
Advances in mechanism and management of bone
homeostasis in osteonecrosis: a review article from
basic to clinical applications
Xiao-Na Xiang, MSca,b,c, Hong-Chen He, PhDa,b,c, Cheng-Qi He, PhDa,b,c,*

Abstract
Osteonecrosis, characterized by bone cell death leading to impaired bone recovery, causes challenges in bone homeostasis
maintenance. Bone homeostasis relies on the delicate balance between osteoclasts and osteoblasts, encompassing a series of
complex and strictly regulated biological functions. Current treatments, including conservative therapies and surgeries, often fall
short of expected outcomes, necessitating a reorientation towards more effective therapeutic strategies according to the patho-
genesis. In this review, the authors hierarchically outlined risk factors, emerging mechanisms, and last-decade treatment approa-
ches in osteonecrosis. By connectingmechanisms of bone homeostasis, the authors proposed future research directions should be
focused on elucidating risk factors and key molecules, performing high-quality clinical trial, updating practice, and accelerating
translational potential.
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Introduction

Osteonecrosis, commonly referred to as avascular necrosis,
atraumatic necrosis, aseptic necrosis, or ischemic necrosis, can
result from trauma and has been regarded as a complication
associated with autoimmune diseases[1]. The femoral head and
jaw are the most affected parts during osteonecrosis, as a
pathologic process of bone cell death partly due to an interrup-
tion of blood flow, limiting the delivery of oxygen and
nutrients[2]. The mean age of presentation of osteonecrosis of the
femoral head (ONFH) in the UK is 58.3 years, with a prevalence
of 2 per 100 000 patients[3]. The incidence of osteonecrosis of the
jaws ranges from 0.2 per 100 000[4] to 41.7%[5], depending on
the received medication and primary diseases[6]. Some causative
conditions have been reported, such as medication use, alcohol
intake, hypercoagulation, bone marrow fat embolisms, high
intraosseous pressure, and vascular endothelial dysfunction[7,8].

The most affected organ of this disease is bone, which ulti-
mately results in structural changes, potential collapse, and
destruction[9,10]. Bone undergoes a continuous cycle of formation
by osteoblasts and resorption by osteoclasts, resulting in a
dynamically changing tissue, even in the face of challenging
conditions such as metabolic[11], immunological[12], or degen-
erative diseases[13]. Recent studies[14,15] have focused on the
mechanisms that couple the relation between bone resorption and
formation. Osteoblasts and osteoclasts, the primary cellular
components of bone, delicately balance bone homeostasis.
Additionally, osteocytes are ancient bone cells, and mechan-
osensing stellate cells that possess a remarkable ability to detect
and respond to mechanical stimuli[16]. Osteocytes serve as crucial
regulators of bone homeostasis by modulating osteoblast and
osteoclast via the production of key signaling molecules in the
WNT signaling and receptor activator of nuclear factor-κB ligand
(RANKL) pathways[17]. These cells not only communicate
among themselves[18], but also interact with other cells within the
bone marrow, such as T and B cells, macrophages, adipocytes,
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and hematopoietic pro-genitors[19,20]. Moreover, the processes of
osteogenesis and angiogenesis are intricately connected, each
relying on the other for proper function. Osteogenic cells secrete
angiogenic factors to stimulate vessel growth and regulate func-
tions, whereas endothelial cells secrete angiocrine signals that
control bone remodeling[21].

Some guidelines and comments[22–24] about the prevention and
treatment of ONFH and medication-related osteonecrosis of the
jaw (MRONJ), especially by the Association Research
Circulation Osseous (ARCO)[22], and the Multinational
Association of Supportive Care in Cancer/International Society of
Oral Oncology (MASCC/ISOO)[23] have published. The guide-
lines reported some strategies for therapy, and the clinical deci-
sion principally is made according to the disease stage and age.
Among these, surgeries are important treatments for managing
osteonecrosis, especially core decompression (CD). However, a
meta-analysis study reported that the efficacy and effectiveness of
CD alone for ONFH are no better than other joint-preserving
strategies[25]. A clear summary with a classification of current
therapies is necessary. Especially, with the development of
regenerative medicine, surgeries with regenerative strategies
should be comprehensively presented.

In general, the pathogenesis of osteonecrosis is complex and
poorly understood. Moreover, the risk factors related to osteo-
necrosis should be presented to avoid. With the advancement of
medical technology, more available therapies have emerged for
use. Some novel technologies are still in the animal research stage,
while others have already undergone clinical trials. In this review,
we systematically searched and summarized recent evidence
about the risk factors, pathogenesis of bone homeostasis, and
treatment strategies in individuals with osteonecrosis. Moreover,
we discussed the potential therapies that may be used for osteo-
necrosis in the future.

Methods

We searched Web of Science, PubMed, and Scopus Database
from 2013 to December 2023, using the Mesh terms, keywords,
and combinations, such as risk factor and (osteonecrosis or ONJ
or ONFH), (pathology or molecular mechanism) and (osteone-
crosis or ONJ or ONFH) and (bone homeostasis or osteoblast or
osteoclast or MSC), (treatment or therapy or surgery or bioma-
terials) and (osteonecrosis or ONJ or ONFH) and clinical trials.
The reference lists of the studies selected for full-text screening
were manually searched to find potentially relevant articles. We
included basic and experimental studies (in vivo or in vitro) that
determined the molecular pathology. We also included the clin-
ical studies that reported the risk factors of osteonecrosis and the
current treatments for osteonecrosis. Comments, conference
abstracts, reviews, guidelines, and letters to editors were not
included in the review. Duplicate articles were eliminated, fol-
lowed by a preliminary review based on titles and abstracts.
Experimental studies about the management of osteonecrosis
were excluded from the systematic review. The remaining rele-
vant literature was incorporated based on the selection criteria
outlined above after reviewing the full text.

Results

The flowchart demonstrates the study selection process in our
study (Fig. 1). A total of 171 studies were included for describing
the risk factors (42/171), basic studies that reported the potential
bone homeostasis mechanisms of the disease (66/171), while
others reflected the current therapy strategies for osteonecrosis
(63/171).

Risk factors

Some diseases, such as immune-mediated diseases[26–37] and
trauma[38–41] are known as usual risk factors. Moreover, the
abusive consumption of alcohol[42–44] and prolonged use of
steroids[45–50] have been recognized as promoting factors. Besides
this, there are some conditions reported recently and the etiology
of these risk factors and osteonecrosis need to be summarized. In
this section, we focus on the relationships between the risk factors
and osteonecrosis, and the risk factors and their associated inci-
dence, prevalence, or relative risks are presented in Table 1.

Related primary diseases or history

The risk of osteonecrosis is highly associated with systemic lupus
erythematosus (SLE), acute lymphoblastic leukemia (ALL)[26],
sickle cell disease (SCD), and human immunodeficiency virus
(HIV)[27,28], that requires dosage of steroids[29]. SLE is a chronic
autoimmune systemic disease that requires high-dose initial cor-
ticosteroid treatment with a reported 26.9% of symptomatic
osteonecrosis[30]. The incidence of osteonecrosis during anti-
leukemic treatment has been investigated in many studies,
but results range from 1.6 to 25%[31]. For ALL, hypertension
is associated with an increased risk for symptomatic
osteonecrosis[32]. Additionally, among children with ALL,
increased risks were reported when receiving higher post-trans-
plant steroid dosages and being older than ten years old at the
time of transplantation[33–35]. SCD is one of the most common
hereditary blood disorders and the prevalence of ONFH ranges
from 3 to 50% among individuals with SCD, which is associated

Figure 1. Study selection.
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with the genotype and severity[36]. For the treatment of HIV, the
mean daily oral dose of glucocorticoids (GCs) was 29mg, and the
average cumulative oral dose was 30 g over 5 years[27].
Moreover, women appear to have an increased relative risk of
osteonecrosis during pregnancy[37]. Individuals receiving che-
motherapy have a higher risk for MRONJ[51]. Additionally,
patients with diabetes have an increased risk of developing
osteonecrosis[58], which reported a 1.16-fold increased risk for
ONFH[52].

Trauma or surgery

Fractures of the proximal humerus, intertrochanteric fracture,
and femoral neck fracture are common with a similar rate of 7%
of fractures. Due to the specific vascular anatomy, these fractures
predispose the humeral head to osteonecrosis after trauma[38].
Post-traumatic ONFH is a serious consequence of femoral neck
fractures, which can lead to femoral head collapse and the
development of osteoarthritis[39,40]. Spontaneous osteonecrosis
of the knee referred a subchondral fracture in the medial condyle,
resulting in the collapse and the formation of necrotic tissue[41].
Tooth extraction is an additional risk factor for individuals
diagnosed as MRONJ[53–55]. Moreover, extracting a period-
ontally compromised tooth might increase the risk of osteone-
crosis that may be associated with the previous
inflammation[55,59,60]. Inflammatory response is also a key pro-
gress for diabetes associated MRONJ[61].

Alcohol or medication use

Alcohol intake also accounts for non-traumatic osteonecrosis[42]

and clinical studies demonstrated that alcohol intake increased
the incidence of ONFH to more than 3-fold than non-drinkers[43,
44]. Nonetheless, this study also illustrated that the added effect of
alcohol should not superpose the overwhelming effect of
steroids[44].

