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ABSTRACT The Basidiomycota yeast Naganishia albida strain 5307AI was isolated from
an aircraft polymer-coated surface. The genome size is 20,642,279 bp, with a G1C content
of 53.99%. The genome contains fatty acid transporters, cutinases, hydroxylases, and lipases
that are likely used for survival on polymer coatings on aircraft.

Here, we describe the draft genome sequence of the yeast Naganishia albida strain
5307AI, which was isolated from the polymer-coated surface of an aircraft. This microor-

ganism was sequenced to understand the taxonomy and enzymatic functions underlying
biodegradation and bioremediation on polymer coatings (1).

Naganishia albida strain 5307AI cells were isolated from samples collected inside an
aircraft (2). Cultures were recovered from glycerol freezer stocks by streaking on potato
dextrose agar (PDA). An isolated colony was resuspended in tryptic soy broth (TSB) and grown
overnight at 27°C on a rotary wheel. A 1-mL aliquot of overnight culture was harvested, and
the pellet was used for DNA extractions. Genomic DNA was extracted using the Qiagen
PowerMicrobiome kit according to the manufacturer's instructions, and the DNA was quanti-
fied using the Qubit double-stranded DNA (dsDNA) assay (Life Technologies). Sequencing
libraries were prepared using the Nextera DNA Flex library preparation kit (Illumina, San Diego,
CA) following the manufacturer’s instructions and sequenced using 150-bp paired-end
sequencing on an Illumina NextSeq 550 system.

Sequence data processing steps used default parameters unless otherwise specified.
Sequencing yielded 46,840,215 raw paired-end reads, which were trimmed with Trimmomatic
v.0.39 (3) and quality filtered using FastQC v.0.11.9 (4). The 45,580,726 trimmed and filtered
paired-end reads were assembled using SPAdes v.3.15.2 (5), yielding an average coverage of
340.4�, 176 contigs, a G1C content of 53.99%, an N50 value of 491,455 bp, an L50 value of
15, and a genome size of 20,642,279 bp calculated by QUAST v.5.0.2 (6). Genome completeness
was estimated as 85.8% using BUSCO v.5.2.1 (7) with the Basidiomycota reference database
(basidiomycota_odb10) and 51.8% with the Tremellomycetes database (tremellomycetes_
odb10). A related species, Naganishia liquefaciens (8), had an estimated completeness of
51.2% with the same Tremellomycetes database. We masked the assembled genome using
RepeatMasker with the Dfam database v.3.3 (9). Gene prediction was completed using
BRAKER v.2.1.6 (10) with Naganishia albida JCM2334 as a reference. BRAKER predicted 6,830
putative genes. Functional annotation was completed using InterProScan v.5.51-85.0 (11, 12),
using the InterPro database v.86.0. We compared the 18S rRNA gene, internal transcribed
spacer (ITS), 28S rRNA gene, actin, and b-tubulin sequences to those from Naganishia albida
JCM2334. Whereas the 18S rRNA and ITS1 sequences were 100% identical, Naganishia albida
JCM2334 did not contain complete sequences for the 28S rRNA gene, actin, or b-tubulin. We
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found that the ITS2 and 28S rRNA sequences were predicted to be chimeric using ITSx v.1.1.3
(13), but chimeric ribosomal regions have been observed in other fungi (14, 15).

Based on KEGG analyses using GhostKOALA v.2.2 (16) with default settings, we identified
enzymes and pathways putatively involved in polymer degradation. We identified two
putative cutinases, enzymes known to biodegrade polymers (17, 18). This genome should con-
tribute to understanding how polymers are potentially degraded by microbial communities
for bioremediation applications.

Data availability. The raw sequencing reads and draft genome with annotation have
been deposited in GenBank under BioProject accession number PRJNA811524. The Sequence
Read Archive (SRA) accession number for the raw sequencing reads is SRR18183339. The draft
annotated genome assembly accession number is JAMKMX000000000.
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