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A semi‑supervised adaptive 
Markov Gaussian embedding 
process (SAMGEP) for prediction 
of phenotype event times using 
the electronic health record
Yuri Ahuja1,2,3,7*, Jun Wen2,7, Chuan Hong2, Zongqi Xia4, Sicong Huang2,5,6 & Tianxi Cai1,2,6

While there exist numerous methods to identify binary phenotypes (i.e. COPD) using electronic 
health record (EHR) data, few exist to ascertain the timings of phenotype events (i.e. COPD onset or 
exacerbations). Estimating event times could enable more powerful use of EHR data for longitudinal 
risk modeling, including survival analysis. Here we introduce Semi‑supervised Adaptive Markov 
Gaussian Embedding Process (SAMGEP), a semi‑supervised machine learning algorithm to estimate 
phenotype event times using EHR data with limited observed labels, which require resource‑intensive 
chart review to obtain. SAMGEP models latent phenotype states as a binary Markov process, and 
it employs an adaptive weighting strategy to map timestamped EHR features to an embedding 
function that it models as a state‑dependent Gaussian process. SAMGEP’s feature weighting achieves 
meaningful feature selection, and its predictions significantly improve AUCs and F1 scores over 
existing approaches in diverse simulations and real‑world settings. It is particularly adept at predicting 
cumulative risk and event counting process functions, and is robust to diverse generative model 
parameters. Moreover, it achieves high accuracy with few (50–100) labels, efficiently leveraging 
unlabeled EHR data to maximize information gain from costly‑to‑obtain event time labels. SAMGEP 
can be used to estimate accurate phenotype state functions for risk modeling research.

Electronic Health Record (EHR) data collected during the routine delivery of care have in recent years enabled 
countless opportunities for translational and clinical  research1–3. Comprising freeform clinical notes, lab results, 
prescriptions, and codified features including International Classification of Diseases (ICD) and Current Pro-
cedural Terminology (CPT) billing codes, EHRs encode rich information for research. However, EHRs’ lack of 
gold-standard phenotype labels limits utilization of these data to precisely estimate epidemiological parameters 
such as prevalence and treatment effects, or to develop and validate well-calibrated risk prediction models for 
clinical events. Phenotype surrogate features such as ICD diagnosis codes often exhibit dismal specificity that 
can bias or de-power the downstream  study4,5. Meanwhile, manual annotation of phenotypes via chart review 
is laborious and unscalable. These limitations become even more pronounced when the object of interest is 
the timing of clinical events, which is important for survival analysis or evaluating disease course. Event time 
surrogates derived from EHR codes often exhibit systematic biases, and multiple features may be needed to 
accurately predict  timing6–8.

For binary phenotypes, researchers have proposed a variety of unsupervised and semi-supervised methods 
requiring few-to-no manually-annotated gold-standard  labels9–20. However, few methods exist to predict phe-
notype event times. Chubak et al. developed a rule-based algorithm that predicts breast cancer recurrence time 
based on the earliest encounter times of expert-specified  codes8. Hassett et al. proposed a similar algorithm 
averaging the peak times of selected  codes7. Uno et al. expanded on this by using points of maximal increase in 
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lieu of peak values, and adjusting for systematic temporal biases between code timings and phenotype  onset6. 
While these approaches achieve notable performance, they are limited by (1) reliance on a limited, curated 
set of predictive codes, and (2) sensitivity to sparsity, a common characteristic of EHR data. In addition, these 
algorithms cannot identify multiple event times as might be pertinent for a relapsing and remitting phenotype 
such as multiple sclerosis.

Using machine learning to predict event times can potentially address these limitations. Traditional super-
vised learning methods such as logistic regression, random forest, and naive Bayes are suboptimal for modeling 
longitudinal processes as they cannot account for intertemporal associations in either outcomes or features. 
Recurrent neural networks (RNNs), designed for sequence data and well-conditioned to high feature dimen-
sions, have had widespread prediction applications using longitudinal  data21–25. One recent RNN-based method 
optimized for healthcare data, the Reverse Time Attention Model, (RETAIN), offers particularly notable accu-
racy to this  end26. However, neural networks often require large numbers of training labels to achieve stable 
performance, which can be very expensive to attain. Consequently, existing applications of RNNs to EHR-based 
prediction typically use readily available outcome measures such as discharge billing codes, hindering applica-
tion to outcomes without reliable codified proxies. Additionally, apart from RETAIN these models are generally 
not intuitively interpretable.

