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Abstract: Compounds derived from plants have several anticancer properties. In the current study,
one guaiane-type sesquiterpene dimer, vieloplain F, isolated from Xylopia vielana species, was tested
against B-Raf kinase protein (PDB: 3OG7), a potent target for melanoma. A comprehensive in silico
analysis was conducted in this research to understand the pharmacological properties of a compound
encompassing absorption, distribution, metabolism, excretion, and toxicity (ADMET), bioactivity
score predictions, and molecular docking. During ADMET estimations, the FDA-approved medicine
vemurafenib was hepatotoxic, cytochrome-inhibiting, and non-cardiotoxic compared to the vieloplain
F. The bioactivity scores of vieloplain F were active for nuclear receptor ligand and enzyme inhibitor.
During molecular docking experiments, the compound vieloplain F has displayed a higher binding
potential with −11.8 kcal/mol energy than control vemurafenib −10.2 kcal/mol. It was shown that
intermolecular interaction with the B-Raf complex and the enzyme’s active gorge through hydrogen
bonding and hydrophobic contacts was very accurate for the compound vieloplain F, which was then
examined for MD simulations. In addition, simulations using MM-GBSA showed that vieloplain
F had the greatest propensity to bind to active site residues. The vieloplain F has predominantly
represented a more robust profile compared to control vemurafenib, and these results opened the
road for vieloplain F for its utilization as a plausible anti-melanoma agent and anticancer drug in the
next era.

Keywords: guaiane dimer; melanoma; molecular docking; ADMET; MM-GBSA

1. Introduction

Melanoma is the most aggressive and deadly form of skin cancer [1–4]. It is the
seventh leading cancer in women and fifth in men in the USA [5,6]. It is predicted that
the five-year survival rate for patients with stage IV or advanced melanomas is less than
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15%. This cancer can grow and spread for an indefinite period due to mutations in the
cells [7]. The primary treatments are BRAF, C-Kit, and NRAS inhibitors. BRAF inhibitors,
such as vemurafenib, are the most effective FDA-approved treatments for BRAF positive
melanoma. However, the negative side of the drug vemurafenib is that patients started
getting resistance after six months of therapy, making therapy no longer effective [8]. More
effective treatments are urgently needed as the prevalence of melanoma rises in the United
States and other developed nations.

There has been an increase in scientific interest in medicinal plants [9], In the last
several decades, plants with their intriguing secondary metabolites have been explored
for their strong anticancer properties [10,11]. The family Annonaceae includes the genus
Xylopis. Recently, it has been described for its extraordinary broad range of pharmacologi-
cal spectrum encompassing rheumatism, analgesia, bactericidal, fungicidal, antioxidant
antitumor and anti-inflammatory properties. Xylopia vielana is the only species identified in
China [12–16]. Natural products have been shown to influence BRAF kinases; however, it is
unclear whether or not they communicate with the gene product or even the transposable
elements that regulate the gene. [5].

The manufacturing of a new medicine is a lengthy and complex procedure. Selecting a
suitable lead molecule is one of the crucial steps during drug development [17]. However,
unexpected toxicity and adverse drug reactions, on the other hand, caused around 40%
of the drug candidates to fail [18]. Computer-assisted in silico approaches have become
increasingly important in the initial phases of drug development as they are more cost-
effectively [17,19]. This method decreases the number of animals killed and reduce failures
in the ultimate stage [19]. Often, unexpected toxicity is detected late in drug development.
An in silico technique for predicting toxicological parameters is an alternative to animal
testing [20]. The guaiane dimers from Xylopia vielana due to their complex unique structures
are already proved to provide great effects during in silico studies against CoX-2 [12].
During the in silico studies such as ADMET, the initial profile of the compounds has
been created. If any of the compounds provide any severe toxicity or create drug-drug
interaction with some metabolizing cytochromes, the time should not be wasted on that
kind of compounds.

New dimers were discovered in our recent study on the Xylopia vielana to aid in
the quest for powerful anticancer medicines [13,15]. The in vitro anticancer potential
of these guaiane dimers has been reported, which shows that some of these guaiane
dimers, especially vieloplain F have displayed potent anticancer activity with IC50 values
of 9.5 µM. However, its profound mechanistic studies and pharmacological profile were
incomplete. Vieloplain F’s pharmacological characteristics were studied in this study,
with an emphasis on drug-likeness, bioactivities, administration, distribution, metabolic
activity, excretion, and toxicity. The guaiane dimer blockage of BRAF kinases was further
studied using molecular docking, MD modeling, and MM-GBSA calculations to identify its
carcinogenic mechanism.

2. Results
2.1. Chemical Structures of Vieloplain F and Vemurafenib

The chemical structure of a guaiane dimer vieloplain F was drawn on ChemBio-
Draw (v13.0) and the control drug vemurafenib was downloaded from PubChem and was
redrawn on ChemBioDraw (Figure 1).

Figure 1. Chemical structures of (a) vieloplain F; (b) vemurafenib.
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2.2. Estimation of Activity Spectra for Substances (PASS)

Over 4000 biological activities are predicted by PASS Online (Way2Drug, Moscow,
Russia), including pharmacological effects, modes of action, toxic and unfavorable conse-
quences, linkages with metabolic enzymes and transporter, and impact on expression of
genes. Table 1 shows the best outcomes from all of the predicted activities for vieloplain
F. The biological activity as antineoplastic had the most significant predicted activity (Pa)
for vieloplain F, with Pa > 0.8. The probable activity (Pa) values were higher than Pa > 0.5,
and the probable inactivity (Pi) scores were extremely near to 0, demonstrating that the
compound is highly expected to demonstrate these activities.

Table 1. Best predicted bioactivities of compounds by PASS online.

Biological Activities Pa Pi

Anti-neoplastic 0.862 0.006

Anti-leukemic 0.592 0.009

Testosterone 17beta-dehydrogenase (NADP+) inhibitor 0.589 0.094

2.3. Toxicological and Pharmacokinetic Assets

Absorption, distribution, metabolism, excretion, and toxicity (ADMET) estimations
were primarily directed at all the guaiane dimers (vieloplains A–G). Many novel com-
pounds have been exemplified during initially ADMET screening due to violations, includ-
ing inhibiting different cytochromes, skin permeation, and P-gp inhibition. Only vieloplain
F was selected for further studies because of no violations.

