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Cancer risk by environmental exposure is modulated by an individual’s genetics and age at
exposure. This age-specific period of susceptibility is referred to as the “Window of
Susceptibility” (WOS). Rats have a similar WOS for developing breast cancer. A previous
study in rat identified an age-specific long-range regulatory interaction for the cancer gene,
Pappa, that is associated with breast cancer susceptibility. However, the global role of
three-dimensional genome organization and downstream gene expression programs in
the WOS is not known. Therefore, we generated Hi-C and RNA-seq data in rat mammary
epithelial cells within and outside theWOS. To systematically identify higher-order changes
in 3D genome organization, we developed NE-MVNMF that combines network
enhancement followed by multitask non-negative matrix factorization. We examined
three-dimensional genome organization dynamics at the level of individual loops as
well as higher-order domains. Differential chromatin interactions tend to be associated
with differentially up-regulated genes with the WOS and recapitulate several human SNP-
gene interactions associated with breast cancer susceptibility. Our approach identified
genomic blocks of regions with greater overall differences in contact count between the
two time points when the cluster assignments change and identified genes and pathways
implicated in early carcinogenesis and cancer treatment. Our results suggest that WOS-
specific changes in 3D genome organization are linked to transcriptional changes that may
influence susceptibility to breast cancer.
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INTRODUCTION

A major goal of breast cancer research is to prevent cancer. Breast cancer susceptibility by
environmental exposure is modulated by an individual’s genetics and age at exposure. For
example, environmental or diagnostic radiation exposure poses a high risk to women in early
childhood to young adult stage and is significantly reduced starting in the mid-30s (Terry et al.,
2019). This age-specific period of high susceptibility is referred to as the window of susceptibility
(WOS). Large scale consortia efforts in breast cancer research have significantly advanced our ability
to identify genomic loci and molecular pathways that contribute to breast cancer susceptibility
(Koboldt et al., 2012; Welter et al., 2014). However, the gene regulatory mechanisms in the WOS
remain poorly characterized.
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Three-dimensional (3D) organization of the genome, which
defines how the DNA is packaged inside the nucleus has emerged
as a major component of the gene regulation machinery in
mammalian genomes (Bonev and Cavalli, 2016). Three-
dimensional genome organization enables long-range
interactions between distal regulatory sequences, such as
enhancers, and target gene(s) through chromosome looping
that brings the regulatory element in close spatial proximity to
the target gene. In addition to looping patterns, the chromatin is
organized into high-order structural units such as topologically
associating domains (TADs) within the cell (Dixon et al., 2012;
Hou et al., 2012; Sexton et al., 2012). TADs refer to groups or
clusters of genomic regions that preferentially interact among
themselves (Bonev and Cavalli, 2016; Rowley and Corces, 2018).

Changes in 3D genome organization, both at the loop and the
TAD levels, have been associated with developmental and disease
processes (Chakraborty and Ay, 2018; Zheng and Xie, 2019). In
particular, genome-wide chromatin looping has been shown to
occur in a stage-related manner in the developing limb (Andrey
et al., 2017) and in blood cell differentiation (Javierre et al., 2016).
TAD-level changes have been associated with timepoint-specific
regulatory interactions during differentiation and development
(Hug and Vaquerizas, 2018; Paulsen et al., 2019; Zheng and Xie,
2019). Disruptions in TADs have also been associated with
numerous diseases including cancer. Delayed replication of
large genes near TAD boundaries underlies common fragile
sites, hotspots of chromosome instability in cancer (Sarni
et al., 2020). Furthermore, disruptions to the TAD-level
interaction patterns have been implicated in oncogenesis
(Hnisz et al., 2016; Taberlay et al., 2016; Rhie et al., 2019).

Genome architecture has been implicated in cancer
susceptibility due to environmental factors (Henning et al.,
2016; García-Nieto et al., 2017). For example, lamina-
associated heterochromatin at the nuclear periphery is more
susceptible to ultraviolet radiation, an environmental
carcinogen that causes skin cancer, compared to accessible
euchromatin (García-Nieto et al., 2017). At the individual loop
level, a 8.5 kb regulatory element, called the temporal control
element (TCE) was shown to interact with the Pappa gene via
long-range chromatin looping of 517 kb (Henning et al., 2016) in
both breast cancer resistant rats and susceptible rats. This element
lies within the 170 kb mammary cancer susceptibility (Mcs5c)
locus, a gene desert on rat chromosome 5 which is conserved in
the human genome. Furthermore, this interaction was dependent
upon the age of the rat, being stronger in young rats (in WOS)
versus old rats. Correspondingly, Pappa expression was increased
in susceptible rats compared to resistant rats within WOS and
there was no difference between the two alleles in the adult phase.
The Pappa gene is a breast cancer-associated gene, which
positively regulates the IGF signaling pathway and is
important for normal mammary gland development. This is
the first validated example of WOS-specific chromatin looping.
However, the contribution of the loops and TADs on a genome-
wide scale to breast cancer risk from enviromental factors in the
window of susceptibility is poorly understood.

To gain mechanistic insight into age-dependent,WOS-specific
chromatin looping on a genome-wide scale, we generated Hi-C

(Lieberman-Aiden et al., 2009) and RNA-seq data for rats within
WOS and outside WOS. We compared the temporal changes in
looping to those in expression and found that genes up-regulated
within the WOS are associated with interactions that are higher
within WOS, and a similar trend exists for genes outside the
WOS. We developed a computational approach that combined
network enhancement and non-negative matrix factorization
(NMF) to identify “dynamic” blocks representing larger scale
topological changes between the two time points. We found that
network enhancement was important for reliable detection of
dynamic blocks, many of which harbored genes implicated in
cancer-related pathways and processes. Finally, we mapped
human breast cancer GWAS SNPs to loci in rat and found
conserved interactions with genes between human and rat.
Taken together, these results identified individual loop level
and larger-scale topological differences between within-WOS
and outside-WOS, many of which are related to
transcriptional differences.