MRONJ is a serious disease that occurs in the jawbones and is
related to anti-bone resorption drugs and anti-angiogenesis
drugs, such as bisphosphonates[62,63] and denosumab[56].
Bisphosphonates, including zoledronic acid or zoledronate,
alendronate, and pamidronate, are important pharmacological
agents against osteoclast-mediated bone loss associated with

various conditions, like osteoporosis, osteogenesis imperfecta,
Paget’s disease, hypercalcemia, and metastatic bone
malignancies[64]. These medications promote the apoptosis of
osteoclasts and play an important role in maintaining osteocyte
homeostasis, which is crucial for the degradation of minerals on
the bone surface. However, long-term bisphosphonate treatment
and old age are more likely to induce osteonecrosis of the max-
illary and mandibular bones[65]. Receiving the treatment of
denosumab might have a 1.95–3.49-fold increased risk than
receiving bisphosphonates[66,67]. Worse dental health is regarded
as a bad influence on MRONJ[57].

The use of GCs as an anti-inflammatory and immunomodu-
latory agent plays a critical role in treating various conditions,
including metabolic issues like osteoporosis and obesity, but
multiple side effects can produce significant morbidity, with
osteonecrosis being the most common[45]. GCs contribute to the
development of osteonecrosis by inhibiting osteogenesis and
angiogenesis, inducing endothelial damage, and thereby reducing
blood supply, which results in programmed cell death and col-
lapse. Many clinical trials have indicated that the type of steroid
used, initial steroid dosage, tapering speed, concurrent medica-
tions, cumulative dosage, and overall duration are significantly
linked to the risk of osteonecrosis[46–50].

Mechanism of imbalanced bone homeostasis in
osteonecrosis

Osteonecrosis is a multifactorial disease for which the pathogeny
is still unknown. The main pathological feature is the progressive
death of bone cells. Bone homeostasis is a dynamic and compli-
cated physical process that involves many specific cells (Fig. 2).
Cellularly, bone homeostasis is mainly maintained by osteoblasts
and osteoclasts, but the dynamic balance is much more complex,
and many gaps remain in our knowledge. Phenotypes and
molecular mechanisms of bone homeostasis related to osteone-
crosis are presented in Fig. 3.

Viability and death of bone cells

Osteoblasts programmed cell death: The proliferation of osteo-
blasts is inhibited, and apoptosis is induced by dexamethasone, a
type of long-effect GCs. Dexamethasone potentially attenuated

Table 1
Summary table of risk factors and their associated epidemiology.

Classification Risk factor Epidemiology

Related primary diseases/history SLE Incidence: 26.9%[30]

ALL Incidence: 1.6–25%[31]

SCD Prevalence: 3–50%[36]

HIV Not specific
Cancer (chemotherapy) Incidence: 3.45% (HR for chemotherapy was 1.94)[51]

Diabetes 1.16-fold increased risk vs. non-diabetes[52]

Pregnancy Prevalence: 0.375%[37]

Trauma/surgery Fractures Prevalence: 5%[39] (SIR 7.98/10 000 person-years[40])
Tooth extraction Incidence: 4.31%[53] (OR 7.6[54])
Tooth extraction with periodontitis HR 1.61[55]

Alcohol or medication use Alcohol consumption > 3-fold vs. non-drinkers[43,44]

Bisphosphonates/denosumab Varies with drug and duration. For bisphosphonates, HR was 2.62[56]. For denosumab,
1.95–3.49-fold increased risk vs. bisphosphonates[57]

Glucocorticoids Correlated with dose and duration

ALL, acute lymphoblastic leukemia; HR, hazard ratio; OR, odds ratio; SCD, sickle cell disease; SIR, standardized incidence ratios; SLE, systemic lupus erythematosus.
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osteoblast differentiation and increased intracellular reactive
oxygen species (ROS) levels[68]. The activations of phosphatidy-
linositol 3-kinase (PI3K)/AKT pathway in osteoblasts were sup-
pressed by down-regulating the expressions of p-PI3K and
p-AKT, also the downstream (mTOR) was down-regulated[69].
Knockdown of glycogen synthase kinase 3β (GSK3β) alleviated
dexamethasone-induced osteoblast apoptosis by decreasing the
expressions of B-cell lymphoma-2 (BCL-2) Associated X Protein
(BAX), cleaved-caspase-3, cleaved-caspase 9 and increased the
expression of BCL-2[70,71]. Dexamethasone induction sig-
nificantly reduced BCL-2 expression and increased the release of
cytochrome c. Dexamethasone induced osteoblast apoptosis
through the up-regulation of caspase-3 that mediated by signal
transducer and activation of transcription (STAT) 1[72,73]. Yang
et al.[74] found that the mediator of nicotinamide adenine dinu-
cleotide phosphate (NADPH) oxidase family and apoptosis-
related proteins, monoacylglycerol lipase (MAGL), was sig-
nificantly upregulated during GCs treatment in osteoblasts. Sirt6
is also affected in an osteonecrosis mouse model, and osteoblast/
osteocyte-specific Sirt6 knockout mice exhibited exacerbated
bone loss and significant deformities[75]. Previous studies
demonstrated that GCs upregulated antagonists for WNT/β-
catenin signaling pathway, including Dickkopf1 (DKK-1) and
secreted frizzled-related protein-1 (SFRP1) in osteoblasts[76]. As
in mice, it displayed a three-fold rise in osteoblast apoptosis, and

28% of osteocyte apoptosis was detected in metaphyseal cortical
bone[77]. Besides apoptosis, GCs induced ferroptosis of
osteoblasts via P53/SLC7A11/GPX4 pathway[78].

Osteoclasts dysfunction: During homeostasis, osteoclasts
meticulously resorb bone at specific locations, thereby ensuring
the maintenance of a matrix with the appropriate levels of
strength and resilience. A study indicated that the quantity, dia-
meter, and nuclearity of osteoclasts were significantly elevated in
specimens from individuals with MRONJ[79]. Furthermore,
osteoclastic expression of nuclear factor of activated T cells-c1
(NFATc1), an essential regulator of osteoclastogenesis, was sig-
nificantly increased[80,81] and the plasma levels of osteoprotegerin
(OPG) and RANKL were notably higher in the individuals with
ONFH than the health[82]. The RANK-RANKL axis was the
most critical role in B-cell ALL-driven bone destruction[83]. NF-
κB signaling also plays a critical role in the differentiation of
osteoclasts. A study found that the level of IKKe was decreased in
individuals with ONFH, and IKKe interacted with NF-κB-indu-
cing kinase (NIK) to inhibit osteoclast activity by suppressing the
transcription of Nik[84]. When the use of bisphosphonates com-
bined with dexamethasone, the block of osteoclast differentiation
was significant through the expression of IFN-β[85]. Furthermore,
a study indicated that bromodomain-containing protein 9
(BRD9), a component of the non-canonical BAF chromatin
remodeling complex, plays an important role in MRONJ. BRD9

Figure 2. Overview of bone homeostasis and development of lineages. The delicate balance of bone homeostasis is accomplished by the actions of two types of
cells: the osteoblast lineage and osteoclast lineage cells. Osteoblast lineage cells play a role in bone mineralization and the creation of osteocytes by excreting
hydroxyapatite and calcium. In contrast, osteoclast lineage cells are involved in bone resorption.
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deficiency in the myeloid lineage promoted osteoclast differ-
entiation and increased bone resorption by suppressing inter-
feron-β signaling and interacting with the transcription factor
FOXP1, which subsequently activated Stat1 transcription[86].

Osteocytes apoptosis and differentiation: Osteonecrosis is
characterized by excessive osteocyte death. For pathology, GCs
induce osteocyte apoptosis, develop hyper-mineralization, and
degeneration of the lacunocanalicular network rapidly, which
resulting dysregulation of bone architecture andmineralization in
human osteonecrosis[87]. Furthermore, there was a significant
buildup of low-density lipoprotein (LDL)/oxidized LDL (ox-
LDL) in the osteocytes (lacunae) of necrotic areas, in contrast to
healthy regions. Cell studies demonstrated that ox-LDL reduced
the viability of osteocytes and enhanced their apoptosis[88]. Both
RANKL and sclerostin were markedly increased in bispho-
sphonates conditioned medium, moreover, Janus-activated
kinase (JAK)/STAT3 pathway was subsequently activated with
up-regulation of the RANKL[89]. Moreover, the phosphatase and
tensin homolog (PTEN)-Protein kinase B (AKT) signaling[90,91]

and PI3K/Akt/mTOR pathway[92] also participated in osteocyte
apoptosis. Moreover, a study indicated that osteocytic cell death
was linked to mitochondrial pathways. Exposure to either dex-
amethasone or hypoxia resulted in diminished mitochondrial
membrane potential, reduced levels of ATP synthase (ATP5A),
and increased expression of 8-OHdG, cleaved caspases, and the
X-linked inhibitor of apoptosis protein (XIAP)[93]. Generally, the
cross-talk between bone cells is complicated. A study showed that
osteocytes in necrotic regions released damage-associated

molecular patterns (DAMPs) which can be sensed by
osteoclasts via macrophage-inducible C-type lectin (Mincle).
Mincle activation triggered osteoclastogenesis via immunor-
eceptor tyrosine-based activation motif-based calcium signaling
pathways, triggering bone loss[94].