2.3.1. Pharmacokinetic Characteristics

The physico-chemical characteristics of both compounds are discussed in Table 2. Ac-
cording to Table 2, the lipophilicity, insolubility, size, insaturation, polarity, and flexibility of
vemurafenib and vieloplain F were studied and classified into six sections with appropriate
ranges for oral bioavailability (Figure 2a). The oral bioavailability graph of the vieloplain F
is shown in Figure 2a and vemurafenib in Figure S1 (Supplementary Materials), which is
based on the six sections stated in the physicochemical characteristics section. The results
of the compound vieloplain F was within these limits, demonstrating that vieloplain F has
a favorable physiochemical profile, which is one of the factors that must be monitored in
pharmaceuticals and clinical studies.

Table 2. Predicted physicochemical parameters and lipophilicity properties of vieloplain F and
vemurafenib.

Properties Parameters Vieloplain F Vemurafenib

Physicochemical Properties

MW a (g/mol) 446.62 489.92

Rotatable bonds 0 7

HBA b 3 6

HBD c 0 2

Fraction Csp3 0.63 0.13

TPSA d 51.21 100.30

Lipophilicity
Log Po/w

iLOGP 3.93 3.04

XLOGP3 4.02 4.97

MLOGP 6.35 3.41

Consensus 5.07 4.89
a Molecular weight, b H-bond acceptor, c H-bond donor, d Topological polar surface area.
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Figure 2. (a) Bioavailability radar chart for vieloplain F. The pink zone represents the physicochem-
ical space for oral bioavailability, and the red line represents the oral bioavailability properties.
(b) Predicted BOILED-Egg plot from swiss ADME online web tool for all the compounds.

HIA and CNS absorption are important parameters checked for every biomolecule
before its entry for drug formulation in the pharmaceutical or clinical trials field [21]. The
blood–brain barrier penetration is essential as if the compounds that act on the central ner-
vous system (CNS) must cross through the blood–brain barrier, and the inactive compounds
on the CNS should not intersect to avoid adverse effects on the CNS [22]. As mentioned in
Table 3, the compound vieloplain F displayed a high gastrointestinal absorption (HIA) with
no BBB permeability, indicating that vieloplain F shows low occurrence for adverse CNS
effects. The compound vieloplain F HIA absorption ratio was elevated than vemurafenib.

Table 3. Predicted pharmacokinetics parameters of vieloplain F and vemurafenib.

Properties Parameters Vieloplain F Vemurafenib

Absorption

Water solubility −5.971 −4.656

GI a 100 98.45

Log Kp (skin permeation) cm/s −6.17 −5.76

Distribution

BBB b −0.37 −1.686

CNS permeation (Log PS) −1.027 −2.976

VD
c (human) −0.013 −0.461

Metabolism
CYP2D6

CYP1A2 inhibitor No No

CYP2C9 inhibitor No Yes

CYP2C19 inhibitor No Yes

CYP3A4 inhibitor No Yes

CYP2D6 inhibitor No No

Excretion
Total Clearance (log mL/min/kg) 0.053 0.136

Renal OCT2 substrate No No
a Gastrointestinal, b Blood-brain barrier, c Volume of distribution.

Figure 2b shows the BOILED-EGG curve [23]. The BBB penetration and GI absorption
(HIA) of the substances may be predicted by this method. There are two areas: one for the
GI absorption zone (HIA) and the other for BBB penetration (yolk). Neither GI absorption
nor BBB penetration is indicated if any component is found in the gray zone. Because
neither vieloplain F nor the control medication vemurafenib showed that they are P-gp
substrates, they are not sensitive to the efflux mechanism of P-gp, which is used by many
cancers’ cell lines to develop resistance to drugs. Vemurafenib, the reference medicine, was
shown in gray, whereas vieloplain F was shown in white, as can be seen in Figure 2b.
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The skin permeation Log Kp of vieloplain F, compared to vemurafenib, was lower
(Table 3), as mentioned by [24]. The greater the negative value of Kp, the less permeant the
molecule is to the skin. It also forecasts the five main cytochromes (CYP) isoform, which
is an additional benefit. These enzymatic isoforms play a crucial role in the excretion of
pharmaceuticals, and they handle the metabolism of about 75% of the medicines available
on the market. There are major drug-drug interactions caused by inhibiting any of these
isoforms [21,24]. Compared to the control vemurafenib, the vieloplain F did not block any
cytochrome isoform, as shown in Table 3, and was rapidly metabolized. Drug-medication
interactions may occur when three cytochrome isoforms are inhibited by the control drug
vemurafenib: CYP2C19, CYP2C9, and CYP3A4. Dosing rates for achieving steady-state
concentrations depend on drug clearance, which is determined by adding up the excretion
rates from the liver and kidney. Moreover, vieloplain F’s clearance value was insufficient.
Organic cation transporter 2 (OCT2) intermediates may have an influence on the unfavor-
able interactions that occur when OCT2 inhibitors and substrates are used together. It has
been hypothesized that the compound vieloplain F would act as a non-substrate for OCT2.

2.3.2. Toxicity Assessment

It is critical to evaluate the toxicological profile of a medicine before it reaches the
clinical trials stage or the production phase of the pharmaceutical business before it is
approved [25]. A variety of toxicities were assessed for each molecule, including those
affecting human health and those affecting the environment. (Table 4). Using the Ames
test, a compound’s mutagenic potential may be assessed. Both substances were classified
as non-Ames dangerous, meaning that they are uncertain to be carcinogenic, according
to the results. In humans, the maximum tolerated dose (MTD) serves as an indicator of
a chemical’s toxicity level. In comparison to vieloplain F, the MTD for vemurafenib was
significantly greater. It is possible that inhibition of the potassium channels encoded by
the hERG would cause a catastrophic ventricular arrhythmia. Several studies have shown
that both vieloplain F and vemurafenib can inhibit hERG II, but not hERG I. However,
vemurafenib was expected to be hepatotoxic, which would likely result in drug-induced
liver damage. Vieloplain F was also predicted to be non-hepatotoxic. Skin hypersensitivity
is a possible adverse effect of dermally given products, and none of the chemicals tested
has been shown to cause skin sensitization in humans.