METHODS

Tissue Collection and Hi-C Assay
Fresh mammary glands from the abdominal/inguinal regions of
6-week-old and 12-week-old female mammary cancer susceptible
Wistar-Furth rats were individually collected, scissor minced and
digested for 2 h at 37°C in 10 ml of GIBCO Dulbecco’s modified
Eagle’s medium/F12 (DMEM/F12; ThermoFisher) containing
0.005 g/ml of type 3 collagenase (Worthington-Biochem).
Centrifugation was used to remove fat and collect the cell
pellets. Individual cell pellets were washed and resuspended in
DMEM/F12 media. Each cell suspension was filtered using 40 μm
nylon to enrich the mammary ductal fragments and remove
stromal cells. The filter was inverted and rinsed to collect the
fragments, and the resulting cell pellet containing mammary
epithelial cells (MECs) was diluted in PBS and treated for
10 min with 1.5% formaldehyde for DNA/chromatin fixation.
After a series of washes, the final cell pellets were collected using
centrifugation and stored at −80°C. A total of 6 samples were sent
to Arima Genomic, Inc. (n � 3 for 6-week-old and n � 3 for 12-
week-old) for Hi-C analysis, consisting of complete sample
processing for Hi-C and library preparation and Illumina
Next-Generation sequencing.

Hi-C Data Processing and Differential
Interactions
Hi-C data was generated with ∼430 M reads per replicate. Hi-C
reads were processed using HiC-Pro version 2.7 (Servant et al.,
2015) with the default BowTie2 parameters (--very-sensitive -L
30 --score-min L,-0.6,-0.2 --end-to-end–reorder) and aligned to
the rn6 genome and 10 kb contact maps were generated. The 6
and 12 weeks samples were aggregated to one 6 weeks and one
12 weeks contact count matrix, respectively. HiC-Pro’s
implementation of ICE normalization (Imakaev et al., 2012)
with default parameters was performed on the two resulting
Hi-C matrices.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 7883182

Baur et al. 3D Genome and Cancer Susceptibility

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


In order to determine a set of differential chromatin
interactions (DCIs), we used both Selfish (Ardakany et al.,
2019) and Fit-Hi-C (Ay et al., 2014). Selfish uncovers DCIs
between two contact maps directly using a novel self-similarity
measure (Ardakany et al., 2019). We obtained 453,513
differential interactions from Selfish (p-value cutoff 10−4). We
also used Fit-Hi-C with one pass and a mappability threshold of
1 to determine significant interactions (q-value < 0.05) within
WOS and outside WOS. We took differential interactions as
those that were significant in one but not the other, resulting in
1,306,601 interactions. We took the union of the resulting
FitHiC and Selfish interactions to generate a total of
1,447,082 interactions. We filtered these interactions by
computing the mean and standard deviation for all within
WOS DCI and all outside WOS DCIs separately for each
distance bin (bins at 50 kb intervals from 0 to 1 Mb). Only
differential interactions with a z-score greater than one and a
distance equal to or less than 1 Mb were considered, for a final
set of 1,072,652 interactions. The Fit-Hi-C approach tended to
yield pairs with greater differences at longer distances while
Selfish tended to yield pairs with greater differences at shorter
differences (Supplementary Figure S1).

Tissue Collection, RNA Extraction and
RNA-seq Experiments
To examine the transcriptional differences associated with WOS
on a genome-wide scale, we measured gene expression levels in
the MEC from 6-week-old (entering WOS) and 10-week-old
(exiting WOS) susceptible rats (n � 6 for 6-week-old, n � 7
for 10-week-old) using RNA-seq following a similar protocol as
described in Henning et al. (2016). Briefly, mammary glands were
removed, minced, digested with collagenase, followed by
differential centrifugation to collect mammary ductal
organoids, which are mainly composed of epithelial cells along
with stromal fibroblasts and immune cells. To isolate RNA, cells
were homogenized in TRI Reagent (Ambion), followed by RNA
extraction using the MagMAX-96 for Microarrays Total RNA kit
(Ambion). RNA was extracted using the RNeasy Mini Kit
(Qiagen). The fastq files were processed by the UW Biotech
center. Counts were obtained using RSEM v1.2.22 (Li and Dewey,
2011).

For all samples, we calculated Transcripts per Million (TPM)
for 14,792 genes in the rat genome using RSEM v1.2.22 (Li and
Dewey, 2011). We applied several algorithms to determine
differential expression: DESeq (Love et al., 2014), EBSeq (Leng
et al., 2013) and EdgeR (Robinson et al., 2010). EBSeq was the
most conservative with 461 genes. DESeq (3401) and EdgeR
(2547) had an intersection of 2071 genes (Supplementary Figure
S2). We therefore took EBSeq plus the intersection of DESeq and
EdgeR as the total set of 2533 differentially expressed (DE) genes.

Network Enhancement and Multiview
Non-Negative Matrix Factorization
We developed the NE-MVNMF approach to analyze multiple
Hi-C datasets. NE-MVNMF applies Network Enhancement

(NE) followed by Multiview Non-negative Matrix
Factorization (MVNMF) (Liu et al., 2013) to our Hi-C
datasets.

Network Enhancement (NE) is a method for denoising a
biological network (Wang et al., 2018). We consider a Hi-C
dataset as a weighted network of genomic regions, where each
node in the network corresponds to each genomic region and the
weighted edges connecting the nodes represent the interaction
frequency between genomic regions. NE takes a noisy Hi-C
matrix as input and applies iterative graph diffusion process to
strengthen edge weights that are well-supported by strong
neighboring edges and weaken poorly supported edges. The
output of NE is a denoised, enhanced, symmetric matrix
which can be used as input to the next step in our pipeline,
MVNMF.

Multiview Non-negative Matrix Factorization (MVNMF) is a
multi-task non-negative factorization (NMF) method which
allows us to find a common underlying structure in multiple
matrices (Liu et al., 2013), each task corresponding to a matrix.
MVNMF does this by finding low-dimensional factors of multiple
matrices such that the factors are regularized towards a common
consensus. These factors can then be used as latent features for
clustering to reveal the underlying shared or divergent structure
in the data. Formally, given t ∈ {1, . . . , T} tasks, each with input
matrix X(t) ∈ R

nt×m
≥ 0 , the objective is to find task-specific factors

U(t) ∈ R
nt×k
≥ 0 , V(t) ∈ Rm×k

≥ 0 and the consensus factor V(c) ∈ Rm×k
≥ 0

such that:

minU(t) ,V(t) ,V(c)∑
T

t�1

����X(t) − U(t)V(t)T����2F + α
����V(t) − V(c)����2F

Here k, is the number of factors or reduced dimensions and is
much smaller than nt or m. The regularization term, α, will
constrain factor V(t) of task t to be similar to the consensus V(c).
Liu et al. originally proposed an iterative multiplicative update
algorithm for MVNMF. However, multiplicative updates
algorithm is often slow to converge. Therefore, we
implemented an algorithm that optimizes this objective using
hierarchical alternating least squares (HALS) with convergence
guarantee to a local minimum (Kim et al., 2014).