BM-MSCs differentiation and apoptosis: An increase in bone
marrow fat resulting from adipocyte accumulation is always
regarded as a pathogenic process in osteonecrosis. Exposure to the
saturated free fatty acids palmitate favored BM-MSCs (bone mar-
row-derived-mesenchymal stromal cells) differentiation through the
adipogenic lineage at the expense of the osteoblastic phenotype.
Additionally, BM-MSCs treated with steroids accumulated trigly-
ceride, indicating that steroids increased the adipogenic differ-
entiation of BM-MSCs[95]. Moreover, adipogenesis was intensified
and the ability to differentiate into bone was deceased in BM-MSCs
of osteonecrosis[96]. Fat mass and obesity (FTO), a key m6A
demethylase, was found to be significantly down-regulated in
individuals with osteonecrosis by targeting PPARG and was
markedly upregulated during the differentiation of human MSCs
into osteoblasts[97]. One study indicated that the endogenous
expression of periostin (POSTN) and SOST in BM-MSCs of
ONFH was upregulated compared with developmental dysplasia
of the hip group and partially inactivating the WNT/β-catenin
signaling pathway[98]. The WNT pathway is a crucial signal
transduction pathway. The extracellular protein DKK1 serves as.
Corticosteroids upregulated DKK1 (a negative regulator in WNT
signaling) expression in BM-MSCs, which led to the delay in bone
phylogeny, regeneration, and remodeling[99,100].

Figure 3. Phenotypes and molecular mechanisms of bone cells and vessels related to osteonecrosis. Osteonecrosis is a complex disease. Besides immune and
inflammation factors, increased cell senescence, and fibrosis, it mainly involves the apoptosis of osteoblasts and osteocytes, adipogenic differentiation of BM-
MSCs, and the dysfunction of osteoclasts and BM-MSCs with the existence of risk factors (e.g., the use of glucocorticoids). Moreover, hematology impairment also
contributes to the progress and inhibits the AKT signaling pathway in osteoblasts. BM-MSC, bone marrow-derived-mesenchymal stromal cell; GC,
glucocorticoids.
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The oxidative stress (OS) microenvironment of the necrotic
regions leads to mitochondria damage ,stress-induced apoptosis,
and senescence of BM-MSCs. The increased levels of protein 53
(P53) hindered the mitochondrial translocation of Parkin and
activation of E3 ubiquitin ligase, leading to a reduction in
mitophagy[101]. Moreover, the activation of SIRT3 is also related
to OS[102]. A functional experiment demonstrated that inhibiting
MAGL significantly decreased OS and partially protected BM-
MSCs from apoptosis. Pathway analysis indicated that MAGL
inhibition regulated oxidative stress in BM-MSCs through
the Kelch-like ECH-associated protein 1 (KEAP1)/NRF2
pathway[74]. However, another study indicated BM-MSCs
maintained mitochondrial function and exhibited reduced OS.
Detailly, the mitochondrial membrane potentials remained
stable[93].

Hematology impairment

Osteonecrosis involves the disruption of vascular supply to the
bone and hypoxia microenvironment caused by impaired blood
flow could be essential pathogenic factors. The increased levels of
VEGF were reported to inhibit steroid-induced osteonecrosis in a
rabbit model[46]. Additionally, VEGF, as a key mediator of
angiogenesis, stimulated endothelial cell proliferation, differ-
entiation, and survival that assessed by tube formation experi-
ments and related to interferon-induced transmembrane protein
1[103]. It was challenging to detect HIF-1α and VEGF in the
human femoral head at end-stage ONFH, which indicated that
the impairment of vascular network formation and reduced
osteogenic activity ultimately led to osteonecrosis[104]. Besides
VEGF, ankyrin was a cytoskeletal protein that interacted with
CD44 to promote endothelial nitric oxide synthase expression
and tissue nitric oxide levels via the Akt signaling pathway[105].
Moreover, PTEN promoted endothelial progenitor cell apoptosis
under GC condition[106]. Another reasonable mechanism was
that increased PAI-1 reduced fibrinolytic function, and lastly
accelerated the process of ONFH by reducing the femoral head
blood flow[67]. In juvenile mice induced by GCs, it was reported
that bone angiogenesis and type H vessel (in the primary spon-
giosa, where trabecular bone formation begins) were disrupted,
which was linked to reduced PDGF-B expression in
preosteoclasts[107].

Immune and inflammation factors

The immune and skeletal system have been revealed that crossly
interacted by cytokines, chemokines, receptors, signaling mole-
cules, and transcription factors. Previous studies have suggested
that activated T/Th1 cells and B cells stimulated the high
expressions of RANKL and OPG in individuals with ONFH. In
detail, CD4+Th17 cells raised the levels of RANKL and cytokines
(such as TNF‐α, IL-23, IL-17[83], and IL-15[108]). IL-34 alone or
works in coordination with macrophage-colony-stimulating
factor (M-CSF) to promote osteoclastogenesis and activate
extracellular regulated protein kinases (ERK), STAT3, and non-
canonical NF-κB pathways, which may contribute to ONFH[109].
Moreover, immunohistochemistry results indicated that the M1/
M2 polarization ratio increased from 3 to 10 as the condition
progressed from the progressive to the end stage[110]. As for
MRONJ a significant increase in M1 polarization also con-
tributed to the progress[111]. Moreover, the establishment of
unique bacterial communities, along with a weakened innate

immune response, could be likely to influence disease
progression[112]. Bisphosphonates treatment of dendritic cells
caused an impairment in immune functions including differ-
entiation, maturation, migration, antigen presentation, and T-cell
activation in vitro[113]. After injecting mice with bisphosphonates
and tooth extraction, immune cells from bone marrow and
spleen, and purified natural killer cells from the spleen showed
high induction of IFN-γ and natural killer cell-mediated cyto-
toxicity except for gingiva in which immune cells were in
contrast[114,115]. Moreover, exposure to bisphosphonates resul-
ted to impaired neutrophil chemotaxis, decreased neutrophil
NADPH oxidase activity, and a lower number of circulating
neutrophils[116].

The production of inflammatory cytokines plays an important
role in the pathogenesis. Nod-like receptor pyrin domain-con-
taining protein 3 (NLRP3) inflammasome, caspase-1, and IL-1β
in macrophages contributed to the persistent inflammation[61,117]

. There was a debate about the existence of TNF-α. Zheng and
their colleague figured that TNF-α induces the apoptosis of
osteoblasts with a high expression in necrotic regions[118], while
Fang et al.[119] demonstrated that the content of TNF-α in
necrotic tissue is much lower than that of normal tissue. TNF-α is
also related to autophagy, which is beneficial for interrupting the
process of osteonecrosis, therefore TNF-α might should not be
considered as a therapeutic target. IL-9 was also highly expressed
in osteonecrosis, leading to an elevated level of inflammation-
related cytokines and cartilage matrix-degrading enzymes,
alongside heightened activation of JAK-STAT signaling[120].

Fibrosis and other novel findings

A recent study figured that the extension of fibrosis on specimens
from biopsies in ONFH is a predictor of the outcome of the core
decompression[121]. In Legg-Calve-́Perthes disease (LCPD), an
increased fibrous tissue and adipose tissue was detected in the
bone marrow space and a decreased osteogenesis was reported in
a piglet model[122]. However, the mechanisms of fibrosis are
merely explored.

Chen et al. found that hsa-miR-200b-3p and hsa-miR-206 in
urinary exosomes might serve as non-invasive biomarkers for
GCs-induced ONFH and the Hippo, PI3K-AKT, TGF-β andWnt
signaling were enriched in bioinformation analysis[123]. Shen and
their colleague indicated that zoledronic acid activated the NF-κB
signaling pathway and macrophages derived miR-149-5p reg-
ulate biological functions of endothelial cells via the Rap1a/
Rap1b/VEGFR2 pathway[124]. MiR-708 was also found to be
upregulated in individuals with ONFH and in cell experiments. It
targeted SMAD3 and inhibited osteogenic differentiation and
adipogenesis of MSCs[125]. An increase in miR-141[126] and
reductions in miR-17-5p[127], miR-21-5p[128], miR-4523[129],
miR-122-5p[130], and miR-26a[131] are potential mechanisms for
ONFH. Furthermore, Fang et al.[132] found that tsRNA-10277
was significantly down-regulated in plasma exosomes of indivi-
duals with GCs-induce ONFH compared to that in healthy
individuals and tsRNA-10277 showed positive effects on osteo-
genic differentiation ability of BM-MSCs in vitro.

Advancements in decade for prevention and treatment of
osteonecrosis

The studies published in the past decade related to clinical use and
effectiveness included in this review are summarized in Table 2. A
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Table 2
Characteristics of included studies about clinical use and effectiveness.

Author, year
Study
design Disease type

Sample
size (N) Dosage Intervention Comparison Outcomes Finding Ref.

Hernigou et al.
2018

Case series ONFH after
pregnancy

145 150 ml of marrow MSCs NA HHS, VAS, MRI, and conversion rate
to THA

Patients with ONFH following pregnancy had a
low conversion rate to THA when treated early
with cell therapy.

[37]

Hernigou et al.
2021

Case-control
study

Osteonecrosis
of the
humeral head

64 20 ml, average 8500 MSCs/ml (range
3430–17 540)

CD+BM-MSCs CD Rate of collapses and humeral head
survival rate

BM-MSCs therapy reduced the rate of collapses
and shoulder arthroplasty.

[38]

Hernigou et al.
2021

Case-control
study

ONFH 46 20 ml, 9300 MSCs/ml (range
3930–19 800)

BM-MSCs THA VAS, HHS, and radiographs For BM-MSCs therapy, better survival time
before revision were obtained for treatment at
early stages before collapse.

[39]

Vezzani et al.
2017

Case series ONFH 23 100% oxygen at 2.4 ATA in a multi-place
pressure chamber for 90 min using an
over- board demand regulator while
breathing through an oral-nasal mask
for 5 days/week, 6 weeks

Hyperbaric oxygen
therapy

NA VAS, MRI, and serum OPG HBOT significantly reduced pain and lesion size,
and increased serum OPG levels.

