
F1000Research

Open Peer Review

F1000 Faculty Reviews are commissioned
from members of the prestigious F1000

. In order to make these reviews asFaculty
comprehensive and accessible as possible,
peer review takes place before publication; the
referees are listed below, but their reports are
not formally published.

, University ofZipora Yablonka-Reuveni

Washington USA

, Sanford BurnhamAlessandra Sacco

Prebys Medical Discovery Institute USA

, Department of Medicine,Rita Perlingeiro

Lillehei Heart Institute, University of
Minnesota USA

Discuss this article

 (0)Comments

3

2

1

REVIEW

 Rejuvenating stem cells to restore muscle regeneration in aging
[version 1; referees: 3 approved]
Eyal Bengal ,   Eusebio Perdiguero , Antonio L. Serrano , Pura Muñoz-Cánoves2-4

Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
Cell Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Centro de Investigación Biomédica

en Red Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
Tissue Regeneration Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain

Abstract
Adult muscle stem cells, originally called satellite cells, are essential for muscle
repair and regeneration throughout life. Besides a gradual loss of mass and
function, muscle aging is characterized by a decline in the repair capacity,
which blunts muscle recovery after injury in elderly individuals. A major effort
has been dedicated in recent years to deciphering the causes of satellite cell
dysfunction in aging animals, with the ultimate goal of rejuvenating old satellite
cells and improving muscle function in elderly people. This review focuses on
the recently identified network of cell-intrinsic and -extrinsic factors and
processes contributing to the decline of satellite cells in old animals. Some
studies suggest that aging-related satellite-cell decay is mostly caused by
age-associated extrinsic environmental changes that could be reversed by a
“youthful environment”. Others propose a central role for cell-intrinsic
mechanisms, some of which are not reversed by environmental changes. We
believe that these proposals, far from being antagonistic, are complementary
and that both extrinsic and intrinsic factors contribute to muscle stem cell
dysfunction during aging-related regenerative decline. The low regenerative
potential of old satellite cells may reflect the accumulation of deleterious
changes during the life of the cell; some of these changes may be inherent
(intrinsic) while others result from the systemic and local environment
(extrinsic). The present challenge is to rejuvenate aged satellite cells that have
undergone reversible changes to provide a possible approach to improving
muscle repair in the elderly.
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Introduction
Muscle is one of the few tissues with the capacity to regenerate 
throughout most of our life. This capacity is gradually lost and is 
minimal in advanced old age. Muscle regeneration relies on a het-
erogeneous population of adult stem cells, known as satellite cells 
(SCs), which reside in a niche between the muscle sarcolemma and 
the basal lamina of each muscle fiber1–3. The microenvironment of 
the SC includes interstitial cells (such as fibro/adipogenic progeni-
tors [FAPs] and macrophages), blood vessels, extracellular matrix 
proteins, and secreted factors4–6. These components help to sustain 
the SC population in resting muscle and their regenerative capacity 
in response to muscle injury through as yet largely unknown mech-
anisms. In healthy muscle, SCs are in a quiescent, non-proliferative 
state but become activated and proliferate in response to muscle 
injury. A subset of the proliferating cells commits to differentiation 
and fuses with damaged fibers, while another subset of activated 
SCs self-renews and re-instates quiescence, thus preserving a pool 
of stem cells for future regeneration7–9. Balanced fate decisions  
are essential for maintaining the stem-cell pool and at the same  
time repairing muscle damage. Muscle regeneration is compro-
mised by perturbations in aged muscle and muscular disease  
states that shift the equilibrium of SCs toward myogenic commit-
ment or self-renewal10.