Table 4. Predicted toxicity profile of vieloplain F and vemurafenib.

Parameters Vieloplain F Vemurafenib

Ames Toxicity No No

Max. Tolerated Dose (human) (log mg/kg/day) 0.013 0.601

hERG I Inhibitor No No

hERG II Inhibitor Yes Yes

Oral Toxicity (LD50) (mg/kg) 1640 2316

Oral Toxicity classification * IV V

Hepatotoxicity No Yes

Skin Sensitization No No

Bioaccumulation Factor Log10 (BCF) 2.489 0.674

Daphnia magna LC50 − Log10 (mol/L) 7.127 6.969

Fathead Minnow LC50·Log10 (mmol/L) −4.972 −4.154

Tetrahymena pyriformis IGC50 − Log10 (mol/L) 1.998 2.203
* Class I: fatal if swallowed (LD50 ≤ 5); class II: fatal if swallowed (5 < LD50 ≤ 50); class III: toxic if swallowed
(50 < LD50 ≤ 300); class IV: harmful if swallowed (300 < LD50 ≤ 2000); class V: may be harmful if swallowed
(2000 < LD50 ≤ 5000); and class VI: non-toxic (LD50 > 5000).
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In addition, for the prediction of lethal dose (LD50), the compound vieloplain F
received a score greater than 300 mg/kg and was classified as class 4; therefore, it is
considered “harmful if swallowed” (300 < LD50 ≤ 2000), while the control vemurafenib has
a score of over 2000, and classified as class 5; therefore, it is considered “may be harmful if
swallowed” (2000 < LD50 ≤ 5000), see Table 4. Vieloplain F and vemurafenib, according to
their toxicological qualities, are not considered being at risk for protein toxicity, and the
substances are classified as classes 4 and 5.

GUSAR, an online web server (Way2Drug, Moscow, Russia), and the environmen-
tal toxicity of each molecule were all considered. GUSAR predicted the environmental
toxicity, where 96-h fathead minnow 50% lethal concentration, 48-h Daphnia magna 50%
lethal concentration, and Tetrahymena pyriformis 50% growth inhibition concentration and
bioconcentration factors were evaluated. The results are depicted in Table 4. The chemicals
vieloplain F and vemurafenib fit into the application area of models in all circumstances
when it comes to environmental toxicity prediction using GUSAR. Because of its superior
safety profile when compared to vemurafenib, guaiane dimer vieloplain F was shown to
have a lower risk of liver damage.

2.4. Drug-Likeness Prediction

The drug-likeness explains the compound’s potential as a drug molecule candidate.
As shown in Table 2 and Table S1, the compound vieloplain F met the requirements of
drug-likeness and passed their filters, such as the Veber filter (rotatable bonds ≤ 10 with
TPSA ≤ 140) [26]. Furthermore, the compound vieloplain F was also checked for Lipinski’s
rule of five (MW ≤ 500, MLOGP ≤ 4.15, N or O ≤ 10, NH or OH ≤ 5 and Log Po/w ≤ 5),
except for one violation of Lipinski’s rule of five with Log Po/w greater than 5 (Table 2) [27].
In addition, both vieloplain F and vemurafenib displayed a good bioavailability score of
0.55, within the range of F > 10% in rats which further proves the Veber and Lipinski’s
rule of five predictions [28]. Importantly, neither vieloplain F nor vemurafenib elicited an
indication for the pan assay interference substances (PAINS), demonstrating that neither
medication contains any fragments that might cause false positive biological tests. The
molecules that must be synthesized in the laboratory are critical if they are to be produced in
large quantities. The structure’s intensity is graded into three categories: moderate (scores
1–4), medium (scores 4–7), and difficult (scores 8–10) [24]. The combination vieloplain F has
received a score of 6.46 (Table S1, Supplementary Materials), which shows that vieloplain
F, according to its complicated structure, is difficult to synthesize in the laboratory, but
vemurafenib is easier to produce. In conclusion, these in silico studies for modeling
the physicochemical and pharmacokinetic properties of vieloplain F revealed that the
pattern of vieloplain F was better than that of vemurafenib in terms of CYP inhibition,
hepatotoxicity, and pharmacokinetic properties. Vieloplain F was also found to have
superior pharmacokinetic properties.

2.5. Prediction of the Bioactivity Score

Using the Molinspiration Chemoinformatics tools, the projected bioactivity scores of
the substances vieloplain F and vemurafenib were calculated. These results are shown in
Table 5. According to the bioactivity score, vieloplain F is moderately active in the presence
of a G-protein-coupled receptor (GPCR) ligand, an intracellular signaling regulator, a kinase
inhibitor, as well as protease inhibitors, while vemurafenib is moderately active. According
to studies by [29] the nuclear receptor has a dual function in inflammation and immunity.
Vieloplain F is a more dynamic and high-scoring molecule than the control vemurafenib,
according to the research. Enzyme inhibition levels show both substances were active.
Vieloplain F’s activity score profile shows it is physiologically active and has a physiologic
impact. There has been no inactivity, as predicted by the bioactivity score.
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Table 5. Bioactivity score of the compounds vieloplain F and vemurafenib according to the Molinspi-
ration software.

Compounds GPCR Ligand Ion Channel
Modulator

Kinase
Inhibitor

Nuclear
Receptor
Ligand

Protease
Inhibitor

Enzyme
Inhibitor

Vemurafenib 0.45 0.25 0.64 0.02 0.12 0.34

Vieloplain F −0.12 −0.18 −0.54 0.17 −0.04 0.06

2.6. Prediction of Cardiac Toxicity

The FDA requires that every biomolecule be tested for hERG safety before it may be
used as a therapeutic candidate. The hERG blockage has been connected to deadly cardiac
arrhythmias. Using pred-hERG results to predict cardiac toxicity, the likelihood map for
vieloplain F and vemurafenib as a control is shown here (Figure 3). Attributions to hERG
blockage, both positive and negative, are shown in the figure. Increasing the number of
contour lines and the intensity of the green color shows that an atom or fragment has
made a more positive contribution to the hERG blockage. With a 50% confidence level,
the pred-hERG projected that Vieloplain F would be non-cardiotoxic, whereas the control
vemurafenib was projected as having a 60% confidence level that it may be cardiotoxic.
The findings have revealed that our isolated molecule, vieloplain F, is less hazardous to the
heart than the control drug, vemurafenib, for cardiovascular toxicity.