[133]

Wang et al.
2016

RCT ONFH 33 2000/4000/6000 impulses of ESWT at 24
Kv

ESWT Differed impulses VAS, HHS, MRI, plasma volume,
and blood tests

Significant differences of pain and HHS were
noticed, and high dosage ESWT is more
effective in early-stage ONFH.

[134]

An et al. 2022 Non-RCT ONFH 71 O2–O3 mixture was 30 ml at a
concentration of 30 μg/ml

Ozone therapy Protected weight
bearing

VAS, HHS, bone marrow edema
examination, and conversion to
THA

Ozone therapy effectively improves pain function,
bone marrow edema of the femoral head, and
delay the need for THA.

[135]

Marcheggiani
Muccioli
et al. 2013

Case series Osteonecrosis
of the knee

28 6 h daily for 90 days, 1.5 mT, 75 Hz and a
duty-cycle of 10%

PEMFs NA MRI, VAS, KSS, EQ-5D scales, and
failures

PEMFs significantly reduced knee pain and
necrosis area, preserving 86% of knees from
prosthetic surgery at 24-month follow-up.

[136]

Atoun et al.
2016

Case series SONK 17 10 min/day during the first week, while
performing daily routine (accumulating
5 min of walk), then gradually increased
walking time reaching 60 min/day
(accumulating 30 min of walk)

Biomechanical
device consisted
of two convex-
shaped
biomechanical
elements

NA Spatiotemporal gait assessment,
WOMAC, SF-36

A significant reduction in pain and improvement
in function was seen after 3 months of therapy
with additional improvement after 6 months of
therapy.

[137]

Hernigou et al.
2021

RCT Ankle
osteonecrosis

51 5 or 10 ml (< 11 or > 10 years old),
1021 MSCs/ml (range 314–3015)

BM-MSCs ± CD Without treatment Pain, foot and ankle deformity
according to the Mazur score,
and MRI

Autologous BM-MSCs can improve the quality of
life of leukemia survivors with ankle
osteonecrosis.

[138]

de Rojas et al.
2018

Case study MRONJ 2 50×106 BM-MSCs BM-MSCs NA HHS, VAS, Gait analysis,
consecutive radiographs, and
MRI

Autologous MSCs can relief pain and improve
function for children and young adults after
overcoming ALL without positive outcomes in
radiographs.

[139]

Hernigou et al.
2018

RCT Osteonecrosis
of the knee

30 6500 MSCs/ml Subchondral stem
cell therapy

Contralateral TKA Subsequent re-operations, KSS,
radiographs, MRI, and safety

Improvements on KSS and radiographs were
similar and a higher number of
thrombophlebitis was observed on the side
with TKA (15%).

[140]

Pan et al.
2020

Cohort study ONFH 35 GCSF (5 μg/kg/day, 5 days), (5–8)× 108

cells/kg
Autologous PBSCs NT Hip-preservation failure, BMI, HHS,

and necrotic volume
Intra-arterial infusion of autologous PBSCs
prolonged femoral head survival. Age, BMI,
HHS, and necrotic volume can influence the
efficacy.

[141]

Chen et al. Case series ONFH 9 MSCs (10 ml) with a cell density of Transplant of hUC- NA Oxygen delivery index, MRI, and Intra-arterially infused hUC-MSCs migrate into [142]
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Table 2

(Continued)

Author, year
Study
design Disease type

Sample
size (N) Dosage Intervention Comparison Outcomes Finding Ref.

2016 study 5–10×106/ml MSCs adverse events the necrotic field of femoral heads and
differentiate into osteoblasts, thus improving
the necrosis of femoral heads.

Mao et al.
2013

Case series ONFH 62 BM-MNCs (30–60 ml) were gained from
autologous bone marrow (100–200 ml)

BM-MNCs NA Ficat stage, HHS, and rate of THA BM-MNCs relieved symptoms, improved hip
function and delayed the progression of ONFH.

[143]

Meier et al.
2014

RCT Osteonecrosis
of knee

30 Cumulative dose, 13.5 mg, 12 weeks Diclofenac (70 mg)
+calcium
carbonate
(500 mg)+vitamin
D (400 IU)
+ibandronate

Diclofenac (70 mg)
+calcium
carbonate
(500 mg)
+vitamin D (400
IU)

VAS, WOMAC, IKDC, and MRI Bisphosphonate treatment has no beneficial
effect over and above anti-inflammatory
medication for spontaneous osteonecrosis of
the knee

[144]

Pichardo et al.
2018

Case study MRONJ 15 NT Surgery+soft diet
+antimicrobials

Surgery Panoramic radiographs Surgical and/or antimicrobial approach,
combined with intermaxillary fixation on
occasion can lead to consolidation.

[145]

Sim et al.
2020

RCT MRONJ 34 20 µg/day, 8 weeks Calcium and vitamin
D supplementation
+teriparatide

Calcium and
vitamin D
supplementation

Radiographs, osteoblastic
responses, and changes in
quality of life

Teriparatide was associated with a greater rate of
resolution of MRONJ lesions and reduced bony
defects.

[146]

Jung et al.
2017

Case-control
study

MRONJ 17 Absorbable collagen plugs soaked by
rhBMP-2 for 20 min, a daily
subcutaneous injection of 20 µg
teriparatide for 1–4 months

rhBMP-2
± teriparatide

Seques rectomy CT, serum osteocalcin, and serum
C-terminal telopeptide cross-link
of type I collagen

Significantly greater amount of bone formation
was observed in the group teriparatide+BMP
than in the BMP and sequestrectomy groups.

[147]

Laimer et al.
2017

Case study MRONJ 3 ActiV.A.C. therapy unit (V.A.C. Therapy,
KCI USA, Inc., San Antonio, TX)

VAC NA VAS and descriptive analysis of
sites

Intraoral VAC therapy promoted formation of new
granulation tissue, cessation of pain and pus
suppuration without significant side effects.

[148]

Yue et al.
2020

Case study ONFH 53 NA Double-channel CD
+bone grafting

NA Need for arthroplasty, HHS and CT This way was effective, and 4 hips were found to
require arthroplasty.

[149]

Wang et al.
2020

Cohort study ONFH 125 NT Light bulb procedure
through the direct
anterior approach

CD Length of surgery, intraoperative
blood loss, VAS and range of hip
motion

There was no significant difference in quality of
functional recovery and clinical outcomes
within 1 year after surgery between the 2
groups.

[150]

Civinini et al.
2017

Self-
controlled
study

ONFH 12 CaSO4:CaPO4= 3:1 CD+CaSO4/CaPO4
composite

NA CT The mean Hounsfield units in the immediate
postoperative period was 1445, and CaSO4-
CaPO4 ceramic composite provided an ideal
environment for the direct new bone growth.

[151]

Landgraeber
et al. 2017

Case series
study

ONFH 25 A cylinder with a length of about 3.5–4 cm CD+autologous
bone impaction

NA The survival rate of the femoral
head, HHS, VAS, MRIs, and
X-rays

This surgery reduced pain and increased function
in all participants with a hip survival rate of
75.9%.

[152]

Fontecha et al.
2016

Case series
study

ONFH 9 The fibular grafts were divided into three
regions: greater trochanter, femoral
neck, and femoral head

Bone grafting NA HHS, graft failure, and SPECT/CT HHS increased and SPECT/CT findings revealed a
progressive increase of femoral head uptake,
suggesting subchondral graft bone viability. No
progressive deformation was evidenced in
radiographic evaluation.

[153]

Cao et al.
2017

RCT ONFH 33 NT Vascularized fibular
grafting

CD SPECT/CT, MRI, ARCO staging, and
HHS

A vascularized fibular grafting was better than CD
as measured by improved vascularity and less
progression and better function.

[154]
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Chen et al.
2019

RCT ONFH 66 Metal trabecular bone with bone dust or
free fibula bone (6–8 cm)

Metal trabecular
bone reconstruction
system

Free vascularized
fibular graft

Stress concentration, stress peak
value, HHS, VAS, and SF-36

Metal trabecular bone reconstruction system
provided less operation time, blood loss, and the
total length of postoperative hospital stay and
promoted bone reconstruction, increased bone
mineral density and HHS.

[155]

Sun et al.
2023

RCT ONFH 37 3×3×1 cm Biodegradable
magnesium screw in
pedicled vascularized
iliac bone graft
transfer

Titanium screw
and direct
embedding fixation

HHS, MRI, and serum magnesium Pedicled vascularized iliac bone graft transfer
improved HHS, and biodegradable magnesium
screws was better for angiogenesis.

[156]

Zhang et al.
2022

Case study ONFH 1 (4–5) cm×(1.5–2) cm×(1.5–2) cm Vascularized bone
grafting

NA HHS, CT, and mechanical analysis One year after operation, HHS was improved to
81 points, and no local collapse or micro-fracture
occurred.

[157]

Aoyama et al.
2014

Case series ONFH 10 Aspirated bone marrow (25 ml) BMSCs+bone grafts NA X-ray, CT, hip score defined by the
JOA, and adverse event

Progression of the radiological stage and
changes in bone volume at the femoral head, and
clinical score.

[158]

Zhao et al.
2016

Self-control
study

ONFH 48 Elastic modulus of pure Mg ranged from
38–45 GPa

Vascularized bone
grafting fixed+Mg
screws

Vascularized bone
grafting fixed

HHS, X-ray, and postoperative
serum levels of Ca, Mg, and P

The use of biodegradable Mg screws improved
HHS and may provide a promising bone graft–
screw fixation route in treating ONFH.