On the other end of the spectrum, researchers have developed unsupervised computational models of chronic 
disease progression that do not use any gold-standard  labels26–31. Many of these approaches employ Hidden 
Markov Models (HMMs) in which latent states represent disease stages or status. For instance, Jackson et al. 
apply a multistage discrete HMM to aneurysm screening, Sukkar et al. apply one to Alzheimer’s disease, and 
Wang et al. apply a continuous HMM to progression of chronic obstructive pulmonary  disease26–29. However, 
the latent states learned from these unsupervised models may not be reflective of the target phenotype or even 
clinically relevant.

In this paper we propose Semi-supervised Adaptive Markov Gaussian Embedding Process (SAMGEP), a label-
efficient, semi-supervised machine learning method to predict the presence of a well-defined binary phenotype 
over time using longitudinal EHR data. By leveraging large-scale unlabeled data to train the temporal prediction 
model, SAMGEP makes efficient use of limited (~ 50–100) gold-standard event labels. Unlike existing event iden-
tification algorithms, SAMGEP can leverage hundreds of sparse EHR features rather than a handful of surrogates 
by combining features and their embeddings into dense patient-timepoint embeddings via a novel data-driven 
weighting procedure. It then models the patient-timepoint embedding progression as a Gaussian Process emis-
sion of an HMM to predict the target phenotype, combining desirable aspects of existing phenotyping methods.

Results
Model overview. SAMGEP predicts well-defined (i.e. not new) binary phenotype processes from longi-
tudinal EHR data with few observed gold-standard event labels. It does so in four steps: (i) assembling time-
dependent candidate features, (ii) optimizing weights for combining feature embeddings into dense patient-
timepoint embeddings, (iii) fitting supervised and semi-supervised Markov Gaussian Process (MGP) models to 
the embedding process to predict phenotype status over time, and (iv) taking a weighted average of these semi-
supervised and supervised predictions with weights determined adaptively to optimize prediction performance. 
Figure 1A illustrates the overarching SAMGEP procedure, and Fig. 1B depicts the form of raw longitudinal EHR 
data for input into SAMGEP. A detailed description of the SAMGEP procedure is included in the “Methods”. R 
source code is available at https:// cran.r- proje ct. org/ web/ packa ges/ SAMGEP/ index. html.

Feature selection. Figure 2 depicts feature clouds generated using SAMGEP’s feature weights for iden-
tification of (A) MS relapse and (B) HF onset. SAMGEP identified PheCodes for demyelinating diseases and 
muscle spasm, CPT codes for vitamin B12 testing and MRI brain, and CUIs for “relapse” and “tingling sensa-
tion” as most predictive of MS relapse. For identification of HF onset, SAMGEP selected PheCodes for heart 
failure and cardiomyopathy, and CUIs for “brain natriuretic factor 32” and “atrio-biventricular pacing.” In both 
cases, SAMGEP reassuringly selected and upweighted appropriate, clincially relevant features for the respective 
outcomes.

Robustness to data generative characteristics. Figure 3 explores SAMGEP and comparators’ robust-
ness to various generative model specifications. Note that only relative performance between methods, not abso-
lute performance, is meaningful as different generative settings may portend disparate inherent levels of infor-
mation; nevertheless, we also include absolute performance metrics in Supplementary Table S3.

Panels A and B demonstrate unsurprisingly that SAMGEP outperforms RETAIN and LSTM when SAMGEP’s 
distributional assumptions regarding (A) Y |T and (B) X|Y  are correctly specified. That said, SAMGEP achieves 
strong relative performance notwithstanding misspecification of Y |T or X|Y  . Practically this indicates that 
SAMGEP is robust to model misspecification, though the more the true distribution diverges from SAMGEP’s 
assumption, the less desirable SAMGEP is relative to highly flexible deep learning models.

