaction
between apoptosis and autophagy, which can either collaborate or compete with each other.

It should be mentioned that cytosolic sequestration of phosphorylated ERK by PEA-
15 can promote autophagy [257], again suggesting the importance of controlling spatial
dynamics of ERK in the cell death induced by ERK activation.

5. Conclusions and Perspectives: Promises and Challenges for ERK-Induced
Apoptosis in Cancer

ERK has largely been considered a survival signaling pathway. However, growing
literature, as shown in this review, indicates that the ERK signaling pathway mediates
apoptosis induced by various stimuli in different settings. Although the molecular mech-
anisms by which ERK mediates apoptosis remain largely elusive, several characteristics
mediators of ERK activation-induced apoptosis, such as ROS and DNA damage as well as
p53, are becoming clear. In addition, the importance of the spatio-temporal dynamics of
ERK activation and the emerging role of the anchor proteins for ERK1/2 were highlighted.
Especially, DUSPs can play critical roles in determining both the kinetics and the subcellular
distribution of the ERK activation. For example, ROS can stimulate ERK signaling via
activation of upstream activators and inactivation of catalytic activity of DUSPs, which
leads to sustained ERK activation due to the lack of negative feedback responses elicited
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by DUSPs. Furthermore, compounds like ACA-28 can promote downregulation of DUSPs,
which is responsible for the selective apoptosis induction in cancer cells harboring the onco-
genic mutation(s) of the ERK signaling pathway. In addition to the role of ERK inactivating
enzymes, DUSPs as anchor proteins for ERK can also impact the subcellular distribution of
phosphorylated ERK. Thus, DUSPs can play key roles in determining ERK functions for
survival or apoptosis by affecting both the kinetics/threshold (duration and magnitude) as
well as the compartments of ERK activation. Sustained ERK activity in the cytoplasm might
promote senescence or autophagy, whereas the sustained nuclear activity of ERK may lead
to apoptosis. These distinct physiological ERK functions can be defined by ERK substrates
in each compartment and the kinetics of ERK activation. For example, inhibition of ERK
translocation to the nucleus hampers its access to the transcription factor substrates thereby
blocking the proliferative response. Cytosolic ERK1/2, besides inhibiting the survival and
proliferative signals in the nucleus, may further potentiate the catalytic activities of some
pro-apoptotic proteins in the cytoplasm. Moreover, strong ERK activation above a certain
threshold might activate specific pro-apoptotic targets. Similarly, sustained activation
of ERK could activate additional targets that are not usually activated by transient ERK
signaling. Elucidating the downstream targets of ERK1/2 responsible for the execution of
distinct modes of cell death as well as the molecular mechanisms of the cellular threshold
for ERK to exert apoptosis or survival will be explored in future studies.

Inhibition of the ERK cascade (in other words, targeting the pro-survival function
of ERK signaling) is the mainstream strategy for the EGFR/RAS/RAF-driven tumors.
Unfortunately, however, clinical responses to the ERK cascade inhibitors are variable across
patients and the efficacy of these drugs is limited and temporary. For example, despite the
outstanding responses obtained with BRAF inhibitors vemurafenib and dabrafenib, the
majority of patients progress within a year with a median progression-free survival of fewer
than 10 months. This insufficient clinical efficacy represents tumor adaptation, largely due
to the tumors’ innate or adaptive resistance to the therapies aimed at blocking the pathway
activity. The most frequent response to clinical therapies is acquired resistance to drugs due
to the reactivation of the ERK cascade, through mechanisms including RAF dimerization
and resultant upregulation of ERK signaling. To conquer the resistance associated with
ERK signaling inhibitors, several combination therapies with BRAF and MEK inhibitors, or
with ERK signaling inhibitors and the PI3-kinase signaling inhibitors (PI3-kinase, mTOR,
AKT) have been described. However, whether the use of such inhibitors might develop the
risk of increased systemic toxicity will have to be carefully assessed.

In this regard, an emerging view that ERK1/2 can promote cell death and the strat-
egy/compound of stimulating pro-apoptotic ERK function may reveal a new window
of therapeutic opportunity for targeting cancers harboring oncogenic activations of the
ERK signaling pathway. For example, sustained ERK activation status is favorable to
promote cell death in several cancer cell lines [23,258,259]. Furthermore, modulating ERK
activation in a given subcellular compartment might facilitate cancer cell death. It should
be noted that ACA-28 preferentially kills cancer cells with high ERK activity and its lead
compound ACAGT-007 showed a superior activity both in terms of efficacy and selectivity
against high-ERK melanoma cells in vitro. DUSPs are highly expressed in some cancer cells
with high ERK activity and this differential DUSP expression may underlie the selective
apoptosis induction by ACA-28 and lead derivatives based on the cancer cells’ addiction
to DUSPs.

For the strategy to utilize ERK-induced apoptosis as an anti-cancer target, an important
hurdle to overcome includes finding a means to achieve selective apoptosis induction in
cancer cells with aberrant ERK activity while sparing the viability of normal cells. One
way to address this issue would be a drug delivery system targeting cells expressing
high-ERK phosphorylation levels by using high DUSP6 or SPRY proteins as a marker.
This idea is based on the reports cited in this review, showing that inhibition/silencing
of DUSP6 protein or SPRY2 protein is toxic to the oncogenic mutant lung cancer cells or
glioblastoma cells, respectively, while it does not affect the viability of normal cells [227,228].
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Furthermore, these negative regulators are highly expressed in cancer cells compared with
normal cells. Thus, how to achieve drug delivery targeting cells expressing high DUSP6 or
high SPRY proteins? For example, Ota et al. reported selective targeting of cancer cells by
utilizing lysine-specific demethylase 1 (LSD1) to trigger the controlled release of anticancer
drug tamoxifen in cancer cells, wherein LSD1 is highly expressed [260]. Conjugates of
the LSD1 inhibitor PCPA were used as prodrugs to selectively release tamoxifen by LSD1
inhibition. Importantly, the pro-drug inhibited the growth of breast cancer cells by the
simultaneous inhibition of LSD1 enzymatic activity and the estrogen receptor by tamoxifen
without hampering growth in normal cells, wherein only a low amount of LSD1 is expressed
with the almost undetectable release of tamoxifen. Thus, the selective release of tamoxifen
in cancer cells utilizing the high expression of LSD1 in cancer cells as compared with the
normal cells can be an excellent prototype for future study to achieve cancer-cell selective
delivery of compounds such as ACA-28 derivatives to induce ERK-dependent apoptosis in
cancer cells, but not in normal cells.
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