Quiescent SCs are characterized by the expression of several mol-
ecules, including the Paired box protein Pax7 (regarded as a defini-
tive SC marker), and by the absence of muscle regulatory factors 
(MRFs)11–14. Expression analysis of quiescent SCs distinguishes 
them from other SC fates15–17, revealing a transcription profile that 
includes genes involved in the inhibition of proliferation and adhe-
sion to the anatomical niche and others required for the metabolic 
demands of quiescence18. Interestingly, many silent genes in the 
quiescent SC are marked by “active chromatin”, indicating that they 
are in a “poised” state, primed for fast release from quiescence to 
the activated state19,20. Another crucial factor for maintaining SC 
quiescence is Notch signaling21–23. Notch activation in quiescent 
SCs inhibits MyoD expression and induces Pax7 expression, which 
further reduces MyoD protein stability24,25. Thus, at least one 
role of Notch signaling is to prevent MyoD expression in the 
quiescent state. Interestingly, the transcription factor Forkhead box 
protein O3 (FoxO3), also required for quiescence re-entry during 
self-renewal, was recently demonstrated to induce Notch signaling 
by increasing the expression of Notch receptors26. Therefore, the 
FoxO3–Notch–Pax7–MyoD axis may be one pathway regulating 
the quiescent state (either its maintenance or reacquisition during 
regeneration). However, it is clear that the maintenance of SC 
quiescence requires other, as-yet-uncharacterized epigenetic, 
transcriptional, and post-transcriptional regulators.

The activation of SCs is triggered by damage-associated molecu-
lar patterns (DAMPs), growth factors, and cytokines released by 
resident cells and infiltrating inflammatory cells in response to 
muscle injury27–33. These environmental signals induce the imme-
diate expression of the myogenic transcription factors MyoD 
and Myf5, which control the transcriptional program of activated 
SCs34–36. Transcriptome analysis of activated SCs reveals the 
upregulation of genes implicated in cell-cycle progression, meta-
bolic processes, and responses to the immune system16,20. Unlike 
the situation in quiescence, many genes expressed in activated 

SCs are associated with a repressive chromatin state that is pos-
sibly needed to restrict commitment to the myogenic fate20,37–42. A 
certain proportion of SCs must self-renew to preserve stem cells 
for future regeneration events. Like other adult stem cells, SCs can 
undergo symmetric or asymmetric cell division. One daughter cell 
of asymmetric cell division is destined to self-renew and replenish 
the quiescent SC pool and the other to differentiate. The mode of 
cell division is dependent on many parameters, including division 
orientation, environmental signaling events, distribution of cellular 
components, and expression patterns43,44. It is becoming evident that 
SCs are heterogeneous and are composed of subpopulations with 
distinct gene expression profiles and different propensities for self-
renewal and differentiation (reviewed in 45).

The decline of satellite cells with aging
Muscle aging is characterized by loss of mass and function, a 
process known as sarcopenia, and by a decline in repair capacity as 
a consequence of functional impairment and numerical reductions 
of SCs17,46,47. This decline is not the cause of sarcopenia but blunts 
muscle recovery after injury in elderly individuals. Recent stud-
ies have addressed the potential involvement of SCs in sarcopenia, 
with distinct conclusions48,49; however, this review focuses only on 
the altered functions of SCs during the muscle regeneration 
process with aging. The age-related regenerative decline of SCs 
is due to age-associated extrinsic/environmental changes as well 
as cell-intrinsic/autonomous changes (Figure 1). These intrinsic 
changes may have accumulated in the SC during its life and lead 
to reversible or irreversible intracellular damage. Aging-associated 
changes that reduce SC function include increased DNA damage, 
modifications to the epigenome and transcriptome, modified 
signaling pathways, damage to proteins, and altered metabolism, 
all of which lead to reduced proliferation and self-renewal. 
Damage accumulation can lead to a “point of no return” of the very 
old (geriatric) SC that enters a pre-senescent state or undergoes 
apoptosis47.

Intrinsic changes
Aging SCs show evidence of several cell-intrinsic changes that are 
likely interconnected, including genomic instability, DNA damage, 
oxidative damage, and deteriorated mitochondrial function. Com-
pared with their progeny, SCs are relatively resistant to DNA 
damage50. However, because of their low turnover, SCs cannot 
dilute the accumulation of DNA damage resulting from a lifetime 
of genotoxic stress exposure and gradual loss of antioxidant 
capacity51. DNA damage accumulation may be involved in many 
or all of the dysregulated processes affecting SCs, including 
cell-cycle division, proteostasis, senescence, and cell death. The 
effects of DNA damage on other dysregulated processes are yet 
to be determined.