Panel C demonstrates that SAMGEP provides more benefit over  LDAEmbed and HMM the more sparsely infor-
mation is distributed over features (i.e. 5 rather than 100 informative features out of 150), reflecting the robustness 
of SAMGEP’s  L1-regularized weighting protocol to information sparsity. This robustness makes SAMGEP well-
conditioned for the EHR, which typically contains a handful of informative features out of millions. Meanwhile, 
SAMGEP offers the most benefit over LSTM and RETAIN, which also utilize  L1 weighting, when the number of 
informative features is 20. This is likely due to the fact that we used embeddings of dimension m = 10 , resulting 
in bias when the true number of informative dimensions exceeds 10.

https://cran.r-project.org/web/packages/SAMGEP/index.html
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Identification of MS relapse and HF onset using real‑world EHR data. Figure  4 depicts mean 
AUCs, F1 scores,  ABCcdf gains, and  ABCcount gains for SAMGEP and key comparator methods predicting (A) MS 
relapse and (B) HF onset using real-world EHR data. A plot with all comparators is included in Supplementary 
Fig. S6, and a line plot over the number of observed samples n is included in Supplementary Fig. S8. For identi-
fication of MS relapse, SAMGEP achieved significantly higher AUCs than all other methods, though RETAIN 
approached SAMGEP for n = 500 labels. SAMGEP also achieved F1 scores equivalent to that of the top-per-

Figure 1.  (a) Schematic of the overall SAMGEP algorithm. (b) Depiction of the sparsity and temporal 
irregularity of EHR data. In this study we aim to predict multiple sclerosis (MS) relapse event times (red bands) 
using timestamped EHR feature observations (black diamonds).
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forming method for all n . LSTM and RETAIN achieved lackluster AUCs for n ∈ {50,100,200} , an unsurprising 
result given that deep learning models are well known to exhibit unstable performance in small data settings. 
SAMGEP also achieved the highest  ABCcdf gains, though not significantly so relative to HMM. Finally, SAMGEP 
achieved the highest  ABCcount gains, though statistically equivalent to LSTM per Student’s t test and only margin-
ally superior to HMM. The fact that SAMGEP, HMM, and LSTM were the top performers by both ABC metrics, 

Figure 2.  Feature word clouds for (a) MS relapse and (b) HF onset using the product of SAMGEP’s feature 
weights and the empirical standard deviations of corresponding features. See the “Evaluation metrics” 
subsection of the “Methods” for details.

Figure 3.  Robustness of SAMGEP and comparator methods’ AUCs, F scores,  ABCcdf gains, and  ABCcount gains 
to various generative parameters, including the (a) specification of Y |T , (b) specification of C|Y  , and (c) number 
of informative (i.e. non-sparse) features. Details of the experiments are delineated in the “Simulation study” 
subsection of the “Methods”, and more extensive results are displayed in Supplementary Fig. S5.
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despite HMM and LSTM’s unremarkable AUCs, suggests that jointly modeling {Yi,1, . . . ,Yi,T(i)} is singularly 
beneficial for longitudinal phenotype process prediction.  LDAembed does not even significantly improve upon the 
null model’s ABC metrics for n ∈ {50, 100, 200} , demonstrating that accurately predicting phenotype states at 
individual timepoints does not necessarily translate into accurate phenotype process prediction.

For identification of HF onset, SAMGEP achieved the highest AUCs and F1 scores for n = 50 but was out-
performed by RETAIN for n = 100 , and both RETAIN and LSTM for n = 200 . SAMGEP achieved the high-
est  ABCcdf gains across the board but was statistically equivalent to HMM for n = 50 and LSTM for n = 200 . 

Figure 4.  Predictive accuracies of SAMGEP and various comparator methods using real-world EHR data to 
predict (a) MS relapse with n ∈ {50, 100, 200, 500} labeled patients, and (b) HF onset with n ∈ {50, 100, 200} 
labels. 95% confidence intervals were empirically estimated by bootstrapping with 100 replicates. See the 
“Evaluation metrics” subsection of the “Methods” for details about the evaluation metrics. More extensive results 
are displayed in Supplementary Fig. S6.
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The fact that SAMGEP, LSTM, RETAIN, and HMM achieved high accuracies across metrics reflects the pow-
erful benefit of leveraging the full time sequence when predicting the onset of a chronic disease, wherein 
Yt |(Yt−1 = 1) = 1withprobability1. Moreover, the fact that RETAIN often outperformed SAMGEP for HF onset 
but not MS relapse identification suggests that SAMGEP offers particular benefit over deep learning for predic-
tion of a relapsing and remitting process, which expends more degrees of freedom than prediction of disease 
onset. Notably, for both prediction tasks SAMGEP is robust to low n , whereas the deep learning benchmarks 
require larger labeled sets to achieve sufficient performance stability.

While SAMGEP does not always outperform all comparators, its consistency is notable. Whereas some com-
parators achieve high accuracy by only certain metrics or on only one of our two outcomes, SAMGEP achieves 
consistently strong performance, and for n = 50 it always achieves statistically equivalent accuracy to the top 
performing method. It demonstrates proficiency at predicting both phenotype states at individual timepoints 
and phenotype processes over time, most notably in the label-poor setting (i.e. 50–100 labels). Finally, it achieves 
high accuracy on two contrasting phenotypic outcomes, bolstering our claim of generalizability.