Figure 3. Cardiac toxicity of drugs derived from pred-hERG in a map format: (a) vieloplain F;
(b) vemurafenib.

2.7. Biomolecular Macromolecules: Epoxidation and Reactivity Prediction

The prediction of epoxidation and reactivity to biological macromolecules of vieloplain
F and control vemurafenib is depicted in Figure 4. The possible sites of epoxidation of the
compound vieloplain F have been shown in Figure 4b. Here, the double bond between
atoms 18–19 and 31–7 was more prone to epoxidation, where the probability score was 0.19.
In Figure 4c,e, cyanide and GSH’s reactivity showed no probability scores for any atoms.
In Figure 4d, reactivity to DNA is shown for atoms 11, 26, and 28 with the probability
scores of 0.050, 0.029, and 0.030. In Figure 4f, reactivity to protein was only shown for one
atom 29 with a probability score of 0.047. The possible sites of epoxidation of the control
vemurafenib are shown in Figure 4h. Here, the epoxidation was predicted on one double
bond between atoms 19–20 with a probability score of 0.031. The epoxidation was also
predicted on atoms between 20–22 and 24–26 with the probability score of 0.031 and 0.035.
In Figure 4i, cyanide reactivity showed no probability scores for any atoms. In Figure 4j,
reactivity to DNA is shown for nine atoms, among which the highest probability score
was predicted for atoms 6 and 32 with the score of 0.21. The reactivity to DNA for the rest
atoms 1–3, 9, 15, 20, and 24 shown probability scores with 0.11, 0.066, 0.081, 0.038, 0.029,
0.075, and 0.028. In Figure 4k, reactivity to GSH was shown for atoms 3, 6, 9, 20, and 32
with the probability score of 0.031, 0.056, 0.053, 0.050, and 0.045. In Figure 4l, reactivity
to protein was shown for the atoms 1, 3, 6, 9, 15, and 20 with probability scores of 0.14,
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0.057, 0.050, 0.17, 0.078, and 0.034, in which the highest score was predicted for atom 9. The
results declared that the guaiane dimer vieloplain F has better reactivity results than control
vemurafenib, which also has better reactivity results, and prove that natural compounds
have better epoxidation and reactivity profiles.

Figure 4. Prediction of epoxidation and reactivity to biological macromolecules by XenoSite. (a) The
input structure of vieloplain F; (b) prediction of epoxidation; prediction of reactivity to: (c) cyanide;
(d) DNA; (e) glutathione (GSH); (f) protein; (g) the input structure of vemurafenib; (h) prediction of
epoxidation; prediction of reactivity to: (i) cyanide; (j) DNA; (k) glutathione (GSH); (l) protein.

2.8. Prediction of Endocrine Disruption Potential

The multi-color-coded table obtained from the online web tool of Endocrine Disrup-
tome is given in Figure 5. There were fourteen nuclear receptors with eighteen targets.
For the compound vieloplain F, according to the results (Figure 5a), fifteen targets showed
low probability as they were coded in green (sensitivity > 0.75). Two targets, estrogen
receptor alpha antagonist and progesterone receptor, were coded in yellow, indicating
that vieloplain F had a medium probability of binding (0.50 < sensitivity < 0.75), and one
target, glucocorticoid receptor antagonist, was coded in red, indicating a high probabil-
ity of binding (sensitivity < 0.25). The control vemurafenib showed the most negligible
results compared to vieloplain F Figure 5b. Initially, only 11 targets were coded green
(sensitivity > 0.75) and showed a low probability. Three targets were encompassed in the
yellow zone, such as estrogen receptor alpha antagonist, estrogen receptor beta antagonist,
and peroxisome proliferator-activated receptor gamma, indicating that vemurafenib had a
medium probability of binding (0.50 < sensitivity < 0.75). Four targets were encompassed
in orange color (0.25 < sensitivity < 0.50)—glucocorticoid receptor, glucocorticoid receptor
antagonist, liver X receptor alpha, and retinoid X receptor alpha—indicating a medium



Molecules 2022, 27, 917 9 of 21

probability of binding. The control did not show any high probability of binding to the
nuclear receptor. The results have revealed that vieloplain F has a strong profile as it has
only one target encoded in red color, but still, the docking score of that target is −10.0,
which is a high score for binding. According to docking rules, more negative scores mean
more affinity towards binding. As mentioned in Figure 5b, the control vemurafenib has
very high orange zone scores up to −12.0, indicating a higher possibility for bindings.
From all the results, it has been clear that the control vemurafenib has shown more human
nuclear receptors binding affinity than vieloplain F.

Figure 5. Endocrine disruption potential of compounds as obtained from Endocrine Disruptome.
(a) Vieloplain F, (b) vemurafenib. Red color describes the high probability of binding, Orange
and Yellow describes the medium probability of binding while the Green color describes the low
probability binding.

2.9. Prediction of Cell Line Cytotoxicity

In silico prediction of cell line cytotoxicity for cancer cells is shown in Table 6. Both
the compounds vieloplain F and control vemurafenib showed the highest scores for the
melanoma cell line (Sk-Mel-28). In this set of predictions, probable activity (Pa) was higher
than probable inactivity (Pi), and we only selected Pa > 0.5 because the differences were
significant; these results can be recorded as probable cytotoxic activities for both the com-
pounds. Vieloplain F was recorded with the highest score of (Pa) 0.722 against melanoma.

Table 6. In silico prediction of cell line cytotoxicity by CLC-pred.

Compound Cell Line Cell Line Full Name Tissue Tumor Type Pa Pi

Vemurafenib

SK-MEL-28 Melanoma Skin Melanoma 0.618 0.010

A2058 Melanoma Skin Melanoma 0.581 0.004

M14 Melanoma Skin Melanoma 0.546 0.012

PA-1 Ovarian carcinoma Ovarium Carcinoma 0.520 0.005

Vieloplain F
SK-MEL-2 Melanoma Skin Melanoma 0.722 0.006

K562 Erythroleukemia Hematopoietic and
lymphoid tissue Leukemia 0.598 0.015



Molecules 2022, 27, 917 10 of 21

2.10. Docking of the Compounds with B-Raf Kinase Structure (PDB: 3OG7)
2.10.1. Structural Analysis of B-Raf Kinase

B-Raf kinase is a class of transferase that consists of two domains having 289 amino
acids. The overall statistical VADAR analysis showed protein architecture, containing 39%
helices, 22% β sheets, and 38% coils. Moreover, Ramachandran plots indicated that 99.6%
of residues were present in the allowed region, which shows the precision of phi (ϕ) and
psi (ψ) angles among the coordinates of B-Raf kinase (Figure S2, Supplementary Materials).