[159]

Kang et al.
2013

Self-control
study

ONFH 52 2.7×107 BMSCs BMSCs+bone grafts NA X-ray and MRI For medium-sized lesions, this procedure
generated clinical results comparable to those of
other head preserving procedures.

[160]

Windisch et al.
2014

RCT ONFH 35 20 Hz, 5 mT Bone grafting
+electromagnetic
field

Bone grafting VAS, HHS, and MRI Electromagnetic field treatment as an adjunct to
curettage and autologous bone grafting to treat
ONFH did not produce better clinical results

[161]

Morita et al.
2017

Case study ONFH 90 NA Transtrochanteric
rotational osteotomy

NA Conversion to THA and radiological
failure

Survival rates at 15 years with conversion to THA
and radiological failure as the endpoint were 59%
and 30%, respectively.

[162]

Utsunomiya
et al. 2017

Case study ONFH 20 NA Transtrochanteric
rotational osteotomy
+THA

THA HHS, ROM, operation time and
greater intraoperative blood

THA after osteotomy were comparable with those
of THA without any antecedent surgery for ONFH.

[163]

Osawa et al.
2020

Case study ONFH 105 NA Curved
Intertrochanteric
Varus Osteotomy

THA HHS, SF-36, JHEQ, UCLA, OHS,
complication and survival rates

Functional outcomes, survival rate, and sporting
activities for patients < 50 years old were
comparable after a 10 years follow-up.

[164]

Osawa et al.
2021

Cohort study ONFH 81 NT Osteotomy+bone
grafting

Osteotomy ROM, HHS, OHS, and JHEQ No improvements in treatment results with the
concomitant use of bone grafting.

[165]

Miladi et al.
2018

Comparative
Study

ONFH 16 RHINO (ATF, Marignier, France) vs. Osteal
(CERAVER, Roissyen-France, France)

Uncemented short
arthroplasty

cemented
conventional
arthroplasty

VAS, PMA, HHS, and radiography Uncemented short stems total hip arthroplasties
gained similar results for pain and function, but
less stress shielding and a bone stock economy.

[166]

Kim et al.
2021

Cohort Study ONFH 150 A cementless THA was performed using
hemispheric porous-coated acetabular
components

Allogeneic bone
marrow
transplantation+THA

THA HHS, rates of reoperation, a 90-day
readmission, and mortality

Contemporary cementless THA in young
hematological disease patients after allogeneic
bone marrow transplantation was not associated
with a higher risk.

[167]

Voss et al.
2017

Case study MRONJ 6 60 ml of bone marrow cells Surgical resection of
necrotic bone
followed by MSCs
grafting

NA X-ray, CT, and description about
wound closure

Surgical management in combination with MSCs
trans- plantation showed satisfactory healing
with no signs of wound infection.

[168]

Calvani et al.
2018

Case-control MRONJ 26 15% bovine lactoferrin Antibiotic therapy
+surgery+bovine
lactoferrin

Antibiotic therapy
+surgery

Healing of wounds Bovine lactoferrin leaded a significant shorter
time of wound closure.

[169]
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Table 2

(Continued)

Author, year
Study
design Disease type

Sample
size (N) Dosage Intervention Comparison Outcomes Finding Ref.

Mao et al.
2015

RCT ONFH 55 COBE spectra apheresis system Porous tantalum rod
implantation
+PBSCs

Porous tantalum
rod implantation

HHS, X-ray, and rate of THA PBSCs showed a significant difference in the
survival time to THA and improvement in HHS.

[170]

Hauzeur et al.
2018

RCT ONFH 19 400 ml of bone marrow CD+BMAC CD VAS, WOMAC, MRI, decision to
THR, and safety

No differences were found between the groups
for THR requirements, clinical tests, and
radiological evolution.

[171]

Boontanapibul
et al. 2021

Retrospective
study

ONFH 66 5 ml CD+BMAC CD Rates of femoral head collapse,
conversion THA, and survival
rates

BMAC had more reliable outcomes than isolated
core decompression for pre-collapse ONFH

[172]

Hernigou et al.
2021

RCT Shoulder
osteonecrosis

50 20 ml CD+BM-MSCs CD VAS, Constant score, number of
collapse, and survival rates for
further shoulder arthroplasty

CD with cell therapy was a safe and effective
procedure for relief pain and improving
function, which reduced the rate of collapses
and the need of shoulder arthroplasty.

[173]

Daltro et al.
2015

Non controlled
study

ONFH 89 30 ml of stem cells CD+BM-MSCs CD VAS, HHS, radiography, and
specific biomolecular
characteristics

The autologous BM-MSC implantation with a
minimally invasive technique resulted in
significant pain relief and halted the
progression of early stages of ONFH in SCD
patients.

[174]

Lim et al. 2013 Case-control ONFH 128 30 ml of stem cells injected (CD34+ cells
were 1.69×107 cells

Multiple drilling and
stem cell
implantation

CD and bone graft HHS, X-ray, and rate of success
(HHS> 75 and no need for
surgery)

There were no statistically significant differences
between the groups in terms of success rate or
in the clinical and radiographic results of the
two methods.

[175]

Blanco et al.
2023

Case series ONFH 8 5 ml with 20×106 cells/ml MSCs after surgery NA VAS, HHS, SF-36, and CT Use of autologous MSCs for patients with ONFH
improved pain and radiology.

[176]

Mardones
et al. 2019

Case series ONFH 5 40×106 ex vivo-expanded BM-MSCs CD+Ex vivo-
expanded BM-
MSCs

NA HHS, VAS, X-ray, and MRI Ex vivo-expanded BM-MSCs combined with CD
improved the symptoms and radiography.

[177]

Hernigou et al.
2018

Case-control
study

ONFH 125 152± 16 ml of marrow CD+percutaneous
BM-MSCs
injection

CD Rate of collapse, need for THA, MRI CD with bone marrow injection improved the
prevalence of collapse, need for THA, and
percentage of the necrosis volume of the
femoral head as compared with CD alone in
the same individual.

[178]

Hernigou et al.
2018

Cohort study Talus
osteonecrosis

45 124×103 cells CD+BM-MSCs CD Clinical, radiographic evolution, and
colony forming unit

Collapse frequency was lower, and follow-up
showed longer duration of survival before
collapse for concentrate bone marrow
grafting.

[179]

Wu et al. 2020 Case series ONFH 30 Patients received recombinant GCSF (30IU
IM qd×5 days), 100 ml of bone marrow
and 100 ml of peripheral blood

CD+BM-MSCs NA HHS, MRI, and osteogenic and
chondrogenic differentiation of
BM-MSCs

Higher osteogenic and chondrogenic
differentiation ability leaded to better repair in
the necrotic area and clinical outcomes.

[180]

Emadedin
et al. 2019

Case series ONFH 9 Isolated CD133+ cells (from 100–150 ml
of heparinized bone marrow) in 30 ml
normal saline that contained 2%
autologous serum

CD+Autologous
bone marrow-
derived CD133+

cells

NA MRI, VAS, HHS, WOMAC and
walking distance

A single bone marrow-derived CD133+ cell
injection during CD was effective in providing
significant, clinically relevant pain relief and
function.

[181]

Aoyama et al.
2015

Case series ONFH 10 ROM, progressive muscle-strengthening
and aerobic exercises with target heart

Exercise after MSC
transplantation

NA ROM, muscle strength, Timed Up
and Go test, and SF-36

External rotation ROM as well as extensor and
abductor muscle strength significantly

[182]
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rate of 220×(age×0.6) augmented by
vascularized bone
grafting

improved, improvements were also seen in
physical function, role physical, and bodily
pain subgroup scores of the SF-36.

Jayankura
et al. 2023

RCT ONFH 49 (0.5–1)×106 cells/kg CD+autologous
osteoblastic cell
transplantation

CD WOMAC pain subscale, radiologic
response, adverse events, and
serious adverse events

No advantage of autologous osteoblastic cells to
improve the results of core decompression in
early-stage (pre-collapse) ONFH.

[183]

Hauzeur et al.
2020

RCT ONFH 56 400± 85 ml of autologous bone marrow CD+osteoblastic cell
therapy

CD+BMAC VAS, WOMAC, and the Lequesne
indexes

For pain relief and function, no benefit to
osteoblastic cells over BMAC in patients with
pre-collapse ONFH.

[184]

Hernandez
et al. 2020

Self-
controlled
study

ONFH 13 60 ml of bone marrow (10 ml of progenitor
stem cells)

CD+autologous
BMAC+tricalcium
phosphate

NA HHS, radiological data, time of
femoral head collapse and need
for THA

HHS was improved, but no improvement in
preventing progression to collapse. Overall
median survival with the THA was 23 months.

[185]

Kuroda et al.
2016

Case study ONFH 10 800 μg Gelatin hydrogel
impregnated with
rhFGF-2

NA VAS, UCLA activity score, HHS, and
CT

Clinical application of rhFGF-2-impregnated
gelatin hydrogel for patients with pre-collapse
ONFH reduced pain and improved function.

[186]

Kuroda et al.
2021

Self-
controlled
study

ONFH 64 800 μg Recombinant human
FGF-2

NA Collapse rate, assessment of
imaging for bone regeneration,
HHS, UCLA activity rating scale,
and adverse events

Recombinant human FGF-2 safely increased the
joint preservation time with activity
improvement and radiological bone
regeneration.

[187]

Gao et al.
2016

Case series
study

ONFH 51 100–180 ml of bone marrow blood, 4 mg
rhBMP-2 injected into the femoral head

CD+BMSCs
+rhBMP-2

NA VAS, HHS, and X-ray 86.3% patients had improved clinical outcome,
and 17.6% of the hips exhibited collapse onset
or progression radiologically.