Estimation of cumulative probability and counting process curves. Figure 5 depicts the estimated 
CDF, obtained as F̂(t) = N−1

∑N
i=1F̂i,t , and counting process, obtained as N̂(t) = N−1

∑N
i=1N̂i,t , based on the 

identifications of SAMGEP using n = 100 labels, along with 95% confidence intervals. Notably, CDF estima-
tion using SAMGEP’s identifications is relatively unbiased for onset of both (A) first MS relapse and (B) HF. As 
Supplementary Fig. S7 demonstrates, comparator methods’ predictions tends to markedly overestimate the true 
cumulative risk, whereas SAMGEP consistently achieves the least biased estimates.

Counting process estimation using SAMGEP’s MS relapse identifications appears to systematically but slightly 
underestimate the true counting process. SAMGEP significantly improves upon comparators later in patients’ 
disease courses, where all other methods except HMM appear to markedly overestimate. SAMGEP’s identifica-
tions again improve bias at the expense of increased variance, overall significantly improving  ABCcount.

Discussion
While identification of binary phenotypes using EHR data is well-trodden in the literature, identification of 
longitudinal phenotype processes, or event times, remains underdeveloped. As our results demonstrate, accurate 
identification of a patient’s phenotype status overall—or even at a particular timepoint—does not necessarily 
translate into accurate phenotype process prediction. SAMGEP accurately predicts phenotype processes, con-
stituting a meaningful step forward for computational phenotyping.

SAMGEP excels relative to existing methods because it (1) can leverage numerous EHR features, which is 
particularly important for phenotypes that are insufficiently represented by a handful of surrogates (i.e. ICD 
codes); (2) incorporates prior knowledge by utilizing low-dimensional feature embeddings trained using all 
available EHR data; (3) can efficiently utilize few gold-standard labels by leveraging unlabeled data in a semi-
supervised manner; and (4) jointly models the time sequence of relapses and features rather than treating 
individual timepoints as independent observations. Figures 4A, 5, and Supplementary Fig. S7 demonstrate that 
SAMGEP achieves particularly accurate (per  ABCcdf and  ABCcount) and unbiased CDF and counting process 

Figure 5.  Estimation of population-wide cumulative probability (bottom) and counting process (top) curves 
for MS relapse (left) and HF development (right) using the predictions of SAMGEP trained with n = 100 
labeled patients. “Actual” curves were estimated using all available labels. Only labeled sets were used to generate 
curve estimates in order to enable unbiased comparison between the SAMGEP-predicted and actual curves. 
95% confidence intervals were empirically estimated by bootstrapping with 100 replicates. More extensive 
results are displayed in Supplementary Fig. S7.
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estimates for a relapsing-and-remitting phenotype, particularly in the setting of few (i.e. 50–100) observed 
labels. Manual annotation of event times is an extremely laborious process, so SAMGEP’s label efficiency is a 
key attribute. Conversely, popular deep learning models such as RETAIN and LSTM are well known to exhibit 
low performance stability in such small data settings.

We envision SAMGEP’s phenotype process predictions being used as outcomes in a downstream clinical or 
epidemiological study. For instance, researchers aiming to measure the effect of an MS treatment on the rate of 
relapse could (1) annotate the relapse histories of ~ 100 patients via chart review, (2) use SAMGEP to estimate 
cumulative relapse probabilities for all remaining patients, and (3) use these relapse probabilities as outcomes to 
measure treatment effect. Further research is warranted to assess the bias-variance tradeoff of such a workflow 
relative to traditional predictive modeling methods using the labeled set alone.

While SAMGEP is label-efficient, manually annotating even 50–100 event time labels is a labor-intensive 
process. Modifying SAMGEP to handle current status labels—indicators of phenotype status at censor time—
would greatly diminish the chart review time required to utilize the algorithm for phenotype onset prediction. 
Further work is warranted to explore this possibility.

Finally, SAMGEP in its current form is not robust to covariate shift between the labeled and unlabeled 
sets—a realistic scenario in cases where labeled patients are not a random subsample of the study population. 
Inverse probability weighting could be employed to eliminate this sampling bias, and we leave this as a future 
study direction.