In our application of MVNMF, we have two tasks, each
corresponding to an input Hi-C matrix at 10 kb resolution, for
each chromosome: one matrix from week 6 and another one from
week 12. The rows and columns of this matrix correspond to a
10 kb bin. Since intra-chromosomal Hi-C matrices (as well as
their network-enhanced versions) are symmetric,
X(t), U(t), V(t), V(c) take on the dimensions of
n × n, n × k, n × k, and n × k, respectively.

We use a simple heuristic to pick k, the number of the factors,
which also is the number of clusters. Based on our previous work
on single-task NMF to Hi-C data, we set k such that the expected
size of each cluster is about 1 Mb in length, which corresponds
to the average size of TADs (Lee and Roy, 2021). For example,
for an input matrix that corresponds to a chromosome of size
10 Mb, we set k � 10. Here, we used 56-282 factors to capture
TAD like structures, corresponding to the size of the rat
chromosomes.
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We verified that network enhancement (NE) and downstream
NMF does not overcorrect the underlying structure of the input
matrix by comparing NMF results on Hi-C data of different
depths. Briefly, we first downsampled high-depth Hi-C matrices
from the GM12878 cell line (Rao et al., 2014) to four different
lower depth levels (equivalent to the read depth of cell lines
HMEC, HUVEC, NEHK, and K562 from the same study). We
then applied NE to the downsampled matrices, and then applied
NMF to the original high-depth matrices, downsampledmatrices,
and downsampled + NEmatrices. When we compared to original
Hi-C data, downsampled Hi-C data + NE does not lead to
significant differences in the number of regions in each cluster
Supplementary Figure S3A). However, downsampled + NE does
lead to significantly larger number of regions in each cluster when
compared to downsampled without NE (t-test p-value < 0.05 for
all downsampled depths). Additionally, when compared to the
original data, downsampled + NE does not lead to significant
differences in the length of contiguous regions with the same
cluster assignment (Supplementary Figure S3B). Furthermore,
we measured the similarity of the clustering results from the high-
depth matrices to those from the downsampled matrices, as well
as between the high-depth matrices and the downsampled + NE
matrices. The cluster similarity was measured with Rand Index,
which measures the concordance between a pair of clustering
results. Rand Index ranges from 0 to 1; Rand Index value of 1
means all data points found in one cluster in one result are also in
one cluster in the other result, and those in distinct clusters in one
result are also kept separate in the other result. We find that the
cluster similarity between the original high-depth matrices versus
the downsampled matrices is comparable to the cluster similarity
between the original and NE matrices (Supplementary Figure
S3C), suggesting that NE does not overcorrect the underlying
structure of the data.

MVNMF, like NMF can converge to different local optima.
Therefore, we verified the stability of our results to different
random initializations. Briefly, we applied MVNMF to
chromosomes 7, 11, 15 and 19 on the within-WOS and
outside-WOS matrices with 5 different random initialization
seeds. We evaluated the stability of the clusters from different
random initializations using Rand Index. We measured the Rand
Index between every pair of clustering results from different
random initialization seeds (Supplementary Figure S4). We
find that the mean Rand Index across these comparisons is
around 0.9 suggesting that the clustering results are stable to
the random initialization seeds.

Identification of Static Versus Dynamic
Blocks
Once we have the factors, we use them to identify genomic
regions dynamically changing their interaction profile across
tasks, which we refer to as “dynamic blocks.” First, we assign
all regions to a cluster based on the factors from MVNMF, then
find regions whose cluster assignment changes. We take
advantage of the fact that column j in V(t) of task t
corresponds to the latent feature or column j in V(s) of task s.
Since X(t) is symmetric in Hi-C data, either U(t) or V(t) can be

used to define the clusters of regions. Assuming we use U(t), we
assign each row i (corresponding to genomic region i) to its most
dominant latent feature, c(t)i � argmaxj ∈{1,...,k}U(t)[i, j], where
U(t)[i, j] represents the entry in the i th row and the j th column/
latent feature of U(t). We repeat this procedure across all tasks. A
dynamic block between task t and s is a contiguous stretch of
10 kb regions, at least 50 kb in length, whose cluster assignment
changed between them, i.e., c(t)i ≠ c(s)i . Furthermore, all regions
within the block have to have the same cluster ID within a task.
Conversely, a static block is one where c(t)i � c(s)i . To further
assess if a dynamic block is indicative of a changing interaction
frequencies, we compared the count differences within the block
across time points. We expect a dynamic block to exhibit
significantly greater count differences compared to static
blocks. We further verified these trends using a t-test to assess
the difference in counts between time points among regions
inside a static block as well as among regions inside a
dynamic block.

Human GWAS Study Integration
We downloaded supplementary table S15 from Zhang et al. which
contains gene-SNP interactions from the INQUISIT software
(Zhang et al., 2020) and supplementary table S5 from Baxter et al.
which contains Capture Hi-C SNP-gene associations (Baxter
et al., 2018). We used liftOver (Kuhn et al., 2013) to map
these SNPs from the human hg19 assembly to a locus in the
rn6 rat assembly, with a minimum base overlap ratio of 0.1. Since
the position of the SNP in human may not be a SNP in the
corresponding lifted over position in rat, we refer to the position
as a ‘locus’ in rat. We intersected the rat locus with differential
chromatin interactions (DCIs) by checking if the SNP was within
the boundary of either 10 kb bin in the interaction. We mapped
the other 10 kb end to a gene if it overlapped any 10 kb bin within
the genomic coordinates of the gene provided by Ensembl release
96 (Yates et al., 2020). We referred to resulting gene locus pairs as
locus-gene DCIs. We used the common names to match genes
from human to rat.