The age-associated functional defects observed in SCs may 
reflect alterations to epigenetic and transcriptional programs. 
Transcriptional changes could explain reduced antioxidant activ-
ity, changes in protein folding, reduced myogenic differentiation, 
and the tendency of these cells to adopt fibroblastic and adipo-
genic fates52. The altered transcriptional program could be due in 
part to dramatic changes occurring in the epigenetic landscape20,  
which include changes in the DNA methylation pattern and post-
translational histone modifications. Recent studies demonstrate a  
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Figure 1. Extrinsic and intrinsic factors altering muscle stem cell regenerative functions during aging. Muscle stem cells (satellite cells), 
located in the basal lamina next to the myofiber, are normally in quiescence and express the Notch3 receptor, β1-integrin, and Sprouty1 
(Spry1, the fibroblast growth factor 2 [FGF2] signaling inhibitor). The myofiber secretes Delta1 (a Notch ligand) to the satellite cell niche 
(the local microenvironment). Both Notch receptor/Delta1 interaction and β1-integrin are required for satellite cell quiescence maintenance. 
Quiescent satellite cells also require a sufficient amount of nicotinamide adenine dinucleotide (NAD+) to sustain mitochondrial function and 
fitness. As the organism ages, satellite cells as well as the systemic and niche environment undergo changes that affect the regenerative 
functions. The myofiber reduces the release of Delta1 and increases the production of FGF2 and transforming growth factor β (TGFβ). In 
the systemic circulation, during muscle damage, increased levels of TGFβ family members (with controversy on GDF11), Wnt, and oxytocin 
are also found, together with a reduction in the provision of fibronectin to the niche, which in turn affects the interaction with β1-integrin and 
FGF2-induced ERK signaling in the satellite cell, thus impacting on stem cell functions, particularly during the activation/proliferation and 
self-renewal stages, hence affecting the overall regeneration process. Quiescent satellite cells at old age also present elevated activity of 
the p38αβ mitogen-activated protein kinase (MAPK) (p38) and JAK/STAT3 signaling pathways, and, at more advanced geriatric age, the 
p16INK4a locus becomes derepressed. Disruption of FGF2–Spry1 signaling and delocalization of β1-integrin in old satellite cells leads to a 
break of quiescence, while induction of p16INK4a at a geriatric age provokes a switch from quiescence to pre-senescence. Reduction of NAD+ 
in aged satellite cells is also considered a pivotal switch to induce satellite cell senescence. In response to muscle injury, young/adult muscle 
stem cells exit the quiescent G0 state and activate and enter the cell cycle, undergoing asymmetric division and self-renewal with induction 
of the p38αβ MAPK pathway in the daughter cell (due to polarized activation of fibroblast growth factor receptor 1 [FGFR1]), which will 
commit to the myogenic lineage and the eventual formation of new regenerated fibers. In aging muscle, p38αβ MAPK signaling is elevated 
in satellite cells, while FGF2 levels increase in the niche. In response to injury, the desensitized FGFR1 in old satellite cells fails to establish 
polarity by deregulating p38αβ signaling. As a consequence, satellite cell self-renewal is impaired in the old muscle, and an increased 
number of cells become committed to differentiation, with signs of apoptosis. In addition, while at a young age cells infiltrating the injured 
muscle produce fibronectin, which extensively occupies the niche, at old age the production of fibronectin is severely reduced, thus affecting 
the interaction with β1-integrin and the crosstalk with the FGF2–ERK MAPK signaling axis, which in turn impacts negatively on satellite cell 
proliferation. The proliferation, differentiation, and self-renewal capacities of old satellite cells are also perturbed by the JAK2/STAT3 pathway 
and by an imbalance in the Notch–Smad3 pathway (caused by high TGFβ levels in the niche), which leads to induction of CDK inhibitors 
(p15, p21, and p27) and of the Notch/Wnt pathway (the latter also promoting a switch of satellite cells towards a fibrogenic fate). At geriatric 
age, the regenerative pressure over G0 irreversibly arrested pre-senescent satellite cells drives their accelerated entry into full senescence 
(geroconversion). This process is accelerated by the reduced autophagy flux in aging satellite cells, which leads to dysfunctional mitochondria 
and increasing levels of reactive oxygen species (ROS), which contribute to the terminal senescent state. Altered levels of circulating factors, 
such as oxytocin, with aging also impact negatively on muscle regeneration (the levels of GDF11 are controverted). In summary, satellite cell 
intrinsic and extrinsic factors that undergo changes during aging can cooperate and synergize (or, alternatively, counteract their activities), 
thus altering the functions of aged satellite cells, which accounts for the deficient age-associated skeletal muscle regeneration.
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progressive increase in DNA methylation in aging muscle53–55. 
In general, de novo DNA methylation of CpG islands recruits 
polycomb repressive complex 2 (PRC2) to gene promoters in 
aged cells, and SCs isolated from aged mice show elevated levels 
and altered distribution of the H3K27me3 repressive mark20. 
These changes likely affect gene expression and contribute to the 
deregulation of signaling pathways necessary for an efficient 
regenerative response, as described above. One pathway that is 
highly active in aged SCs is the p38 mitogen-activated protein 
kinase (MAPK) (reviewed in56–58). It remains unclear if high p38 
MAPK activity in SCs is induced by intracellular signal transduc-
tion/transcriptional changes (intrinsic) or by extracellular ligands 
(extrinsic). High p38 MAPK activity is reported to reduce pro-
liferative activity59 and to decrease asymmetric cell divisions60, 
ultimately reducing the number of self-renewed SCs. Self-renewal 
and regenerative capacity of “old SCs” is restored by ex vivo 
treatment with a small-molecule p38 MAPK inhibitor44. Another 
gene whose expression is affected by epigenetic changes is 
Cdkn2a, which encodes the cell-cycle inhibitor p16INK4A, thought to 
drive cellular senescence34. In young SCs, p16INK4A is silenced by 
the PRC1-mediated repressive histone H2AK119Ub modification; 
H2AK119Ub is significantly reduced in SCs isolated from geriatric 
mice, resulting in p16INK4A derepression47. Increased p16INK4A levels 
cause geriatric SCs to enter a pre-senescent state. Interestingly, p38 
MAPK may induce cellular senescence by activating p16INK4A61. 
A model could thus be drawn in which intrinsic p38 activity affects 
old SCs in at least two ways: reducing asymmetric cell division 
and self-renewal and also activating p16INK4A expression, driving 
these cells to a pre-senescent state.