In summary, SAMGEP is a novel semi-supervised machine learning method that accurately predicts the 
course of a binary phenotype over time using EHR data with few observed event time labels. Singularly adept at 
estimating cumulative probability and counting process functions, SAMGEP promises to enable more powerful 
use of EHR data for epidemological research involving event timings, including survival analysis.

Methods
Assembling predictive features. To assemble feature counts and define phenotype states, we consider 
consecutive non-overlapping time periods starting at the patient’s first ICD code for the target phenotype. Can-
didate features include log-transformed counts of ICD codes, RxNorm drug codes, CPT codes, lab tests, and 
mentions of clinical concepts in a patient’s record. Features can be selected manually or identified automatically 
via label-free methods such as surrogate-assisted feature  extraction33. Fig. 1B depicts the form of raw EHR fea-
ture data for MS relapse identification, with red bands indicating relapse events. Since SAMGEP employs sparse 
feature weighting to select informative features, it is preferable to include features liberally rather than aiming 
for parsinominousness in feature assembly.

Henceforth we let Vm×p denote the matrix of m-dimensional embedding vectors for p features. See the Pro-
ducing Feature Embeddings section of the Supplementary Materials for details on how Vm×p is pre-trained. We 
use i , j , and t  to index patients, raw features, and time periods respectively. We assume there are N patients and 
Ti periods for patient i in our dataset. For patient i at timepoint t  , let Ci,t denote the p-dimensional raw feature 
vector and Yi,t ∈ {0, 1} denote the phenotype state. Let Hi = log(mean healthcare encounter count per month + 1) 
in patient i ’s record, a measure of healthcare utilization. Finally, we assume that Yi = (Yi,1, . . . ,Yi,Ti ) is annotated 
on a limited set of n ≪ N patients, but Ci =

(
Ci,1, . . . ,Ci,Ti

)
 is observed for all N patients.

Producing patient‑timepoint embeddings. SAMGEP leverages pre-trained feature embeddings V  
to compress the high-dimensional feature vector Ci,t to a low-dimensional patient-timepoint embedding Xi,t, 
which can be efficiently modeled as a Gaussian process. We compute Xi,t as a weighted sum over feature embed-
dings:

where W =




W1 · · · 0
...

. . .
...

0 · · · Wp



, Wj is the unknown weight for the jth feature, and W1 = 1 to ensure identifiability. 

We choose W via L1-regularized linear discriminant analysis maximizing.

where ‖W‖11 denotes the  L1 norm of W , � ≥ 0 is the tuning parameter,

We choose  L1 regularization over  L2 or other  Lp to impose sparsity given that most input features are likely 
uninformative. We optimize W  using projected gradient ascent, where without loss of generality we assume 
that the first feature is a known highly predictive feature. The step-size at each iteration of ascent is chosen by 
line search, and � is optimized using fivefold cross-validation maximizing D(W) within the labeled set. In this 
study, we use V  generated via a singular value decomposition (SVD) procedure, so our process of inferring X is 
similar in spirit to matrix factorization. That said, our embedding procedure does not account for inter-temporal 
information, so it departs from modern tensor factorization methods in that regard.

(1)Xi,t = Ci,tWV , fori = 1, . . . ,Nandt = 1, . . . ,Ti ,

D(W) = (µ1 − µ0)
T�−1

X (µ1 − µ0)− �||W ||11,

µy =

∑N
i=1

∑Ti
t=1Xi,t I(Yi,t = y)

∑N
i=1

∑Ti
t=1I(Yi,t = y)

, and�X =
1

∑N
i=1Ti

∑N

i=1

∑Ti

t=1
(Xi,t − µYi,t

)
(
Xi,t − µYi,t

)′
; y = 0, 1.
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Fitting MGP. MGP is a generative mixture-like model that combines two assumptions: (1) Yi follows a dis-
crete time Markov process, and (2) Xi =

(
Xi,1, . . . ,Xi,Ti

)
|Yi follows a Gaussian process. This generative frame-

work primes SAMGEP for the semi-supervised setting.

Discrete time Markov process assumption. We assume a Markov process model for Yi|Hi such that 
P(Yi,t = y

∣∣Yi,1, . . . ,Yi,t−1,Hi

)
= P(Yi,t = y

∣∣Yi,t−1,Hi

)
 . This model is specified by two rules:

where { πinit ,πt
(
yt−1

)
∀t > 1} are unknown transition probabilities that fully specify the Markov model. We 

further assume that for some parameters �markov = {�init , �0, �1, �2, �3, �H0, �H },

where expit(x) = exp(x)/[1+ exp(x)]. We include both linear and log-linear time effects on πt(yt−1|Hi) to better 
capture the temporal risk function without overfitting.