2.10.2. Binding Energy Evaluation of the Compounds

To predict the best conformational position within the active region of the target pro-
tein, vieloplain F and vemurafenib were docked and analyzed based on docking energy
value (kcal/mol). Moreover, generated docked complexes were examined based on the
hydrogen/hydrophobic interaction pattern. Docking results justified that the compound
vieloplain F showed good energy values (−11.8 kcal/mol) as compared to standard vemu-
rafenib (−10.2 kcal/mol) against target protein (Table 7). The comparative analysis showed
that guaiane dimer vieloplain F may have good therapeutic potential against B-Raf kinase
protein and can be considered an emerging candidate against melanoma.

Table 7. Chemical structures, amino acid residues, and docked results of the vieloplain F and
vemurafenib with B-Raf kinase (PDB: 3OG7).

Compound Name Chemical Structure Binding Energy
(kcal/mol)

Amino Acid Residues
Involved in the Bonding

Vieloplain F
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2.10.3. Protein–Ligand Complex Analysis

The compounds vieloplain F and vemurafenib were bound against the target protein
in different conformations. In vieloplain F docking results, a single hydrogen bond was
observed at SER164. The benzene oxygen atom forms a hydrogen bond, with SER164
having a bond length of 2.29 Å. The comparative results showed that common residues
were observed in docking studies, strengthening our docking results (Figure 6a). In ve-
murafenib docking results, hydrogen bonds were observed at CYS84, CYS532, LYS483,
GLY596, ASP594, and PHE595. The residual comparison showed that our compound binds
within the target protein’s active site as with standard drug vemurafenib with different
conformations (Figure 6b).
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Figure 6. (a) 2D interactions of the compound vieloplain F with B-Raf (PDB: 3OG7); (b) 2D interactions
of the control vemurafenib with B-Raf (PDB: 3OG7).

2.11. Molecular Dynamics and Simulation

MDS was performed for the vemurafenib-B-Raf kinase structure complex and vieloplain-
F- B-Raf kinase structure complex up to 100 ns. The parameters explored for analyses
include RMSD, RMSF, protein–ligand contact, RoG, and binding free energy.

2.11.1. RMSD Analysis

The RMSD study was done to find the simulation results stabilities. The RMSD graph
of protein (left Y-axis) can give the understanding of its structural conformation during
the simulation while ligand RMSD (right Y-axis) denotes the stability of ligand toward
the specific protein and its binding site pocket. In the case of vemurafenib-B-Raf kinase
complex, initially, RMSD showed robust stabilization and remained stable throughout the
simulation period up to 100 ns. The vieloplain-F–B-Raf kinase complex showed that both
vieloplain-F and B-Raf Kinase attained stability at 20 ns and remained constant throughout
the simulation (Figure 7A). At first, the vieloplain-F–B-Raf kinase complex RMSD showed
fluctuations of 0.2 nm up to 20 ns and then remained stable through the simulation period
up to 100 ns (Figure 7B). Both complexes revealed a good level of interaction throughout
the simulation, with less deviation in structure.

Figure 7. Root mean square deviation (RMSD) of the (a) vemurafenib–B-Raf kinase; (b) vieloplain-F–
B-Raf kinase.
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2.11.2. RMSF Assay

The RMSF defines the deviation of the particle in the macromolecule. It specifies the
protein structure flexibility and rigidity. The residues with higher peaks belong to loop
areas or N- and C-terminal zones, as typically N and C fluctuate the most, recorded by MD
trajectories (Figure 8). The stability of ligand binding to the protein is shown by low RMSF
values of binding site residues. The percentages of Helix and Strand in vemurafenib–B-Raf
kinase were determined to be 30.30% and 15.44%, respectively, and the overall secondary
structure elements (SSE) were found to be 45.76%. In the case of vieloplain-F–B-Raf kinase,
the percentages of Helix and Strand were 30.19% and 15.24%, respectively, and the total
SSEs were 45.44 %. Protein SSEs are more rigid than the unstructured part of the protein,
showing slight fluctuations in Figure 9.

Figure 8. Root mean square fluctuation (RMSF) of protein complexes (a) vemurafenib–B-Raf kinase,
(b) vieloplain-F–B-Raf kinase.

Figure 9. Protein secondary structure element distribution by residue index throughout the protein
structures complexed with ligand (a) vemurafenib–B-Raf kinase, (b) vieloplain-F–B-Raf kinase. The
red color represents α-helices, and the blue represents β-strands.

2.11.3. Protein–Ligand Interaction

The interaction of the target protein with the ligand was monitored during the sim-
ulation. These interactions were categorized into four types: (i) hydrogen bonds, (ii)
hydrophobic, (iii) ionic, and (iv) water bridges.

This study found that the most significant ligand–protein interactions were hydrogen
bonds, water bridges, and hydrophobic interactions. The vemurafenib–B-Raf Kinase
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complex showed the most important hydrophobic interactions with ALA_481, LEU_514,
TRP_531, and PHE_583, whereas GLN_530, CYS_532, ASP_594, PHE_595, and GLY_596
were chief in terms of H-bonds (Figure 10A). In vieloplain-F–B-Raf kinase, the hydrophobic
contacts PHE_583, TYR_538, TRP_531, LEU_514, ARG_462, and PHE_468 were the most
vital, while SER_465 and LYS_483 were dynamic interactions for H-bonds (Figure 10b).

Figure 10. Protein–ligand contact histogram: (a) vemurafenib–B-Raf kinase, (b) vieloplain-F–B-Raf
kinase.