[188]

Ragazzo et al.
2022

RCT MRONJ 27 3×3 cm patches and cryopreserved Surgery+HAM Surgery VAS and orthopantomography HAM reduced the pain and did not lead to
relapse.

[189]

Odet et al.
2022

Case series MRONJ 8 4.7 cm in diameter or 3×3 cm patches
and cryopreserved

HAM+Surgery HAM Bone re-exposure, VAS, positron-
emission tomography, and
adverse events

HAM showed immediate significant pain relief
with no infections.

[190]

Bouland et al.
2021

Case report MRONJ 2 30 mL of AT, and 48.1×106 viable cells in
the L-PRF

Surgery+SVF+MSC
+EPC+L-PRF

NA Orthopantomogram and CT-scan The buccal mucosa was closed within a month.
No recurrence was observed.

[191]

Park et al.
2017

Case-control
study

MRONJ 55 20 ml of blood was collected without
anticoagulant and centrifuged at 3000
rpm for 10 min, 0.5 ml rhBMP-2
solution and hydroxyapatite

Surgery+L-PRF
+rhBMP-2

Surgery+L-PRF Presence of exposed bone,
mucosal swelling and erythema,
purulent drainage, intraoral or
extraoral fistula, and discomfort
associated with the surgical site

rhBMP-2 significantly promoted complete
resolution of the lesions and MRONJ healing.

[192]

Yüce et al.
2021

RCT MRONJ 28 Venous blood samples (4×9 cc)
immediately centrifuged

Surgery+CGF Surgery Number of healings and number of
infections

No significant difference in healing data but the
rate of recurrent infection was lower.

[193]

ARCO, Association Research Circulation Osseous; ATA, atmospheres absolute; BMAC, bone marrow aspirate concentrates; BM-MNCs, bone marrow-derived mononuclear cells; BM-MSCs, bone marrow-derived MSCs; CD, core decompression; CGF, concentrated growth factor;
CT, computed tomography; EPC, endothelial progenitor cells; EQ-5D, EuroQol-5 Dimension; ESWT, extracorporeal shock wave therapy; GCSF, granulocyte colony-stimulating factor; HAM, human amniotic membrane; HBOT, Hyperbaric oxygen therapy; HEQ, Japanese Orthopaedic
Association Hip-Disease Evaluation Questionnaire; HHS, Harris Hip Score; hUC-MSCs, human umbilical cord‑derived MSCs; IKDC, Knee Documentation Committee subjective knee form; JHEQ, Japanese Orthopaedic Association Hip-Disease Evaluation Questionnaire; JOA,
Japanese Orthopaedic Association; KSS, knee society score; L-PRF, L-Platelet-Rich Fibrin; MRONJ, medication-related osteonecrosis of the jaw; MSCs, mesenchymal stromal cells; NA, not applied; NT, not mentioned; OHS, Oxford Hip Score; ONFH, osteonecrosis of the femoral
head; OPG, osteoprotegerin; PBSCs, peripheral blood stem cells; PEMFs, pulsed electromagnetic fields therapy; PMA, Postel and Merle d’Aubigne ́ score; RCT, randomized controlled trial; rhBMP-2, recombinant human bone morphogenetic protein-2; rhFGF, recombinant human
fibroblast growth factor; ROM, range-of-motion; SCD, sickle cell disease; SF-36, Medical Outcomes Study 36-Item Short-Form Health Survey; SONK, spontaneous osteonecrosis of the knee; SPECT, single photon emission computed tomography; SVF, Adipose-Tissue Stromal
Vascular Fraction; THA, total hip arthroplasty; TKA, total knee arthroplasty; VAC, vacuum-assisted closure; VAS, Visual Analog Scale; WOMAC, The Western Ontario and McMaster Universities Osteoarthritis.
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well-established staging system should be used, in general, these
treatments can be divided into prevention, conservative therapies,
surgeries, and surgeries with additional therapies (Fig. 4). The
advantages and disadvantages of various treatments are listed in
Table 3.

Prevention of osteonecrosis

For osteonecrosis, early diagnosis, coordination of care, and
regular visits play important roles in the management. For trau-
matic ONFH, the blood supply for the femoral head should be
evaluated regularly and should be protected during internal
fixation[194]. For the long-term use of steroids, vasodilator drugs
may be considered. In general, individuals with risks of osteo-
necrosis should be aware of these risk factors during patient
education and try to avoid the mentioned risks.

Conservative therapy

For ONFH, the consensus has reported that orthotics (canes and
crutches) could promote pain relief and walking ability by
reducing weight-bearing loading. Hyperbaric oxygen therapy
(HBOT) has beneficial effects, and its mechanism might include
upregulating serum OPG and/or inhibiting osteoclast activation.
HBOT significantly reduced lesion size in early-stage patients[133]

. Significant changes in serum biomarkers for angiogenesis,
osteogenesis, anti-inflammation, pain threshold, and tissue

regeneration were also reported after extracorporeal shock
waves[134]. Ozone therapy also has the potential to improve
symptoms and delay the need for total hip arthroplasty
(THA)[135]. Pulsed electromagnetic fields therapy with a dosage
of 6 h daily for 90 days reduced knee pain and necrosis area of
knee[136]. For spontaneous osteonecrosis of the knee, Atoun and
colleagues reported that a biomechanical therapy (an orthosis for
the foot) could reduce pain and increase activity[137]. For MSCs,
BM-MSCs alone improved the quality of life of leukemia survi-
vors with ankle osteonecrosis[138], and ONFH in females after
pregnancy[37]. Hernigou et al.[39] reported that BM-MSCs
obtained better survival time before revision compared to THA.
De Rojas et al.[139] reported that BM-MSCs therapy was a novel
treatment for children and young adults with ONFH after over-
coming ALL, although the X-ray andMRI imaging of the femoral
head deteriorated. Hernigou et al.[140] also indicated that BM-
MSCs gained similar improvement with a lower rate of compli-
cations compared with total knee arthroplasty. Autologous per-
ipheral blood stem cells[141] and umbilical cord-derived
MSCs[142] were proven to be another origin of MSCs. Besides
MSCs, bone marrow-derived mononuclear cells (BM-MNCs)
also showed similar effects[143]. Moreover, bisphosphonate
treatment should not be considered as a potential therapy for
preventing osteonecrosis[144].

For MRONJ, conservative measures may include the use of
antimicrobial mouth rinses and antibiotics[145], effective oral

Figure 4. Current prevention and treatment of osteonecrosis. BMAC, bone marrow aspirate concentrates; BM-MNCs, bone marrow-derived mononuclear cells;
CD, core decompression; HBOT, hyperbaric oxygen therapy; PRP, platelet-rich plasma; THA, total hip arthroplasty.
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Table 3
Summary of the advantages and disadvantages of different treatments.

Strategy
Disease
stage Related mechanisms Advantages Disadvantages Ref.

Vasodilator drugs Early Angiogenesis Retardant progress of disease, and non-invasive treatment Limited effects [194]

Orthosis Early NT Pain relief, increase in activity, and non-invasive treatment Limited effects [137]

HBOT Early Reduce osteoclasts
dysfunction

Lesion size reduction and non-invasive treatment Limited effects [133]

ESWT Early Angiogenesis, osteogenesis,
anti-inflammation

Pain relief, lesion size reduction, and non-invasive treatment Limited effects [134]

Ozone therapy Early Angiogenesis Pain relief, bone marrow edema reduction, and non-invasive
treatment

Limited effects [135]

PEMFs Early NT Pain relief, lesion size reduction, and non-invasive treatment Limited effects [136]

Antimicrobial mouth rinses and
antibiotics

Early Anti-immune and inflammation
factors

Convenient and non-invasive treatment Limited effects [145]

Teriparatide Early Osteogenesis Lesion size reduction and non-invasive treatment Limited effects [146,147]

Intraoral vacuum-assisted
closure therapy

Early Anti-inflammation Pain relief, the degree of cleanliness increase, and non-invasive
treatment

Limited effects [148]

Cell therapy (MSCs and MNCs) Early (stage I
or II)

Osteogenesis Improvement in quality of life, better survival time and lower rate of
complications compared to arthroplasty, and minimal invasive
treatment

X-ray and MRI imaging of the femoral head still deteriorated [37,39,138–140,143]

CD Early to middle Reduce bone marrow pressure Basic and classical surgery, and symptom relief Limited effects without other strategies, and invasive treatment [149–152]

Non-vascularized bone grafting Middle to later Anti-inflammation and
osteogenesis

Basic and classical surgery, and similar effects with CD Limited effects, invasive treatment, other bones need to be cut, and
effects might be insufficient than vascularized bone grafting

[150,153]

Vascularized bone grafting Middle to later Anti-inflammation,
angiogenesis and
osteogenesis

More beneficial for large joints, and long-term (1 year) function
improvement

Invasive treatment, cell therapy may be needed for medium-sized
lesions, effect might be insufficient than metal trabecular bone
with bone dust

[154–157]

Femoral transtrochanteric
rotational osteotomy

Middle to later Angiogenesis and osteogenesis Symptoms relief and progression prevention, similar effects with THA Require for sufficient intact area at the lateral femoral head, and
invasive treatment

[162,163]

Curved varus osteotomy Middle to later Angiogenesis and osteogenesis Similar effects with THA in individuals < 50 years old, and effects
may be better with bone impaction grafting

Require for > 1/3 coverage of the weight-bearing region with an
intact articular surface, and invasive treatment

[164,165]

Hemiarthroplasty Early to later Mechanical support Mid-to-long-term results in the early stage might be generally good Postoperative buttock and groin pain and migration of the outer
head may occur, and invasive treatment

[166]

THA Later Mechanical support A generally good and useful treatment for symptoms relief Cemented THA might undergo a hip revision, cementless THA
might increase the risk of stress shielding and thigh pain, and
invasive treatment

[166,167]

Debridement to relieve soft-tissue
irritation

Middle Anti-immune and inflammation
factors

Symptoms relief, and suitable for soft-tissue inflammatory swelling
or infection

Invasive treatment [168]

Debridement with resection Later Anti-immune and inflammation
factors

Accompanied by perioperative antibiotic treatment generally
considered to be the most suitable approach

Invasive treatment [168]

Surgery with cell-based therapy Early to later Cell proliferation, angiogenesis
and osteogenesis

Bone regeneration in the early stages, pain relief and function
improvement. BM-MSCs, BM-MNCs, PBSCs, amniotic
membrane, L-PRF, and PRP might proper regenerative strategies.
Rehabilitation may enlarge the effects.