Gaussian process assumption. We assume the dense representations of patients’ EHRs (i.e. patient embeddings) 
over time follow a Gaussian process:

Since the feature embeddings V  are engineered to approximately follow a multivariate nor-
mal distribution as described in the Producing feature embeddings section of the Supplemen-
tary Materials, it is reasonable to assume Xi,t  to be a Gaussian process over time t  . We fur-
ther specify the mean and covariance functions µi(t) and �i(t) respectively. For some parameters 
θGP = {µ0,µ1,µ2,µ3,µ4,µ5,µH ,µYH , σk ,αk , τk , ρkl , k = 1, . . . , p; l = 1, . . . , p} , we assume:

In summary, we assume that patient i  ’s expected embedding at time t  , µi(t) , is a function of Yit , Hi , and 
t  . We assume that the marginal variance of embedding component k can be represented by some baseline σ 2

k  
scaled by Hi . We denote the correlation between embedding components k and l  as ρkl , which we assume to 
be constant over time. Between timepoints, we employ a first-order univariate autoregressive (AR(1)) kernel 
structure such that the residual at t  , ǫi,t,k = Xi,t,k − E(Xi,t,k|Yi ,Hi) , is a linear function of its preceding value 
ǫi,t−1,k with autocorrelation coefficient τk:

r ∈ [0, 1] is an autoregression regularization hyperparameter separately tuned via fivefold cross-valida-
tion maximizing the AUROC of Yi,t predictions: r = 0 ignores intertemporal correlation while r = 1 denotes 
undampened autoregression. We chose first-degree autoregression over higher-degree models due to compu-
tational ease and mitigation of overfitting. We provide a sensitivity analysis with respect to the choice of k-fold 
cross-validation in Supplementary Fig. S2 that demonstrates no significant effect of k on predictive accuracy.

Implementation and inference. MGP is fit via one iteration of an approximating expectation–maximization 
(EM) algorithm. We approximate the expected log-likelihood in the E-step using the marginal posterior of each 
latent phenotype state, Ŷi,t |X i∀t ∈ {1, . . . ,Ti} , rather than the more complex joint posterior, Ŷ i|X i . Before we fit 
MGP, we optimize r using fivefold cross-validation on the labeled set as described above. We then initialize the 
EM by tuning the model parameters {�markov , θGP} : �markov using simple logistic regression and θGP using gen-
eralized least squares. Specific details of these tuning procedures are supplied in the Fitting MGP using Expec-
tation–Maximization (EM) section of the Supplementary Materials. We then use this trained model to impute 
labels for the unlabeled set. We refer to predictions using this initial model as MGP’s supervised estimator p̂sup . 
Finally, we re-optimize {�markov , θGP} using both observed and imputed labels. We refer to predictions using this 
re-trained model as MGP’s semi-supervised estimator p̂semisup . We execute one iteration of this EM procedure 
rather than running it to convergence for several reasons. First, since the EM is initialized at the consistent 
supervised estimator, the solution obtained after one iteration is guaranteed to be consistent assuming correct 
model specification while heuristically minimizing the influence of the unlabeled set. The one-step update also 
greatly reduces the computational cost. As Supplementary Fig. S3 demonstrates, SAMGEP’s performance is not 
sensitive to the maximum number of EM iterations allowed; in fact, increasing the number of iterations may 
marginally degrade performance when there exists sampling bias between the labeled and unlabeled sets, as is 
the case for our MS dataset.

Combining semi‑supervised and supervised predictions. Semi-supervised generative models such 
as MGP should benefit from the additional information in the unlabeled set if the model is correctly specified. 

(2)P(Yi,1 = 1|Hi) = πinit(Hi); P(Yi,t = y
∣∣Yi,t−1 = yt−1,Hi

)
≡ πt

(
yt−1,Hi

)
fort > 1,

πinit(Hi) = expit(�init + �H0Hi), and

πt
(
yt−1|Hi

)
= expit

(
�0

(
1− yt−1

)
+ �1yt−1 + �2t + �3logt + �HHi

)
,

Xi|Yi ∼ GP(µi(t),�i(t)).