RESULTS

Differential Looping is Associated With
Differential Expression of Within WOS
Versus Outside WOS Rats
To globally characterize chromatin looping and examine its role
in establishing WOS and associated gene expression programs,
we generated Hi-C and RNA-seq datasets for rat mammary
epithelial cells within WOS (6-weeks) and outside WOS (10-
weeks RNA-seq, and 12-weeks Hi-C, Figure 1A). Hi-C data was
generated with ∼430 M reads per replicate. We aggregated reads
to 10 kb resolution and used Iterative Correction and Eigen vector
decomposition (ICE) (Servant et al., 2015) to normalize the Hi-C
matrices from the two time points (Methods). We used ICE for
normalization because it is recommended for Fit-Hi-C (Ay et al.,
2014), however, our approach is applicable to data from other
normalization methods as well (Hu et al., 2012).
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FIGURE 1 | Characterizing WOS-specific chromatin interactions and gene expression. (A) Hi-C and RNA-seq data was generated to globally characterize the
three-dimensional genome organization and transcriptome within and outside the window of susceptibility (WOS). We first characterized these changes at the level of
individual interactions or loops. Within WOS, we identified 538,199 differential chromatin interactions (DCIs) across all chromosomes and 534,454 DCIs outside the
WOS. Here CIs refer to those pairs with significantly high counts within and/or outside WOS, whereas DCIs refer to interactions exclusively higher in one of within-
WOS or outside-WOS context. (B) Contact counts for DCIs (red) compared to non-DCI (gray) for within WOS (above x-axis) and outside WOS (below x-axis) in rat

(Continued )
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We first identified differential chromatin interactions (DCIs)
between the WOS and outside the WOS by taking the union of
results from two approaches: Selfish (Ardakany et al., 2019) and the
difference in significant chromatin interactions (CIs) identified by
applying Fit-Hi-C individually to each sample (Ay et al., 2014). We
then filtered these DCIs based on a distance-stratified absolute value
of z-score of 1.0 (Methods) to focus on the differential interactions
with the greatest magnitude of change in and out of the WOS
(Figure 1B). In total we identified 538,199 DCIs with counts higher
in the WOS (within WOS DCIs) and 534,454 DCIs with counts
lower in the WOS compared to outside the WOS (outside WOS
DCIs). Among the DCIs, we recapitulated several TCE-Pappa gene
interactions that are higher in the WOS compared to outside the
WOS (Figure 1C), which is consistent with previous observations
that the TCE interacts with Pappa in a WOS-dependent manner
(Henning et al., 2016). In parallel, we applied DESeq2 (Love et al.,
2014), EBSeq (Leng et al., 2013) and EdgeR (Robinson et al., 2010) to
identify differentially expressed (DE) genes between the WOS and
outside theWOS (FDR corrected p-val < 0.05, Methods). In total we
identified 2300 DE genes, 1,358 of which were up-regulated within
the WOS and 942 were down-regulated within the WOS compared
to outside.

To examine the relationship between differential expression
and chromatin organization we linked DE genes, regardless of
direction of expression change, to Fit-Hi-C CIs either in and/or
out of the WOS (Figure 1D; Table 1). We computed the average
difference in contact count, stratified by distance, for genes
upregulated in WOS compared to outside. We found that at
all distance bins compared, genes upregulated in WOS have a
higher average contact count in WOS compared to outside WOS
for significant interactions (t-test p-value � 3.8e-107, Figure 1D).
Likewise, genes upregulated outside WOS (or downregulated in
the WOS) have a higher average contact count outside WOS
compared to within WOS. We performed a similar analysis for
DCIs that are significant within or outside WOS and found a
similar result (Supplementary Figure S5). These results show
that changes in gene expression between the two time points is in
part due to differences in 3D genome organization.

We next examined the biological processes associated with
WOS-specific changes. Genes that are up-regulated within the
WOS (1,358 genes) are enriched for cell cycle and DNA
replication (Hypergeometric test with FDR<0.05, Figure 1E).
We also examined genes that are up-regulated in the WOS and
associated with 5 or more within WOS DCIs (355 genes). We
chose this threshold since many DE genes are associated with at
least one DCI in WOS (Table 1). Genes that are up-regulated
within the WOS and are additionally associated with 5 or more
DCIs in the WOS are enriched for these processes as well as
DNA packaging and conformation. Genes that are up-
regulated outside the WOS (942 genes) are enriched for
general transcriptional regulation, and RNA metabolism
processes. Genes up-regulated outside WOS and interacting
with 5 or more outside WOS DCIs (316 genes) were enriched
for similar terms. We also found that within WOS upregulated
genes with long-range interactions were enriched for similar
terms as all upregulated genes within the WOS, while genes
upregulated within WOS and interacting with DCIs were
enriched with markedly different terms compared to all
upregulated genes in the WOS (Figure 1E). Taken together,
these results suggest that DCIs are likely involved with the
regulation of cell cycle and DNA packaging in younger rats,
while in mature rats, DCIs may be more involved with
maintaining transcriptional control.

Matrix Factorization-Based Approach to
Examine Higher Order Organization
Dynamics
In addition to changes at the level of individual interactions,
higher-order structural changes in chromatin organization within
and outside the WOS could be important for molecular changes
associated with breast cancer susceptibility. However,
identification of higher-order structural changes, such as in
TADs, poses two challenges: (1) handling the noise and
sparsity in the input Hi-C matrices and (2) the difficulty in
matching TADs across datasets or conditions so that changes

FIGURE 1 | chromosome 1. (C) Visualization of contact counts a −250 kb to +1 Mb around the temporal control element (TCE, green dotted line) within WOS (top) and
outside WOS (bottom). We plot the interaction count between the TCE region and neighboring regions by distance. Blue and pink dots are DCIs that are higher within
WOS. Gray dots are all others. Pink dots are additionally associated with the Pappa gene. (D)Mean count difference (within-WOS count – outside-WOS count) for Fit-Hi-
C significant interactions associated with genes that are up-regulated within WOS (i.e., within-WOS DE genes, blue) and up-regulated outside WOS (outside-WOS DE
genes, orange). (E) Gene Ontology (GO) enrichment of DE genes within/outside WOS, those associated with DCIs, and those associated with significant chromatin
interactions (CI). Intensity of red is associated with the -log (q-value) of the GO enrichment.