2.11.4. RoG Analysis

The folding and compactness of the protein are often arbitrated with the assistance of
RoG. It is a crucial method of showing the influence of ligand on the three-dimensional
conformational structural changes after the interaction with ligand. RoG with high valve
depicts the molecule loose packing and folding nature of the protein after the interaction
with the ligands. Both the complexes were in their native structures as there was not
much variation observed throughout the 100 ns in the RoG graph (Figure 11). However,
there were a few minor variations in RoG due to conformational changes in the secondary
structure of protein during the MDS process. The RoG graph of the complexes shows that
the ligand remains tightly bound to the protein’s active site.

Figure 11. The radius of gyration was calculated for (a) vemurafenib–B-Raf kinase, (b) vieloplain-F–
B-Raf kinase.

2.12. MM-GBSA Calculations

The average binding free energy (∆G) of the vemurafenib- B-Raf kinase and vieloplain-
F-B-Raf Kinase was calculated at 0 and 100 ns by the MM-GBSA approach (Figure 12).
The average values of ∆G for ligands vemurafenib were −138.8836 kcal/mol (0 ns) and
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−115.1949 kcal/mol (100 ns). The average dG for vieloplain-F were −144.2660 kcal/mol
(0 ns) and −158.7822 kcal/mol. It was found that both compounds showed minimum VDW
and hydrogen bonding energies that meant all these drugs are maximum potential to bind
with active site residues.

Figure 12. MM-GBSA calculated before and after the simulation.

3. Discussion

This work examines the utility of selecting vieloplain F as a possible biomolecule thera-
peutically active against melanoma by using publicly available techniques to investigate its
bioactivity, ADMET, drug-likeness, molecular docking, and simulations. In silico interpre-
tations of pharmacological spectra illustrated a new road to the most promising directions
while also assisting in the initial phases of research by filtering out the biomolecules with a
potentially low pharmacological profile [30]. According to the PASS prediction, vieloplain
F could be considered an anti-neoplastic and anti-leukemic agent as sesquiterpene-type
guaiane dimers are already reported for their attractive potencies against cancer [12,15]
and reversal of resistance towards cancer [16]. Furthermore, the compound vieloplain
F was also predicted as a testosterone 17-beta-dehydrogenase (NADP+) inhibitor, which
means that vieloplain f could also be investigated for its participation against androgen
and estrogen metabolism. The compounds also predicted high scores for NADP+ and
evidenced by our studies that this compound has good effects against melanoma and it can
be considered for its studies against different kind of skin diseases.

ADMET is crucial for every biomolecule before its biotransformation into a drug [21].
According to the ADMET profile of vieloplain F, the absorption and distribution of the
compound were moderate. The compound is highly soluble in GIT and has no solubility
for BBB, showing that this compound cannot create any adverse effects related to CNS.
The inactive compounds on the CNS should not intersect to avoid adverse effects on the
CNS [22]. The compound vieloplain F has a high ratio of GIT absorption as compared to
control vemurafenib.

Furthermore, vieloplain F revealed that it is not a P-gp (P-glycoprotein) substrate;
therefore, vieloplain F is not susceptible to the efflux mechanism of P-gp, which many
cancer cell lines utilize as a drug resistance mechanism. CYP enzymes play a crucial role in
drug excretion, and these isoforms are metabolizing almost 75% of market available drugs.
Inhibition of any of these isoforms results in causing some significant pharmacokinetics-
based drug-drug interactions [12,24]. Vieloplain F did not inhibit any of the CYP enzymes,
but the control vemurafenib inhibited 3 CYP enzymes which meant that it can create drug-
drug interactions for those CYP enzyme-targeted drugs. One of the significant drawbacks
of vemurafenib was its causing hepatotoxicity [31] and cardiotoxicity [32]. The compound
vieloplain F did not show any hepatotoxicity and is revealed to be cardioprotective. Block-
ing the hERG K+ channel can cause QT prolongation and potentially fatal arrhythmia [33].
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As a result, vieloplain F was projected to be a non-inhibitor of hERG with no cardiac
adverse effects. Finally, the toxicity profile acquired from pkCSM was adequate.

Acute toxicity was defined as the harmful effects of a single exposure to a drug
over a short period [34]. In general, mice and rats were used to measure acute toxicity.
The compound vieloplain F was predicted as non-toxic and categorized in class 4 with
harmful indications if swallowed, suggesting the possible safe application. Furthermore,
the compound vieloplain F did not exhibit any environmental toxicity violations.

CYP can act on aromatic or double bonds, probably leading to epoxy metabolites.
Identifying a molecule’s epoxidation site will help guide improvement to avoid epoxidation
for safer drugs [35]. Besides, reactive metabolites can cause idiosyncratic adverse drug
reactions and drug-induced liver injury [36]. Predicting epoxy and reactive metabolites
can thus help predict potential adverse effects. The present study shows that vieloplain
F has been doubtful to result in epoxides and reactive metabolites compared to control
vemurafenib.

An endocrine disruptor is a substance that operates on nuclear receptors to disrupt
the endocrine or hormonal systems [37]. Compounds are docked into eighteen integrated
and well-validated crystal structures of fourteen different human nuclear receptors using
Endocrine Disruptome’s free web tool. As a result, achieving endocrine disruption potency
for multiple targets at once is quite convenient. This eventually leads to rapid, well-
informed judgments for in vitro and in vivo testing [38]. Vieloplain F was predicted to be
non-endocrine disruptive, ensuring that it may be used safely. Among both compounds,
including vieloplain F and vemurafenib, the highest profile for safety was achieved by
vieloplain F.

To discover new anticancer drugs, sophisticated laboratory models are needed to
predict their clinical behavior. This is mainly done from cell lines originating from hu-
man tumors [39]. In silico prediction will make the way more comfortable by offering
useful predictions for making an informed decision before going into the In vitro exper-
iments. The inhibitory effect of Xylopia vielana on cancer cell lines has been previously
reported [13,15,16].

Vieloplain F has been studied as an anticancer agent in our recent study and has demon-
strated potent activity against prostate cancer cell lines with an IC50 value of 9.5 µM [15].
However, particular attention to the deep mechanism has not yet been drawn. The present
study demonstrated a specific targeted approach that can be useful in further anticancer
drug development of B-Raf kinase.