µi(t) = E
(
Xi,t

)
= µ0

(
1− Yi,t

)
+µ1Yi,t+µHHi+µYHHiYi,t+µ2t+µ3logt+µ4Yi,t t+µ5Yi,t logt,

Var
(
Xi,t,k

)
= σ 2

k exp(2αkHi), Cov
(
Xi,t,k ,Xi,t,l

)
= ρklσ kσlexp{(αk+αl)Hi}.

E
[
ǫi,t,k|ǫi,t−1,k

]
= rτkǫi,t−1,k .
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However, semi-supervised predictors have been shown to be more sensitive to model misspecification than their 
supervised counterparts. To mitigate this effect, SAMGEP returns a weighted average of

with weight α selected by fivefold cross-validation maximizing the AUROC of Yi,t predictions. As Supplementary 
Fig. S1 shows, p̂SAMGEP never underperforms either p̂sup or p̂semisup , demonstrating SAMGEP’s insensitivity to 
sampling bias between the labeled and unlabeled sets.

Data and metrics for evaluation. Simulation study. We generated datasets of p = 150 count features 
along with H for N ∈ {1000, 5000, 20000} unlabeled patients, each with a mean of E[Ti] = 25 timepoints. To 
assess SAMGEP’s robustness to various model misspecifications, we varied the following generative parameters: 
(i) Y |T where ‘independent’ indicates Y ⊥ T , ‘correct’ follows SAMGEP’s generative model, and ‘complex’ de-
notes over-parametrization of Y(T) ; and (ii) C|Y  (marginally lognormal vs. log-t with 5 degrees of freedom). 
We considered n = 100 labeled patients and let the number of informative features vary from 5 to 100. Details 
of our simulation generative mechanisms are supplied in the Simulation Data Generative Mechanisms section of 
the Supplementary Materials and Supplementary Table S1.

Multiple sclerosis (MS) relapse and heart failure (HF) onset identification. We further validate SAMGEP’s per-
formance by classifying MS relapse and HF status over time using two EHR studies. Whereas HF is a chronic 
disease for which primary interest lies in the cumulative probability of disease over time, MS is a relapsing and 
remitting phenotype for which we seek to predict all relapses over time. For identification of MS relapse, we 
collected EHR data between January 1, 2006 and December 31, 2016 for 4706 patients with at least one MS ICD 
code from the Research Patient Data Registry (RPDR) of the Mass General Brigham (MGB) health system in 
Boston, MA. We derived neurologist-confirmed MS relapse events and dates for 1435 patients from the Com-
prehensive Longitudinal Investigation of Multiple Sclerosis (CLIMB) research registry. For this study, relapse 
was defined as a clinical and/or radiological event. Clinical relapse was defined as having new or recurrent 
MS-related neurological symptoms lasting persistently for at least 24 h without fever or infection. Radiological 
relapse was defined as having either a new T1-enhancing lesion and/or a new or enlarging T2-FLAIR hyperin-
tense lesion on the brain, orbit, or spinal cord MRI according to the clinical radiology report. 57.2% of patients 
in CLIMB had at least one relapse event, with a mean of 2.60 relapses per patient and 0.081 relapses per patient-
month. For HF, we collected EHR data for 59,395 patients in the MGB RPDR with at least one ICD code for HF. 
We compiled HF status and onset dates for 300 randomly selected patients from this cohort via chart review 
by two independent cardiologists at MGB who jointly reconciled any differences in initial assessment. Incident 
HF was defined using a previously validated algorithm that includes at least 1 HF ICD-9 code (425.x or 428.x) 
combined with use of an intravenous diuretic within 90 days of the above HF  code34.

Among the 300, 60.7% developed HF during follow-up. The MGB IRB approved the use of both EHR and 
research registry data, and data were appropriately deidentified before use in accordance with relevant guide-
lines and regulations. Informed consent was obtained from all subjects and/or their legal guardians by RPDR 
investigators during collection of the data.

From the EHR dataset we extracted age, sex, and patient-level occurrences of ICD-9 diagnosis codes, RxNorm 
prescription codes, and CPT procedures codes. We mapped ICD-9 codes to PheCodes using the established 
PheWAS mapping in order to better represent clinical conditions and improve  generalizability35. In addition to 
PheCodes, RxNorm codes, and CPT codes, our feature set included clinical concepts mapped to concept unique 
identifiers (CUIs) extracted from free-text clinical narratives via the Narrative Information Linear Extraction 
(NILE) natural language processing (NLP)  method36. We binned all EHR features into consecutive, non-over-
lapping 1-month time intervals such that Ci,t represents the counts of patient i  ’s PheCodes, CPT codes, and 
NLP features between months t  and t + 1 . As Supplementary Figure S4 demonstrates, SAMGEP attains higher 
accuracy with longer window lengths, suggesting that the user should generally employ the longest window 
length that achieves sufficient temporal precision for a given task. For identification of MS relapse, we selected 154 
features via marginal screening of association between all candidate features and 1-year relapse risk as described 
in Ahuja et al.37 For HF onset identification, we selected 121 features with embedding cosine similarities of 0.1 
or above relative to the HF ICD code. Selected features are displayed in the Supplementary Materials.