TABLE 1 | Number of interactions associated with genes differentially up-regulated within WOS and outside WOS.

# Of within
WOS genes (total = 1,358)

# Of interactions
assoc. With within

WOS genes

# Of outside
WOS genes (total = 942)

# Of interactions
assoc. With outside

WOS genes

FitHiC interactions 1,331 118,169 925 151,845
DCI interactions (total) 1,310 45,385 919 59,158
DCI interactions (within WOS) 1,245 23,591 886 27,257
DCI interactions (outside WOS) 1,262 21,794 907 31,901
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between them can be pinpointed. To address these two
challenges, we developed and applied an approach, Network
Enhancement with Multi-view Non-negative Matrix
Factorization (NE-MVNMF), which first applies network
enhancement (NE) to smooth the noisy and sparse Hi-C
matrices (Wang et al., 2018) and then performs multi-view
non-negative matrix factorization (MVNMF) (Liu et al., 2013)
on these matrices to identify large-scale conserved and
differential structural units (Figure 2, Methods).

The first component of our pipeline, network enhancement
(NE) was developed originally for denoising biological networks
(Wang et al., 2018) (Figure 2B, Step 1). In our application, we
treat a Hi-C dataset as a weighted network of chromatin regions:
each node in the network corresponds to a region and the edge
weights between nodes represent the interaction counts between a
pair of regions. NE iteratively enhances edge weights that are
well-supported by strong neighboring edges and weakens those
that are poorly supported, then outputs a denoised matrix which
is then used as input to the next step in our pipeline, MVNMF.
We verified that NE does not overcorrect the underlying structure
of the input matrix by comparing results on Hi-C data of different

depths before and after smoothing (Supplementary Figure S3,
Methods).

MVNMF combines Non-negative Matrix Factorization
(NMF) (Lee and Seung, 2001) with multi-task learning (Zhang
and Yang, 2021). NMF is a powerful dimensionality reduction
method that can be used to recover interpretable, lower-
dimensional patterns from large, high-dimensional data in
imaging, text, and biomedical domains (Lee and Seung, 2001).
Applying NMF to a Hi-C matrix yields low-dimensional factors
or latent features which can be used to cluster the row or the
column entities, i.e., genomic regions. These clusters of genomic
regions correspond to densely interacting regions of the genome
such as topologically associating domains (TADs) (Lee and Roy,
2021). MVNMF extends NMF to a multi-task setting with
multiple input matrices, each corresponding to a task or a
time point (e.g. within WOS). It jointly factorizes the input
matrices such that their lower-dimensional factor
representations are similar to a single common factor, and
clusters derived from these factors can be matched across
tasks (Methods). MVNMF identifies clusters that are matched
across tasks. This cluster correspondence across tasks allows us to

FIGURE 2 | Overview of NE-MVNMF. (A) The goal of NE-MVNMF is to find higher-order, e.g., TAD-level changes between the two timepoints denoted as red-
dashed diamond. (B) Steps of NE-MVNMF. First, network enhancement (NE) smooths out the within-WOS and outside-WOS Hi-C matrices. Then MVNMF is applied to
jointly factor the twomatrices. By clustering the factor matrices, regions that are switching cluster assignments between within and outsideWOS can be identified. These
contiguous blocks of such regions represent domain-level changes which we call “dynamic blocks.”On the dynamic blocks, we do downstream analysis, such as
check for association with DCIs or DE genes.
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easily identify genomic regions whose cluster assignment has
changed in different contexts (Figure 2B, Step 2). From these
matched clusters, we define a “dynamic block” as a stretch of 5 or
more contiguous 10 kb bins (50 kb region) that have a different
cluster assignment between a pair of conditions (Figure 3A). A
“static block” is similarly defined but for contiguous 10 kb bins

that have the same cluster assignment between the conditions
compared. Regions that do not have contiguous cluster
assignments for 5 or more regions are considered noisy.

We first compared the effect of network enhancement on the
ability to detect higher-order topological units and the quality of
the dynamic versus static blocks based on different metrics. We

FIGURE 3 | Identification and characterization of dynamic 3D genome blocks with NE-MVNMF. (A) Schematic of how dynamic blocks of regions involved in large-
scale topological changes are identified from the NE-MVNMF clusters. The NE-MVNMF clusters are depicted at the bottom of the exemplar Hi-C count matrix, with
regions in the same cluster to have the same color. Regions in dynamic blocks (magenta line) are regions whose cluster assignment switched between within WOS and
outside WOS. Conversely regions in static blocks (gray) are those whose cluster assignment stayed the same. (B) Distribution of the number of regions in each
cluster within and outsideWOS (i), length of contiguous blockswithin and outsideWOS (ii), and length of contiguous dynamic or static blocks (iii), with and without NE. (C)
Difference in interaction counts among regions within dynamic blocks and static blocks. Top, for each dynamic or static block, we summed up the absolute value
difference between interactions from within WOS and those form outside WOS. We plot the mean of the absolute value difference by block length with NE (i) and without
NE (ii). The shaded area represents the 95% confidence interval. iii, Mean absolute value difference for DCIs only is plotted for dynamic and static blocks, with and without
NE (iii).
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applied both MVNMF and NE-MVNMF at different
regularization values (α ϵ {1e5, 1e6, 1e7, 1e8} Methods) to
within and outside the WOS Hi-C matrices at 10 kb
resolution. Higher regularization values will constrain the
factors from each task to be more similar to the consensus
factor (Methods). We examined the distribution of the cluster
sizes with and without NE (Figure 3Bi), the extent to which they
were contiguous (Figure 3Bii) and the distribution of sizes of
static and dynamic blocks (Figure 3Biii). When comparing the
overall size of the clusters, without NE tends to obtain on
average “smaller” units compared to with NE (Figure 3Bi).
Furthermore, when we consider the number of contiguous
regions with the same cluster assignment before reaching a
different cluster assignment, the lengths of such contiguous
regions are larger for NE versus no NE in both within and
outside WOS (Figure 3Bii). When comparing the dynamic
versus static blocks, we see a similar trend in the size
distribution (Figure 3Biii): network enhancement and higher
levels of regularization tended to increase the number of static
blocks and decrease the number of dynamic blocks overall
(Supplementary Table S1). These results show that network
enhancement led to more contiguous larger blocks, which are
indicative of less noisy clustering assignments. Finally, we
hypothesized that there would be a larger difference in
overall contact count in dynamic blocks compared to static
blocks. We took the overall difference for each block as the sum
of the absolute value of the difference for all contact counts
within WOS and outside WOS. We compared these count
differences for blocks of different sizes (Figures 3Ci,ii) as
well as across all blocks (Figure 3Ciii). We find that for the
same α regularization value, dynamic blocks have a greater
overall difference than static blocks when using network
enhancement (Figure 3C for α � 1e8, Supplementary Figure
S6 for α ϵ {1e5, 1e6, 1e7}). For blocks with 3 or more regions,
the overall difference for dynamic blocks was significantly
greater than static blocks for 6 out of the 10 bins (t-test
p-value <0.05). When comparing across blocks of all sizes,
the count difference of DCIs between static and dynamic
blocks was much more dramatic compared to without NE
(Figure 3Ciii). Taken together, NE-MVMF allows us to
reliably identify regions involved in higher-order topological
changes across multiple biological contexts.