CD with cell therapy showed no improvement at the later stage,
osteoblastic cells were useless, the differentiation ability of MSCs
affected the outcomes and invasive treatment

[38,168,170–173,

179,181,189,190,

195]

Surgery with medication Early to later Osteogenesis, and cell
proliferation

Activity and joint preservation time improvement. rhFGF-2 and BMP-
2 might proper medication

Require for bone grafting and might be beneficial for young
individuals

[186–188,192]

BM-MSCs, bone marrow-derived MSCs; CD, core decompression; ESWT, extracorporeal shock wave therapy; HBOT, hyperbaric oxygen therapy; L-PRF, L-platelet-rich fibrin; MNC, mononuclear cells; MSCs, mesenchymal stromal cells; NT, not mentioned; PBSCs, peripheral
blood stem cells; PEMFs, pulsed electromagnetic fields therapy; PRP, platelet-rich plasma; rhBMP-2, recombinant human bone morphogenetic protein-2; rhFGF, recombinant human fibroblast growth factor; THA, total hip arthroplasty.
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hygiene, and conservative surgical interventions. Moreover, Sim
et al.[146] reported that teriparatide (an osteoanabolic medica-
tion) provided another choice for treating lesions in MRONJ,
which is consistent with the study of Jung and colleagues[147].
Laimer et al.[148] reported that intraoral vacuum-assisted closure
therapy can reduce pain and increase the degree of cleanliness
that provides a good condition for healing the closure.

Invasive operation

Surgery: The intramedullary pressure has been reported to be
elevated in individuals with ONFH, and the high bone marrow
pressure was regarded as one of the most common reasons for the
development of ONFH. Regarding this, CD was considered as a
useful technique for intramedullary decompression of the osteo-
necrosis regions. In general, Kirschner wire was placed to locate
the necrotic area and direction of the wire, then a suitable support
rod was inserted toward the anterolateral necrotic area of the
femoral head until it was safe beneath the subchondral bone.
Moreover, Yue et al.[149] designed a novel method, called a single
approach to double-channel CD and bone grafting with struc-
tural bone support. After CD, one of the two channels (top one)
was filled with a support rod and grafting bone, while the bottle
one only filled with bone matrix. Researchers often designed the
CD as an intervention in a control group according to the pub-
lishments in the last 10 years. Wang and colleagues reported that
the light bulb technique (one of the non-vascularized bone
grafting techniques) had similar outcomes to CD[150]. Civinini
and colleagues reported that CD with a calcium sulfate/calcium
phosphate bioceramic could make progress in a quantitative
computed tomography analysis[151]. Another study combined
autologous bone and CD, whichwas also reported positively[152].

Bone grafting transfer is a common surgical strategy for
ONFH[153]. Wang et al.[150] reported the light bulb technique
through a direct anterior approach, which allowed the removal of
more necrotic bone by making a round bone window 1.0 cm in
diameter using osteotomes and then a high-speed drill and a
curette. Compared to non-vascularized bone grafting, vascular-
ized bone grafting seems to be more beneficial for large joints,
such as the hip. In general, a bone (usually fibula) was cut, a bone
groove was made as before, the distal end of the fibula was
grafted, and then the free peroneal vessels and the lateral femoral
circumflex artery and vein were sutured[154,155]. Cao and their
colleague performed a study to compare the effect of vascularized
fibular grafting and CD, and the results supported the application
of free vascularized fibular grafting[154]. Sun et al.[156] reported
pedicled vascularized iliac bone grafting transfer improved
function 6 months after surgery and Zhang et al.[157] reported
similar outcomes one year after the operation. Bone grafts com-
bined with BMSCs[158] and biomaterial bone grafts seem to be
effective treatment methods[159]. Kang and the colleague figured
that bone grafts combined with BMSCs might be more effective
for individuals with medium-sized lesions[160]. Nevertheless,
Chen and the colleague reported that the metal trabecular bone
with bone dust of the femoral trochanteric region and femur neck
was superior to free vascularized fibular graft[155].
Electromagnetic field stimulation as an additional treatment to
autologous bone grafting might not have some extra beneficial
effects[161].

Femoral transtrochanteric rotational osteotomy, a wildly
known technique to alleviate symptoms and prevent the

deterioration of ONFH, required sufficient intact area at the
lateral femoral head. The bone cut was through the trochanter,
and the femoral head was anterior or posterior rotated properly
to improve its position within the hip socket[162]. Utsunomiya
and their colleagues reviewed previous patients who underwent
THA after Sugioka transtrochanteric anterior rotational osteot-
omy, and considered the effects to be comparable to those of
THA[163]. Curved varus osteotomy was conducted on patients
who exhibited more than one-third coverage of the weight-
bearing region with an intact articular surface. A curved osteot-
omy and a varus position were needed for performing this sur-
gery. For patients younger than 50 years, curved varus osteotomy
was comparable with THA for functional outcomes, survival
rate, and sporting activities after a mean follow-up period of
10 years[164]. Curved intertrochanteric varus osteotomy com-
bined with bone impaction grafting yielded more positive out-
comes when participants were carefully selected, and the
procedure was executed accurately[165].

The last two choices of surgery are hemiarthroplasty and THA.
A recent decade of studies merely reported the outcomes of
bipolar hemiarthroplasty for ONFH. The reason might be the
mid-to-long-term results in the early stage might be generally
good, nonetheless, individuals may experience postoperative pain
in the buttocks and groin, along with the potential migration of
the outer head. The long-term results indicated that cemented
THA using modern cementing techniques might be an effective
and beneficial treatment option. However, using a cemented
conventional stem as the femoral component may lead to a subset
of requires for hip revision[166]. Hence, cementless THA was
considered, although the risk of stress shielding along with some
thigh pain increased. The long-term results from a large cohort
multicenter survey indicated that contemporary cementless THA
in young individuals with hematological disease following bone
marrow transplantation did not increase the surgical complica-
tions, revision, reoperation, readmission, or mortality[167].

For MRONJ, recent American Association of Oral and
Maxillofacial Surgeons guidance recommended debridement to
relieve soft-tissue irritation and infection control at stage 2 (soft-
tissue inflammatory swelling or infection), with resection con-
sidered at stage 3 (radiographic evidence of osteolysis extending
to the inferior border of mandible). Voss et al.[168] figured that
surgical management withMSCs further promoted the healing of
MRONJ. A comprehensive strategy for achieving healing in
MRONJ may involve thoroughly removing necrotic bone,
smoothing sharp bony edges, and carefully closing the wound, all
supported by perioperative antibiotic treatment. Calvani
et al.[169] reported bovine lactoferrin could promote wound
repair in individuals with suffering from MRONJ with the pro-
gressive destruction of bone.

Additional therapy: Last decade, cell-based therapy was
rapidly developed and usually combined with orthopedic sur-
gery. However, the necessity for the application of cell therapy is
still controversial[24]. Among the substantial regenerative options
of cell-based therapy, bone marrow aspirate concentrates
(BMAC) was frequently used mainly in Europe and the United
States, while BM-MNCs, BM-MSCs, PBSCs[170], and platelet-
rich plasma (PRP)[195] were also applied. Many clinical
studies[171,172] have investigated the effect of BMAC combined
with CD, which indicated the elimination of cell proliferation but
did not produce any improvement at the later stage. Moreover,
BM-MSCs therapy with CD improved the outcome of the
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humeral head osteonecrosis[38,173] and ONFH and bone regen-
eration in the early stages of ONFH[174–178]. For talus osteone-
crosis, Hernigou et al. found similar results[179]. Wu et al.[180]

indicated that the clinical effect was related to the quality of BM-
MSCs, in detail, the repair of the necrosis area was a positive
correlation to the osteogenic and chondrogenic differentiation
ability. Emadedin et al.[181] injected bone marrow-derived
CD133+ cells (an early hematopoietic stem cell marker) during
CD, which significantly and clinically improved pain relief and
function. The rehabilitation program after BM-MNCs injection
significantly improved the external rotation range of motion and
strength of extensor and abductor muscle compared with that
before treatment[182]. Nonetheless, Jayankura and colleagues[183]

indicated that autologous osteoblastic cells addicted to CD did
not take extra benefits in early-stage ONFH patients. Moreover,
Hauzeur reported that osteoblast therapy obtained similar effects
with BMAC[184]. Hernandez et al.[185] also reported that CD
combined autologous BMAC and tricalcium phosphate therapy
show no improvement in preventing progression to collapse.