Benchmark methods for comparison. We chose benchmark methods based on a comprehensive literature 
review of supervised and/or semisupervised temporal process prediction methods using longitudinal EHR data. 
We considered as benchmarks three supervised methods using the labeled set alone: (i) long short term memory 
RNN (LSTM)24,39,43,44 trained with Ci,t , (ii)  RETAIN26 trained with raw EHR observations in the continuous 
time domain, and (iii) linear discriminant analysis (LDA) trained with patient-timepoint embeddings gener-
ated without weights ( X0

i,t = Ci,tV  ), which we refer to as  LDAembed.  LDAembed predicts Yi,t using only concur-
rent features without considering the time sequence. In addition, we considered a semi-supervised benchmark: 
 HMM26–29,45,46 with a multivariate gaussian emission trained on X0

i,t . As a baseline we also included predictions 
based only on the closest PheCodes (MS: 355; HF: 428). See the Benchmark method implementation details sec-
tion of the Supplementary Materials for details of our benchmark method implementations. In Supplementary 
Fig. S5 we also include results for LASSO-penalized logistic  regression16,17,34,37–39, random forest (RF)40,41, and 
 LDA47 trained with Ci,t . These methods leverage neither the time sequence nor V  and achieve subpar predictive 
accuracy.

(3)p̂sup and p̂semisup, p̂SAMGEP = αp̂semisup + (1− α)p̂sup,
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Evaluation metrics. We computed various performance metrics for SAMGEP and benchmark methods using 
a held-out validation set {Cval ,Y val} . To evaluate methods’ predictions for Yi,t , we computed (i) AUC and (ii) F1 
score choosing a cutoff that achieves 95% specificity. Let Ni(t) =

∑
k≤tYi,k(1− Yi,k−1) denote the observed all-

event counting process, where Yi,0 = 0 , and let Fi(t) = 1−�k≤t(1− Yi,k) denote the observed first-event pro-
cess. We evaluated methods’ phenotype counting process predictions by computing the area between Ni(t) and 
the predicted counting process N̂i(t) =

∑
k≤t I(π̂ i,k ≥ c) , denoted as  ABCcount, where π̂i,k denotes a method’s 

prediction of P(Yi,k = 1) and c is chosen such that in labeled set

Likewise, we evaluated methods’ first-event cumulative probability (CDF) predictions by computing the area 
between Fi(t) and the predicted CDF F̂i,t = 1−

∏
k≤t(1− �̂i,k) , denoted by  ABCcdf, where �i,k denotes patient 

i ’s true hazard at time k and �̂i,k denotes a method’s prediction thereof. In the absence of censoring,  ABCcdf is 
equivalent to the mean absolute difference between true and predicted event times. Since SAMGEP and HMM 
jointly model the outcome sequence {Yi,1, . . . ,Yi,T(i)} , we used these methods to directly estimate F̂i,t . Other 
methods only predict marginal probabilities π̂i,t , so we assumed that �̂i,t = π̂ i,t , or equivalently that event states 
are independent over time. Rather than report raw ABC quantities—whose scale can vary greatly across set-
tings—we report methods’ percent decrease below those of the null model that sets π̂ik to the prevalence at time k:

We do not compute ABCGain
count for HF onset identification since only the CDF is of interest for HF. Finally, for 

both MS relapse and HF onset identification, we qualitatively evaluate SAMGEP’s feature selection and weighting 
mechanism by generating feature clouds using the product of SAMGEP’s feature weights and emprirical feature 
standard devations: wj = Wj,j × ŝ(C,j).

Data availability
The Electronic Health Record (EHR) and research registry data underlying this article were provided by Mass 
General Brigham (MGB) Research Information Sciences & Computing by permission, and with the approval of 
the MGB Institutional Review Board (IRB). These data will be shared on request to the corresponding author 
with permission of MGB Research Information Sciences & Computing as well as the MGB IRB.
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