NE-MVNMF Reveals Large-Scale
WOS-Specific Changes
We next examined the dynamic blocks obtained from NE-
MVNMF to gain insight into the 3D genome organizational
properties within and outside the WOS. There were 168
dynamic blocks in total across all chromosomes, which ranged
in size from 50 to 320 kb. We prioritized blocks for interpretation
based on the difference in counts of blocks between the two
conditions as well as based on visual inspection. Of the total 168
blocks, we identified 35 blocks that had a significant change in
count between the two conditions when considering all pairs of
regions in these blocks (T-test and Rank sum p-value <0.05).
These blocks ranged from 50 to 180 kb in size and included blocks

spanning genic regions (28) and those spanning non-coding
regions (7, Figure 4 and Table 2).

For ease of interpretation, we focused on blocks that harbored
genes, regardless of their differential expression status. For
example, one block (#31,110 kb, Figure 4A), included the
genes Pdlim1 and Sorbs1, of which Sorbs1 exhibited a
significantly lower expression within WOS (6 weeks), while
Pdlim1 exhibited a relatively higher, expression in the WOS.
Pdlim1 is expressed in fibroblasts and involved in cell polarity and
migration (Stelzer et al., 2016) and has been shown to be
associated with breast cancer progression (Liu et al., 2015).
Sorbs1 is involved in signaling pathways and low expression of
Sorbs1 is associated with poor prognosis of breast cancer (Song
et al., 2017). Another block (#50, 60 kb, Figure 4B) spanned two
genes, Kif18a andMettl15 of which Kif18a has a significantly high
expression within WOS. Kif18a is a kinesin protein involved in
chromosomal stability, low expression of kinesin proteins has
been associated with cell proliferation of chromosomally unstable
genes (Marquis et al., 2021) and is a candidate target for cancer
treatment (Sabnis, 2020). Another block harboring a down-
regulated gene within the WOS was #38 (50 kb, Figure 4C),
containing Dnajc21 a heat shock protein and Brix1 involved in
ribosome biogenesis. Over-expression of heat shock proteins has
been associated with a large number of cancers (Calderwood and
Gong, 2016). Another block (#78, 90 kb, Figure 4D) was
associated a number of zinc finger proteins, including Zfp871,
which was shown to be part of the P53 pathway (Mohibi et al.,
2021) and cytochrome P450, an enzyme that metabolizes several
pre-carcinogens and is broadly involved in both cancer formation
and treatment (Rodriguez-Antona and Ingelman-Sundberg,
2006). Finally, blocks 143 (160 kb, Figure 4E) and 162 (80 kb,
Figure 4F) had several genes that either encoded chromatin
remodeling factors (Supt16h and Chd8), genes representing
families often mutated in cancers (Tox4, Yu and Li, 2015),
genes that have been implicated as oncogenes as well as tumor
suppressors (Sall2, Hermosilla et al., 2017; Mettl3, Zeng et al.,
2020) and involved in glycosylation (Large1, block162) which is
used as a marker and offers novel therapeutic targets (Costa et al.,
2020). Overall, our analysis identified dynamic blocks that
harbored genes implicated in cancer and related pathways
including chromosomal stability, ribosome biogenesis and
stress response.

WOS-Specific Looping can be Leveraged to
Examine Regulatory Variation
Many studies have identified disease associated variants inside
distal regulatory elements that loop to genes, for example, in
autoimmune disorders (Javierre et al., 2016) and cancer (Zhang
et al., 2019) including breast cancer susceptibility (Baxter et al.,
2018). What is less explored is the context-specificity and timing
of these long-range interactions, which can impact when a variant
modulates a target gene’s expression. The Temporal Control
Element (TCE) interaction with the Pappa gene is an example
of a time window-specific interaction and is present in young rats
(within WOS), but not older rats (Henning et al., 2016). In the
susceptible genotype, Pappa expression levels are increased
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relative to the resistant genotype leading to increased breast
cancer susceptibility, indicating a genotype-specific effect on
gene expression. A similar model could underlie other SNPs
associated with breast cancer susceptibility, where the SNP occurs
in an enhancer region that loops to regulate a gene’s expression in
a condition-specific manner (e.g. in the WOS but not outside the

WOS). The SNP may disrupt the binding site of a transcription
factor which may result in aberrant expression of the target gene,
but the loop itself is operational only in a particular condition. It
is also possible that the SNP effects the loop strength, for example
by perturbing the binding site of an architectural protein, e.g.
CTCF, which may affect the regulation of a gene (de Wit et al.,

FIGURE 4 | Visualization of regions surrounding 6 dynamic blocks of interest in the window of susceptibility. Within each panel, the top and the bottom heatmaps
visualize the interaction counts from within and outside WOS, respectively. The horizontal bars associated with Cluster below each heatmap are colored by cluster ID;
dynamic blocks are highlighted with a dark blue box outline. Gene expression (RNA-seq in TPM) is visualized in a horizontal purple heatmap, with darker purple
representing higher expression. Finally, the gene track in the middle denotes gene locations; within-WOS and outside-WOS DE genes are colored with blue and
orange, respectively. Gray indicates the gene is not DE. The dynamic blocks of interest are found within (A) #31, chr1 259260000-259510000, (B) #50, chr3
100330000-100660000, (C) #38, chr2 60400000-60730000, (D) #78, chr7 14930000-15660000, (E) #143, chr15 28590000-28930000, (F). #162, chr19 12830000-
13090000.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 78831810

Baur et al. 3D Genome and Cancer Susceptibility

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


2015; Tang et al., 2015; Guo et al., 2018). The TCE-Pappa
interaction was conserved in human and rat. Therefore, we
asked if we could examine additional variants associated with
breast cancer for their participation in condition-specific long-
range interactions (Figure 5).