B-Raf is a member of the Raf-kinase family of growth signal transduction protein
kinases. This protein plays a role in regulating the MAP kinase/ERKs signaling pathway,
affecting cell division, differentiation, and secretion. B-Raf kinase inhibitors are also consid-
ered one of the main treatments for malignant melanomas. Currently, only one B-Raf kinase
inhibitor, vemurafenib, is approved by the FDA and is used in late-stage melanoma [39],
but the main drawback of this drug is that patients start showing symptoms after receiving
this therapy resistance towards this drug [8]. Therefore, research is underway to develop
novel B-Raf kinase inhibitor compounds with maximum potency and minimum side effects.
There is still scope to develop B-Raf kinase inhibitors with improved therapeutic efficacy
and reduced side effects. As evident from our study, vieloplain F showed encouraging
results in terms of B-Raf kinase inhibition compared to vemurafenib in the sense of molecu-
lar docking and simulation studies. Therefore, in these ways, special attention should be
placed on investigating the therapeutic importance of this process.

Thus, the present study revealed the potential significant applications of vieloplain F
and could be helpful against various diseases. The study relied on computational tools that
reported pharmacological properties and bioactivities predictions. Besides, in this study,
we reported the potentials of vieloplain F with comparison studies on vemurafenib, and in
previous studies, the in vitro and in vivo potential of vieloplain F was displayed. Moreover,
clinical studies are necessary to confirm the findings of the present work. Nonetheless, the
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results of this work will provide future guidance for the design and development of new
lead compounds against Melanoma.

4. Materials and Methods
4.1. Isolation of Guaiane Dimer Vieloplain F

Isolation procedures for guaiane dimer, vieloplain F, and its structure elucidations
based on spectroscopic methods (1D, 2DNMR, X-ray, and ESI-MS) along with a comparison
of the relevant literature data reported for guaiane dimer, vieloplain F, were described in
detail in our recent paper [15].

4.2. Prediction of Activity Spectra for Substances (PASS)

Prediction of activity spectra for substances (PASS) gives information about the bioac-
tive compounds’ plausible pharmacological activities. The free internet platform Pass
online (http://www.pharmaexpert.ru/passonline, accessed on 10 August 2021) was used
to make the PASS prediction. Only actions with Pa > Pi were considered feasible for a
given compound. Pa > 0.7 indicated a high probability of experimental pharmacological
effect, while Pa 0.5 to 0.7 indicated a moderate probability of experimental pharmacological
action. If Pa was less than 0.5, the chances of pharmacological activity were negligible [40].

4.3. ADMET Analysis

ADMET (absorption, distribution, metabolism, excretion, and toxicity) are the essential
measurement tools for any compound before being elected as a drug candidate. The online
web tool swiss ADME (http://www.swissadme.ch/index.php, accessed on 10 August 2021)
was used to obtain ADME properties of the vieloplain F [24], and the pharmacokinetic
scores were predicted using the online web application pkCSM (http://biosig.unimelb.
edu.au/pkcsm/prediction, accessed on 10 August 2021).

4.4. Prediction of Acute Rat Toxicity and Environmental Toxicity

The publicly accessible structure–activity relationship (GUSAR) software (http://
www.way2drug.com/gusar/acutoxpredict.html, accessed on 10 August 2021) was used
to predict median lethal dosage (LD50) values for rats with oral administration [41]. The
quantitative predictions of ecotoxicity were also assessed by GUSAR software (http://
www.way2drug.com/gusar/environmental.html, accessed on 10 August 2021).

4.5. Prediction of Drug-Likeness

Swiss ADME (http://www.swissadme.ch, accessed on 10 August 2021) and Molin-
spiration Chemoinformatics tools (https://www.molinspiration.com/cgi-bin/properties,
accessed on 10 August 2021) were used to predict drug-likeness. Lipinski’s rule of five was
considered a standard for accessing the drug-likeness [27].

4.6. Bioactivity Score Prediction

The bioactivity profile of a selected compound can be portrayed by the scoring system
of G protein-coupled receptor (GPCR) ligand, ion channel modulator, nuclear receptor
legend, a kinase inhibitor, protease inhibitor, and an enzyme inhibitor. These properties
were determined by Molinspiration Chemoinformatics tools (https://www.molinspiration.
com/cgi-bin/properties, accessed on 10 August 2021). According to studies by Roy, if the
value was equal to or greater than 0.00 (≥0), the compound was more active, while if the
values were between −0.50 and 0.00, it was moderately active; nevertheless, if the values
were less than −0.50 (<−5.0), it was thought to be inactive [42].

4.7. Prediction of Cardiac Toxicity

The blockage of the hERG K+ channels has been linked to fatal cardiac arrhythmias.
The pred-hERG 4.2 (http://predherg.labmol.com.br, accessed on 10 August 2021) web
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server, a web tool for early detection of putative hERG blockers and non-blockers, was
used to predict cardiac toxicity [38].

4.8. Prediction of Epoxidation and Reactivity to Biological Macromolecules

Epoxides are metabolites produced by an enzyme cytochrome P450 operating aromatic
or double bonds. Drug-metabolizing enzymes can bioactivate the drug into reactive metabo-
lites, creating adducts when they bind to specific targets in DNA or proteins. The freely
available web Xenosite (https://swami.wustl.edu/xenosite/submit, accessed on 10 August
2021) was used to predict epoxidation and reactivity to biological macromolecules [43].

4.9. Prediction of Endocrine Disruption Potential

Endocrine Disruptome is an unrestricted prediction tool for determining the po-
tential for endocrine disruption via nuclear receptor binding. Fourteen human nuclear
receptors and their eighteen validated structures that regulate reproduction, behavior,
development, metabolism, and the immune system were utilized for molecular dock-
ing with the compounds in the freely accessible web platform Endocrine Disruptome
(http://endocrinedisruptome.ki.si, accessed on 10 August 2021) [20].

4.10. Prediction of Cell Line Cytotoxicity

CLC-Pred (Cell Line Cytotoxicity Predictor) is a web-based program that predicts the
cytotoxicity of chemical compounds in non-transformed and cancer cell lines depending
on their structural formula. Prediction of cell line cytotoxicity of vieloplain F was made
through CLC-Pred (http://www.way2drug.com/Cell-line/, accessed on 10 August 2021).
The predicted output activity was represented in the probable activity (Pa) and probable
inactivity (Pi) score. The scoring system was categorized into three portions according
to activity. Pa > 0.5 was considered as the highest activity, Pa > 0.3 was considered as
moderate activity, and Pa < 0.3 was considered as the lowest activity. [44].