The SCs of old mice also have elevated activity of the JAK–
STAT pathway62,63. STAT3 drives the expression of MyoD and  
commitment to myogenic differentiation, and its high activity  
therefore reduces SC self-renewal. As with p38 MAPK,  
transient pharmacological inhibition of STAT3 in aged mice 
increases the population of proliferating SCs and improves  
muscle regeneration63.

Another cell-intrinsic change observed in old and geriatric SCs is 
unbalanced proteostasis (protein homeostasis)64. SCs from geriatric 
mice are characterized by low baseline autophagy (a quality- 
control mechanism whereby intracellular proteins and organelles 
are degraded within the lysosome), resulting in accumulation of 
damaged proteins, dysfunctional mitochondria, and oxidative 
stress that lead to the senescent state64. Consistent with this, SC 
senescence in aging mice is driven by a decline in the level of 
oxidized cellular nicotinamide adenine dinucleotide (NAD+) that 
impairs mitochondrial activity. Treatment with the NAD+ precur-
sor nicotinamide riboside rejuvenates SC function65. It is pres-
ently unknown whether the block in autophagy and mitochondrial 
function is linked to the activation of p38 MAPK, and there is 
a need for more research into the potential links between proteo-
toxicity and senescence in aging stem cells.

Extrinsic changes
SCs are affected by the local microenvironment (niche) as well as 
the systemic circulation, both of which undergo aging-associated 
alterations. The expression of several extracellular ligands increases 
during aging in the niche, compromising SC quiescence and 