We considered two studies for this problem, one that mapped
SNPs to genes using a computational tool, INQUISIT (Zhang
et al., 2020), and two, that used Capture-Hi-C (Baxter et al.,
2018). We obtained 26 SNPs from a recent human breast cancer
GWAS study that were linked to potential target genes in 201

interactions using INQUISIT (Zhang et al., 2020). We mapped
these SNPs to loci in rn6 using liftOver and then identified target
genes with the DCIs (Methods), (Kuhn et al., 2013). Since the
lifted over position in rat likely does not correspond to a SNP in
rat, we refer to the interactions as SNP-gene interactions in
human and locus-gene interactions in rat. A total of 11 SNPs
mapped to a locus in rat corresponding to a total of 101 human
SNP-gene associations. Of these 11 SNPs, we identified 15 locus-
gene DCIs, connecting 6 SNPs and 9 genes in total across these
interactions (Zhang et al., 2020) (Table 3). Of these interactions,
7 locus-gene DCIs were within WOS (5 SNPs, 5 genes) and
8 locus-gene DCIs were outside WOS (4 SNPs, 6 genes). Of the 5
genes connected to within WOS locus-gene interactions, Jag1 is
differentially up-regulated within WOS (Figure 5A). Jag1 is part
of the notch signaling pathway involved in the renewal of stem
and progenitor cells in mammary glands and has been associated
with poor overall survival in breast cancer (Reedijk et al., 2005).
Of the 6 genes connected to outsideWOS locus-gene interactions,
Trps1 and Phf1 are differentially up-regulated outside the WOS.
Knockdown of Trps1 results in reduced tumor growth in shRNA

TABLE 2 | Number of genic and non-genic dynamic blocks. A genic block is one
which has genes.

All blocks Significant (t-test and
rank sum)

Total 168 35
Genic 95 28
Non-genic 73 7

FIGURE 5 | Visualization of interactions involving SNPs associated with human breast cancer mapped to rat genome. Within each panel, shown are the interaction
counts from within WOS (left) and outside WOS (right) between the mapped-SNP region (green dotted line) and neighboring regions by distance. Pink dots are DCIs
associated with the gene of interest; blue dots are other DCIs; gray dots are all others. Gene tracks denote gene locations; the gene of interest is highlighted in green.
Gene expression (in TPM) is plotted below the gene tracks. (A) Interactions involving human breast cancer SNP (chr20 11502618 A- > AAC) mapped to a region in
rat. The region is involved in within-WOS DCI with the gene Jag1. (B) Interactions involving human breast cancer SNP (chr6 33239869 C- > T) mapped to a region in rat.
This region is involved in outside-WOSDCI with gene Phf1. (C) Interactions involving human breast cancer SNP (chr3 156535958 AT- > A) mapped to a region in rat. This
region is involved in within-WOS DCI with gene Igfbp5.
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screens and Trps1 has been shown to repress transcription by
interacting with multiple components of the nucleosome
remodeling deacetylase complex (Witwicki et al., 2018). Phf1 is
part of the polycomb group of proteins that maintain repressive
chromatin states and has been shown to be an activator of the p53
signaling pathway (Figure 5B) (Yang et al., 2013). p53 is a tumor
suppressor that regulates cell growth and apoptosis (Yang et al.,
2013). Both Trps1 and Phf1 have tumor suppressor properties, are
associated with repressive chromatin and are up-regulated
outside WOS.

We performed a similar analysis by leveraging a study that
used Capture Hi-C to link breast cancer GWAS SNPs to genes
(Baxter et al., 2018). The study investigated 41 breast cancer
GWAS SNPs connected to genes. Of these 41, 16 mapped to a
locus in rat and participated in 63 SNP-gene interactions in the
human Capture Hi-C data. Seven of these SNP-gene interactions
mapped to a corresponding locus-gene DCI in rat, one in a within
WOS DCI and six in outside WOS DCIs (5 SNPs, 6 genes,
Table 4). For the within WOS DCI, the locus corresponded to
human SNP rs13387042 and gene Igfbp5 (Figure 5C). Igfbp5, like
the WOS-associated gene Pappa gene, is involved in IGF
signaling and plays an important role in mammary
development (Wyszynski et al., 2016). The interaction between

rs13387042 and Igfbp5 is supported by previous studies in
humans (Ghoussaini et al., 2014; Baxter et al., 2018). This
result suggests that the mechanism by which variants interact
with the Igfbp5 promoter may be related to WOS.

Of the 6 genes that are interacting with SNP-associated loci
outside WOS, two are differentially expressed, Ovol1 (up-
regulated outside WOS) and Olfml3 (up-regulated inside
WOS). Ovol1 has been shown to induce mesenchymal to
epithelial transition in human cancers (Roca et al., 2013) and
is associated with rs3903072. This association is also supported
by human eQTL studies in breast cancer, suggesting that
rs3903072 may alter Ovol1 expression (Li et al., 2014).
Targeting Olfml3 has been shown to suppress tumor growth
and angiogenesis (Stalin et al., 2021). Of the non-DE genes,
Zmiz1 is a prognostic marker of multiple cancer types (Mathios
et al., 2019), Rpl37a is a biomarker for response to neoadjuvant
chemotherapy in non-metastatic locally advanced breast cancer
(Carrara et al., 2021), and Hipk1 has been shown to act as a
tumor suppressor by activating p53 (Rey et al., 2013). In the
outside WOS DCI locus-gene interactions, Hipk1 interacts with
rs11552449. This interaction is also supported in human
follicular helper T cell Capture Hi-C data (Su et al., 2020).
Infiltration of follicular helper T cells has also been shown to

TABLE 3 |Rat loci-gene interactions that recapitulate human breast cancer GWAS SNP-gene interaction from Zhang et al. (2020). Shown is the name of the human SNP, the
rat 10 kb bin that has the gene and the variant of the conserved loop. The human SNP is named to show the chromosome ID and the genomic coordinate.