4.11. Preparation, Analysis, Retrieval, and Visualization of Protein and Ligand Structures

ChemBioDraw (PerkinElmer Informatics, Waltham, MA, USA, v13.0) [45] was used to
draw the compounds into .mol format. The control drug vemurafenib was downloaded
from PubChem in .sdf file. The three-dimensional (3D) structures of B-Raf Kinase was
accessed from Protein Data Bank (PDB) (www.rcsb.org, accessed on 10 August 2021)
with PDBIDs 3OG7. The selected protein structure was minimized using Chiron portal
(https://dokhlab.med.psu.edu/chiron/processManager.php, accessed on 10 August 2021)
and visualized through UCSF Chimera 1.10.1 tool [46]. The Ramachandran plots of B-Raf
kinase were accessed from the Discovery Studio 4.1 Client tool. The protein architecture
and statistical percentage values of receptor proteins helices, beta-sheets, coils, and turn
were predicted from online server VADAR 1.8 (http://vadar.wishartlab.com/, accessed on
10 August 2021) [47].

4.12. Molecular Docking

Docking studies of vieloplain F and vemurafenib were performed against B-Raf
Kinase. To prepare the B-Raf Kinase structure, the unnecessary ligands and water molecules
were removed to enhance docking results’ efficacy. The ligands were sketched in the
ACD/ChemSketch 2.1.2 tool (Advanced Chemistry Development, Toronto, Canada) and
further minimized by UCSF Chimera 1.10.1. A docking experiment was used on all
synthesized compounds against B-Raf Kinase using the PyRx docking tool 1.7 (https://
pyrx.sourceforge.io/, accessed on 10 August 2021) [48]. To perform the docking experiment,
grid box parametric dimension values were adjusted as X = −1.3845, Y = −12.9405, and
Z = −18.9916, respectively. The default exhaustiveness = 8 value was used to obtain the
finest binding conformational pose of protein-ligand docked complexes. All compounds
were docked separately against the crystal structure of B-Raf kinase. The docked complexes
were evaluated on lowest binding energy (kcal/mol) values, hydrogen and hydrophobic

https://swami.wustl.edu/xenosite/submit
http://endocrinedisruptome.ki.si
http://www.way2drug.com/Cell-line/
www.rcsb.org
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bond interaction pattern analysis using Discovery Studio (4.1) (Dassault Systemes BIOVIA,
San Diego, CA, USA), and UCSF Chimera 1.10.1. The three-dimensional (3D) graphical
depictions of all the docked complexes were accomplished by Discovery Studio (2.1.0)
(Dassault Systemes BIOVIA, San Diego, CA, USA) and the UCSF Chimera 1.10.1 tool.

4.13. Molecular Dynamics Simulations

The MDS analysis was performed to find the interaction of ligand–protein stability.
MD simulation studies also analyze the structure of the macromolecules transition to
the functional significance of the complex. Simulation typically records atom movement
concerning the time based on Newton’s standard motion equation to predict the binding of
the ligand in the biological environment. The MD simulation of the selected complex was
undergone for 100 ns using Desmond v:3.6 New York, NY, USA module from Schrodinger
suite [12]. The interaction of the complex obtained from MD was the initial structure of
respective MD simulations followed by an established protocol where protein atoms were
10 Å away from the box. The ligand-receptor complex minimization and optimization were
done through Wizard of Maestro (Schrödinger, New York, NY, USA). The systems were set
up by applying the System Builder tool, a solvent standard TIP3P with an orthorhombic box
was selected. The OPLS 2005 was used for simulation analysis. The Physiologic conditions
of the model were minimized by adding 0.15 M NaC [49]. The models were rested before
the start of the simulation. Lastly, simulations were run at 300 K temperature at 1 atm
pressure, with an NPT ensemble was applied for all MDSs.

Moreover, the MDS trajectories were recorded after every 100 ps interval. The root
means square deviation (RMSD) of both the protein and ligand were recorded to find the
stabilities of simulation. The RMSF and RoG values were also calculated. MDSs were
repeated thrice for each complex using the same parameters.

4.14. MMGBSA Calculations

The ligand-receptor complexes were minimized using the prime tool in maestro. After
minimization, the molecular mechanics generalized born surface area (MMGBSA) was
used to evaluate the binding free energies (∆G) of complexes at both before (0 ns) and after
(100 ns) simulation. All over the computation of binding free energies, an OPLS_2005 force
field was utilized [50].

5. Conclusions

Natural products of herbal origin are well known to exhibit diverse biological activities
compared to synthetic products. Here, in this study, one potent guaiane dimer, vieloplain F,
was isolated from Xylopia vielana species and tested against B-Raf kinase to find a potent
drug molecule against melanoma. The compound showed potent inhibitory activity against
the B-Raf kinase protein receptor. The preliminary computational studies such as ADMET,
bioactivities, and molecular docking studies proved that this guaiane dimer has a high
binding affinity towards the targeted B-Raf kinase protein receptor. In addition, it revealed
that our isolated natural compound is safer than the FDA-approved drug vemurafenib in
cardiac and hepatotoxicity profile and has high binding energies towards targeted protein
then vemurafenib. Overall, the present study acts as evidence to prove that this guaiane
dimer isolated from the Xylopia vielana has the capacity to inhibit the B-Raf kinase protein
receptor, which also opens the road for all the guaiane dimers that all these compounds
should be screened for B-Raf kinase protein. The in silico studies can provide a platform for
a potential compound against any specific disease but still, before any biomolecule needs to
be selected, further studies must pass through deep in vivo and in vitro studies to confirm
their results. The isolation methods, the quantity of the pure compound, and the complex
structures of the natural products create a big question for future researchers to resolve this
problem and do the wetlab assays independently.
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In this study, the complete pharmacological profile encompassing PASS, bioactivity
scores, ADMET, molecular docking, and molecular simulations will act as a foundation for
other guaiane dimers to be investigated in the future for different types of cancers.

Supplementary Materials: The following are available online: Figure S1: Bioavailability radar chart
for vemurafenib, Figure S2: Ramachandran graph of target protein, Table S1: Drug-likeness profile of
Vieloplain F and Vemurafenib.
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