reducing their regenerative potential. Niche FGF signaling is 
elevated with aging owing to the release of FGF2 by myofibers 
and decreased expression of Spry1, which encodes Sprouty1, an  
inhibitor of FGF signaling. Genetic elimination of Spry1 in SCs 
promotes FGF signaling, resulting in loss of quiescence and a sub-
sequent reduction in SC number. Spry1 elimination during adult 
muscle repair led to persistent ERK MAPK activation, which 
impaired the self-renewal of a subset of SCs66. In contrast to its 
detrimental role for SC quiescence maintenance, FGF signaling 
plays an important role in SC proliferation in vitro and in vivo67,68, 
thus suggesting a possible dual role for some growth factors 
during the regeneration stages. Other signaling molecules 
showing increased expression in the aging niche include TGFβ 
and canonical Wnt, both implicated in the suppression of SC 
stemness and in their transdifferentiation from a myogenic to 
a fibrogenic lineage52,69. It is worth noting that the transdiffer-
entiation of SCs into other cell types, such as fibroblastic or 
adipogenic cells, may constitute rather infrequent events in aging 
or dystrophic muscle and in cell culture52,69–72. Notch signaling, 
required to maintain the quiescent state, is reduced in the aged 
niche, and the importance of Notch in maintaining regenerative 
potential is demonstrated by the finding that Notch inhibition in 
young SCs causes regenerative defects while its activation in 
aged SCs restores their regeneration capacity73–75. Moreover, old 
myofibers express insufficient amounts of the Notch ligand 
Delta1, which is necessary to maintain SC quiescence76. Recently, 
additional evidence on the requirement of SC–niche interactions 
for the maintenance of SC function and tissue repair capacity 
has been provided77,78. The expression of the cell surface receptor 
β1-integrin and the extracellular matrix (ECM) protein fibronectin 
is altered in old SCs and their niche, respectively79,80. Impor-
tantly, restoring their function rescues muscle regeneration in old 
mice. How these various local signals interconnect awaits further 
investigation.

The influence of the systemic circulation on SCs was demonstrated 
in heterochronic whole muscle transplant experiments81–85 and 
heterochronic parabiosis, wherein two mice are surgically joined 
such that they share the same circulatory system74,86–89. Interest-
ingly, joining young and aged mice improved the regenerative 
response to muscle injury in the aged partner73,74, indicating that 
young blood contains “rejuvenating factors”, and a major effort 
has been directed at identifying these molecules. One candidate 
is oxytocin, a hypothalamic hormone that declines with age in the 
blood and whose receptor is downregulated in SCs of aged mice90. 
Administration of oxytocin to aged mice enhances SC proliferation 
and differentiation and improves overall regenerative potential 
after muscle injury90. Another candidate is GDF11; however, 
its influence on SCs is debated. GDF11 is a member of the 
TGFβ family that shows structural and functional homology to 
myostatin91. While one group observed its decline in the blood 
of aged animals and humans and showed that administration of 
recombinant GDF11 to old mice improved SC regeneration89, 
another group reported that the levels of GDF11 increase with age 
and that its administration to old mice has no beneficial effects 
and may even worsen regeneration after muscle injury in young 
mice92. More recent studies found no evidence that GDF11 reju-
venates old stem cells or extends lifespan in models of progeria 
and reported no improvement in muscular dystrophy93–96.
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Distinct cell types residing in the niche or infiltrating the injured 
muscle have been shown to influence SC functions by releasing 
growth factors and cytokines, which may act at the distinct myo-
genic stages during the regeneration process. These cell types 
include FAPs and other resident progenitor cells, several immune 
cell types such as macrophages, eosinophils, and T lymphocytes, 
neurons, or endothelial cells97–110. Because these cells may also 
experience age-related alterations, it is likely that the crosstalk 
between them and the SCs will be affected with aging and hence 
provoke consequences on the repair process. Similarly, changes 
in the interactions between cells and the ECM during aging, by 
modifying tissue stiffness and topography, may alter SC regenera-
tive functions6,78–80,111,112.