Growth factors have been suggested, but their efficacy
remained uncertain. Regarding growth factors, recombinant
human BMP-2 and BMP-7 were combined with bone grafting.
Additionally, clinical trials using gelatin hydrogel impregnated
with recombinant human fibroblast growth factor (rhFGF)-2
were performed for individuals with pre-collapse ONFH[186].
Kuroda and colleague[187] also figured that rhFGF-2 treatment
alone also had positive effects on activity and joint preservation
time improvement. Gao and colleagues combined BMP-2 and
bone marrow-derived cells during CD, which also prevented the
progression of osteonecrosis in young individuals[188].

For MRONJ, the human amniotic membrane is used as a low
immunogenicity regenerative strategy and is reported to help
reduce pain[189] and promote wound healing[190]. Bouland and
their colleagues[191] designed a leukocyte-rich platelet-rich fibrin
seeded with stromal vascular fraction, which was available and
promoted the healing of buccal mucosa. Besides this, Park
et al.[192] combined leukocyte-rich platelet-rich fibrin with
rhBMP-2, which also promoted MRONJ healing. Concentrated
growth factor may provide limited advantages in promoting the
healing of surgical sites[193].

Discussion

Scope

This review aims to comprehensively sum up the risk factors for
osteonecrosis. For individuals with high-risk primary diseases,
they should monitor the susceptible structure of osteonecrosis,
and prevent the development of disease. For traumatic damaged
vessels, surgeons should repair the vessels as soon as they can and
monitor the blood supply on time. For the overused steroids,
proper prescription and prevention treatment can be used.
Secondly, this review aims to outline various mechanisms of
osteonecrosis, especially for ONFH and MRONJ. Besides a
deeper understanding of the disease, comprehensively demon-
strating the mechanisms could promote the development and
application of potential biotherapies. Lastly, we aim to classify
the current therapeutic strategies for osteonecrosis, and hope
could help make the standard process. Some of the treatment
strategies focused on the prevention of disease progression,
recovery of blood supply, and the surrounding environment.

Others reported the application of different surgeries. It is worth
noticing that additional cell-based injections or implants with
orthopedic surgery, such as CD have been appliedmore andmore
in clinics[196]. The effectiveness of additional cell-based therapy
requires more high-quality clinical trials with consistent cell
preparation and intervention methods.

Limitations of osteonecrosis research

Although there already exist many therapeutic strategies for
osteonecrosis, efficacy and effectiveness are still controversial for
medical decisions. Revision surgery may be required and symp-
toms (such as pain) remain[167]. Developing novel, valuable, and
highly efficient treatments is still an urgent problem and a big
challenge. We figured out the current limitations of studies of
osteonecrosis and tried to identify future solution ideas as below
and presented in Fig. 5.

Undetermined risk factors and complex mechanisms with
primary diseases

With the development of epidemiology, the risk factors of
osteonecrosis have gradually become clear. However, the results
were various among different areas and populations.
Additionally, although we summarized several mechanisms
about the imbalanced bone hemostasis during osteonecrosis,
merely basic studies focused on the primary diseases that might
increase the occurrence of osteonecrosis. Moreover, current
research often reported the phenotypes, rather than molecular
mechanisms.

Vacant position for superior treatment and insufficient
evidence for regenerative medicine

Despite we classified the current therapeutic strategies for
osteonecrosis, there are still limitations in choosing the most
effective treatment. Although the study of Hernigou and collea-
gue reported that MSCs transplantation was better than
arthroplasty[140], the conclusion may be various among other
locations of osteonecrosis. According to the publishments in
decade, the combination of regenerative medicine and surgeries
gained more focus. Nonetheless, the study design of these studies
mostly was case series, and lack of comparisons and results of
long-term follow-up. The low-grade evidence for additional cell-
based therapy might limit the applications.

Roadblocks in translational medicine

Although studies over the last decades have provided much
progression, the integration of these findings into a reproducible
treatment strategy applicable to the entire spectrum of osteone-
crosis remains a challenge. Additionally, we still need to consider
the common gaps for translational medicine, such as resolution of
drugs, immune aggravation, low proportion of cells surviving
after transplant, inflammation, fibrosis, and how to control the
“growth-stop signals” and modulation of various signaling
pathways[197].

Future directions of osteonecrosis research

Identify risk factors and key molecules

A long follow-up and worldwide cohort study may be urgent and
necessary for identifying more risk factors. Avoid the risk factors
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and get prevention as soon as possible could slow the process of
disease. For basic study, gene knockout or gene targeting tech-
niques may result in a deeper understanding of the pathology of
osteonecrosis. Additionally, upcoming research could aim to
clarify themolecular mechanisms that contribute to the protective
effects of gene therapy, such as PGK1. Functional studies in vitro
demonstrated that phosphoglycerate kinase 1 (PGK1) shRNA
largely attenuated dexamethasone-induced ROS following the
death of osteoblasts[198]. Investigating the regulation of these key
targets with signaling pathways involved in bone homeostasis
could provide valuable insights for novel therapies.

Perform high-quality clinical trial and update practice

Owing to the study design and different sites of osteonecrosis,
popularize of findings from clinical studies is challenging. Well-
designed multicenter RCTs could solve the clinical and metho-
dological heterogeneity, which are essential for the current treat-
ments, especially for conservative treatments and additional
therapies with CD or bone grafting. Moreover, a long-term fol-
low-up (such as 3–10 years) should be designed for clinical studies
involving MSCs. Moreover, consistent cell preparation (such as
cell origin, cell viability, and differentiation potency) and inter-
vention methods (volume and the same combinational strategy)

should be considered since the report of Wu et al.[180] indicated
that the quality of BM-MSCs affected the clinical effectiveness.

For clinical practice, cell-based therapies or drugs with sur-
geries has becoming a trend. Besides current additional therapies,
exercise and physical therapies before and after operation may
also help return to life[182]. An integrative treatment that contains
conservative treatment, surgery, regenerative medicine should be
performed in future research. Additionally, translational medi-
cine implements with CD, which as the most classical technique
should be considered by investigators moving forwards.

Accelerate translational potential

An ideal pharmacological therapy for osteonecrosis should help
reduce the inflammatory and promote bone repair by stimulating
blood supply aiming at inducing progenitor growth and
improving the microenvironment. Epigenetic modification (such
as miR-214[199] and miR-26a[131]) and modulation of various
signaling pathways (such as a local delivery system with phar-
macological mediator of BRD9 and flexible injectable silk fibroin
hydrogel[86], BMP-2[188], and FGF-2[186,187]) are potential ther-
apeutic avenues and proved in pre-clinical trials.

For tissue engineering, scaffolds can serve as mechanical sup-
port or carriers. Researchers aim to develop innovative

Figure 5. Limitations and future directions of osteonecrosis. EVs, extracellular vehicles; MSCs, mesenchymal stromal cells; RCT, randomized controlled trials;
tFNAs, tetrahedral framework nucleic acids.
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biomaterial strategies that enhance bone regeneration and provide
low-grade evidence (animal and cell experiments), such as poly
(lactic-co-glycolic acid)/β-calcium phosphate/icariin (PLGA/
TCP[200–203]), synthetic calcium phosphate ceramics[204], inject-
able hydrogel with microsphere bone cement[205], magnesium-
based layered double hydroxide nanosheets[206], strontium-doped
calcium polyphosphate (SCPP)[207], and biodegradable poly
(ethylene glycol) maleate citrate (PEGMC). MSCs, extracellular
vehicles (EVs), miRNAs (such as MiR@TDNs/Li-hep-gel[100],
which upregulated the Wnt signaling pathway), and proteins
(such as VEGF-loaded gelatin microspheres[208] and BMP-VEGF-
PLGA-calcium polyphosphate composite[209]) are also used and
could as common seeds combined with scaffolds.

Lastly, the current study emphasized that nanoparticles
may serve as potential carriers for gene therapy and drug
delivery. Nano-hydroxyapatite-copper-lithium (Cu-Li-nHA)
composite[104] and tetrahedral framework nucleic acids
(tFNAs) were innovative nanomaterials showing potential for
drug delivery, and recent studies indicated that tFNAs
restored osteogenesis dysfunction and attenuated BM-MSCs
apoptosis in treating ONFH[210], and promoted angiogenesis
in treating MRONJ[211].

Conclusion

Osteonecrosis is a refractory disease marked by the death of bone
cells, and maintaining bone homeostasis is a challenge for this
disease. In this review, we have discussed the roles of osteoblasts,
osteoclasts, osteocytes, BM-MSCs, and bone marrow niche and
angiogenesis. Pregnancy, diseases (such as SLE, ALL, SCD, HIV),
trauma, alcohol intake, GCs use, and bisphosphonates use are
risks for osteonecrosis. There are several proven mechanisms of
impairment in bone homeostasis for osteonecrosis, including
apoptosis of osteoblasts, osteocytes and BM-MSCs, dysfunction
of osteoclasts, immune and inflammation, adipogenic differ-
entiation, cell senescence, hematology impairment, and fibrosis.
We have attempted to logically connect current pathways to these
mechanisms and summarize the current treatments hier-
archically. However, some limitations still exist, including
undetermined risk factors, complex mechanisms with primary
diseases, vacant positions for superior treatment, insufficient
evidence for regenerative medicine, and roadblocks in transla-
tional medicine. Ongoing and future research should be directed
at elucidating risk factors and identifying new targets, performing
high-quality clinical trial, clarifying the standard quality of cell
therapies, updating clinical practice (combination of conservative
treatments, surgeries and regenerative medicine), accelerating
translational medicine by developing pharmacological therapies,
tissue engineering, and nanotechnology.
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