Gene name Human SNP Chr GeneContainingBin SNPContainingBin Within or
outside WOS

Hnf1a rs17215231 12 47430000 47420000 Within
Trps1 rs13277568 7 90150000 90310000 Within
Jag1 rs141526427 3 130090000 131090000 Within
Jag1 rs141526427 3 130100000 131090000 Within
Jag1 rs141526427 3 130110000 131090000 Within
Lekr1 rs34052812 2 157570000 157440000 Within
Mrps35 chr12_29140260 4 181430000 182340000 Within
Phf1 rs2464195 20 5530000 5440000 Outside
Cuta rs2464195 20 5530000 5440000 Outside
Sppl3 rs17215231 12 47310000 47420000 Outside
Hnf1a rs17215231 12 47410000 47420000 Outside
Trps1 rs13277568 7 90190000 90310000 Outside
Trps1 rs13277568 7 90200000 90310000 Outside
Trps1 rs13277568 7 90300000 90310000 Outside
Tiparp rs34052812 2 157340000 157440000 Outside

TABLE 4 |Rat loci-gene interactions that recapitulate human breast cancer GWAS SNP-gene interaction from Baxter et al. (2018), identified with Capture-Hi-C. Shown is the
name of the human SNP, the rat 10 kb bin that has the gene and the variant of the conserved loop.

Gene name Human SNP Chr GeneContainingBin SNPContainingBin Within or
outside WOS

Igfbp5 rs13387042 9 80160000 80440000 Within
Zmiz1 rs704010 16 1890000 1760000 Outside
Zmiz1 rs704010 16 1930000 1760000 Outside
Gtpbp3 rs8170 16 19900000 19790000 Outside
Rpl37a rs16857609 9 80000000 80810000 Outside
Olfml3, Hipk1 rs11552449 2 206220000 206290000 Outside
Ovol1 rs3903072 1 220930000 220910000 Outside
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predict breast cancer survival (Gu-Trantien et al., 2013).
Overall, we were able to recover several human SNP locus-
gene interactions in our dataset, which connected to genes
implicated in cancer. The conservation of these long-range
interactions in human and rat enable leveraging our dataset
to study the human loci in rat as a model system.

DISCUSSION

The window of susceptibility (WOS) of breast cancer is an
important period during which cancer risk due to
environmental exposure is higher in women. The three-
dimensional organization of the genome likely plays an
important role in the transcriptional programs underlying the
early stages of carcinogenesis (Henning et al., 2016; García-Nieto
et al., 2017). However, little is known about these mechanisms
within the WOS and how it differs outside the WOS. Here, we
generated unique Hi-C and RNA-seq datasets for rats in and
outside WOS and developed a computational approach, NE-
MVNMF, that can unravel these differences.

Dynamics in three-dimensional genome organization can be
studied at the level of individual loops as well as higher-order
organizational units. However, the immediate impact on
downstream gene expression due to these changes remains
debated (van Steensel and Furlong, 2019). We demonstrated
that differential chromatin interactions (DCIs) are associated
with transcriptional differences between within WOS and
outside WOS. Upregulated genes associated with differential
interactions, which are higher in strength within WOS are
specifically enriched for cell-cycle related terms compared to
all up-regulated genes or genes associated with DCIs with
counts higher outside the WOS. The cell cycle has been
implicated in breast cancer susceptibility (Deng, 2006) and is
often deregulated in breast cancer (Bower et al., 2017). Our results
suggests that long-range regulation or deregulation of cell cycle
genes could be important avenues for functional studies of breast
cancer susceptibility.

A significant challenge in studying dynamics in 3D genome
organization is detecting reliable changes between time points.
This is difficult because of high sparsity of the data. To address
this challenge, we developed a multi-view NMF approach with
network enhancement to first enhance the Hi-C signal followed
by identification of large-scale topological changes within WOS
and outside WOS. The network enhancement smooths the
matrix, which strengthens well-supported interactions and
weakens poorly supported interactions. This allows MV-NMF
to be more robust to noise and bias. Our results show that
network enhancement to smooth the matrices before NMF
leads to the identification of dynamic blocks that have larger
changes in contact count overall and specifically larger changes in
DCIs compared to static blocks. Closer inspection of dynamic
blocks revealed many genes that are involved in mammary
development and cancer-associated pathways.

We previously identified a WOS-specific interaction
between the TCE and the Pappa gene (Henning et al.,
2016). This interaction is conserved across human, rat and

mouse. Therefore, we asked if we can identify similar
conserved interactions by mapping human SNP-gene
interactions to rat, which can then be followed up with in-
depth molecular characterization in a model organism. We
identified several examples of conserved locus-gene
interactions by comparing our DCIs to two previous studies
connecting breast cancer susceptibility SNPs to genes in
human (Baxter et al., 2018; Zhang et al., 2020). For
example, the SNP rs13387042, which falls in an enhancer
region in human loops over a distance of 400 kb to Igfbp5
(Wyszynski et al., 2016). We were able to map this locus onto a
DCI within WOS rats connected to the rat ortholog of Igfbp5.
Notably, similar to the previously validated WOS-associated
Pappa gene, Igfbp5 is also involved in mammary development
and IGF signaling. This interaction, along with the other
interactions identified in this study, will be a valuable
resource for enabling deeper characterization of genetic
variation and breast cancer that may have a similar age-
specific window of susceptibility.

Our work can be extended in several ways. First, the addition
of more time points would be useful in identifying more fine-
grained dynamics of chromatin for entry and exit from the
WOS. Second, the addition of one-dimensional regulatory
signals would be beneficial in determining which enhancers
and promoters are active within and outside WOS. In general, a
more robust dataset can aid in gaining a more complete picture
of the molecular mechanisms underlying WOS. On the
methodological side, our approach could be extended to
identify more complex patterns of change in 3D genome
organization to handle more time points and heterogeneous
samples. Taken together, our transcriptomic and 3D genome
profiles of within WOS and outside WOS and our
computational pipeline should be a useful resource for
studying the role of 3D genome organization in the window
of susceptibility for breast cancer.
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