Can SC function be restored in aged individuals?
The significant advances in the understanding of SC aging open 
up real possibilities for improving SC regenerative potential as a 
possible treatment for aging and diseased muscles. The emerging 
evidence indicates that the functional and numerical loss of SCs 
is a progressive process occurring throughout the lifetime of the 
organism. The long-lived quiescent SC accumulates many lesions 
caused by loss of homeostasis, metabolic alterations, and the aging 
environment. Although this process is gradual, it is accelerated 
in advanced old age to the extent that SCs become practically 
non-functional owing to senescence or apoptosis. In this context, 
disputes about which factors, intrinsic or extrinsic, are more domi-
nant in dictating the fate of old SCs seem misplaced, and it is likely 
that both make important contributions to SC functional decline 
with aging. A degree of success has been obtained in restoring the 
regenerative capacity of old muscle with both parabiosis experi-
ments (extrinsic effect) and transplantation of ex vivo-rejuvenated 
SCs into old animals (intrinsic effect). The simplest explanation for 
these effects is the heterogeneous nature of SCs. Even in old age, 
the SC population includes a small percentage of functional SCs, 
with only limited accumulated damage that can be reversed still by 
extrinsic signaling factors or by ex vivo pharmacological inhibition 
of stress pathways such as p38 MAPK or JAK/STAT3. It is thus 
likely that the success of biochemical or genetic strategies applied to 
old SCs in transplantation experiments results from the proliferative 
amplification of a subset of highly regenerative cells. Alternatively, 
the health and fitness of old SCs could be increased by refueling 
“clean up” activities such as autophagy (which declines with aging) 
to eliminate damage, thus improving SC regenerative capacity after 
muscle injury and in transplantation procedures. Future inter-
ventions that could also be considered for combating age-related 
muscle regenerative decline may utilize the restoration of SC–niche 
interactions via the delivery of bioengineered molecules.

The accumulated evidence outlined in this review indicates a 
number of clear directions for future research. The key finding that 
the SC pool enters a state of irreversible senescence at a geriat-
ric age47 implies that any treatment to rejuvenate endogenous stem 
cells should be implemented before this point of no return. It is also 
important to consider the link between SC regenerative potential 
and quiescence. It is generally well accepted that the more quies-
cent a stem cell is, the more regenerative capacity it has. It has also 
become clear that somatic stem cell populations are heterogeneous, 
with cells showing differing levels of quiescence113. Subpopulations 
of quiescent SCs with distinct regenerative capacities have been 
identified based on the differential expression of markers such as 

Pax7, CD34, Myf5, and M-Cadherin13,114–117. Highly quiescent sub-
populations probably change with aging to become less quiescent 
and therefore of reduced regenerative capacity. SC heterogeneity 
should therefore be further investigated, with the aim of decipher-
ing the molecular basis of quiescence. Understanding the quiescent 
state will allow early intervention aimed at preserving the highly 
regenerative quiescent subpopulations throughout life. Likewise, 
strategies directed towards the expansion of relevant subpopula-
tions of resident progenitor cells in the SC niche may be envisioned 
for reversing the age-associated muscle regenerative loss. Another 
unresolved issue is the interaction among the various events contrib-
uting to the loss of SC regenerative potential with aging. Research 
needs to focus on determining which events are causative and 
which are consequential. For example, DNA damage may induce 
the loss of baseline autophagy flux in old SCs, or alternatively  
DNA damage may be the consequence of oxidative stress resulting 
from the loss of autophagy flux. Defining the hierarchy of events 
leading to SC deterioration will enable the targeting of upstream 
events in order to achieve more efficient rejuvenation of SCs.  
Last but not least, in a low-turnover tissue like muscle, much 
of the damage to the quiescent SC is the result of the gradual  
decline (aging) of the niche composition and the systemic sys-
tem. Future efforts to rejuvenate the regenerative potential of SCs  
should thus adopt a holistic view of the SC and its supportive  
environment.

Current efforts to rejuvenate SCs in aged mice include genetic 
and pharmacological inhibition of p16INK4a47, STAT362,78, and p38 
MAPK59, augmentation of autophagic flux64, NAD+ repletion65, 
and the administration of rejuvenating hormones like oxytocin90. 
While these approaches hold great promise, their translation from 
mouse to human will require significant technological advances to 
eliminate or minimize the potentially broad side effects. Interest-
ingly, SC activity has been found to increase in response to simple 
lifestyle changes that modify cell metabolism, such as adopting a 
low-calorie diet118. Similarly, exercise has been shown to enhance 
SC numbers and function and hence promote better muscle regen-
eration in rodents119–122. This serves as a reminder that we should 
consider not only sophisticated methods but also simple innovative 
approaches deriving from our understanding of the system.
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