
Research Article
Modeling Seasonal Influenza Transmission and Its Association
with Climate Factors in Thailand Using Time-Series and
ARIMAX Analyses

Sudarat Chadsuthi,1 Sopon Iamsirithaworn,2

Wannapong Triampo,3,4,5,6 and Charin Modchang3,5,6

1Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
2Department of Disease Control, Ministry of Public Health, Tivanond Road, Nonthaburi 11000, Thailand
3Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
4Institute for Innovative Learning, Mahidol University, Nakhon Pathom 73170, Thailand
5Centre of Excellence in Mathematics (CHE), 328 Si Ayutthaya Road, Bangkok 10400, Thailand
6ThEP Center, CHE, 328 Si Ayutthaya Road, Bangkok 10400, Thailand

Correspondence should be addressed to Charin Modchang; cmodchang@gmail.com

Received 27 July 2015; Revised 31 October 2015; Accepted 1 November 2015

Academic Editor: Chung-Min Liao

Copyright © 2015 Sudarat Chadsuthi et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Influenza is a worldwide respiratory infectious disease that easily spreads from one person to another. Previous research has
found that the influenza transmission process is often associated with climate variables. In this study, we used autocorrelation and
partial autocorrelation plots to determine the appropriate autoregressive integrated moving average (ARIMA) model for influenza
transmission in the central and southern regions of Thailand. The relationships between reported influenza cases and the climate
data, such as the amount of rainfall, average temperature, averagemaximum relative humidity, averageminimum relative humidity,
and average relative humidity, were evaluated using cross-correlation function. Based on the available data of suspected influenza
cases and climate variables, the most appropriate ARIMA(X) model for each region was obtained. We found that the average
temperature correlated with influenza cases in both central and southern regions, but average minimum relative humidity played
an important role only in the southern region. The ARIMAXmodel that includes the average temperature with a 4-month lag and
theminimum relative humidity with a 2-month lag is the appropriatemodel for the central region, whereas including theminimum
relative humidity with a 4-month lag results in the best model for the southern region.

1. Introduction

Influenza, commonly referred to as the flu, is a worldwide res-
piratory infectious disease that easily spreads from one per-
son to another. Influenza is the cause of approximately 3–5
million cases of severe illness and 250,000–500,000 deaths
annually worldwide [1]. The disease is transmitted through
the air by coughs or sneezes, creating aerosols containing the
virus from infectious individuals. Individuals, who come into
contact with or breathe in these aerosols, will likely become
infected by the virus [1]. The first reported major global pan-
demic, known as the “Spanish” influenza, occurred in 1918; it

was caused by a novel H1N1 virus subtype [2].This pandemic
was estimated to have cost the lives of 20–40 million people
from 1918 to 1919 [3].

In temperate regions, influenza has a seasonal pattern
peaking during winter seasons [4], whereas, in tropical
regions, the incidence is less likely to be seasonal rather than
randomly patterned [5]. The important role of climate in
influenza is less understood for tropical regions. However, a
marked increase of influenza cases was reported during the
rainy seasons, in countries such as Singapore, northeastern
Brazil, and French Guiana [5–7]. In Dakar, Senegal, the inci-
dence of influenza peaked during 1996–1998. This peak was
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attributed to high precipitation, humidity, and temperature
[8]. From the laboratory surveillance data in Brazil, Alonso
et al. found that temperature and humidity played an impor-
tant role in driving the influenza epidemic [9]. Influenza
incidences were also associated with temperature in tropical
countries [10]. Moreover, in warm climates, the recording of
environmental variables was shown to increase the ability to
predict influenza cases [11]. An experimental study showed
that the spread of the influenza virus depends upon both
temperature and relative humidity [12, 13]. It was found that
aerosolized influenza virus is stable maximally at low relative
humidity conditions and moderately stable at high relative
humidity [14]. From simulated coughs, influenza viruses
maintain infectivity at low relative humidity and are increas-
ingly inactivated at high relative humidity [15].

In Thailand, few reports of the seasonality of influenza
outbreaks exist. Influenza cases peaked twice per year in the
11 provinces of Thailand during 2004–2010, as monitored by
passive surveillance. A major peak occurred during the rainy
season (June–August), and a minor peak occurred during
the winter season (October–February) [16]. Climate factors
may play an important role in predicting the number of
influenza cases. The links between climatic variables and
influenza cases in Thailand are also less understood. Using
regression analysis, Chumkiew et al. found that the tempera-
ture difference andpercent of rainfall were associatedwith the
influenza incidences in Nakhon SiThammarat [17]. However,
this research covered only one province in Thailand. Most of
the studies inThailand focused on the relation of the seasonal
patterns of influenza outbreaks [18, 19]. Knowledge of the
effects of climatic variables on the influenza seasonality in
Thailand may be important for developing efficient inter-
vention measures that may help mitigate and/or contain the
disease.

Here, we retrospectively analyze the time-series pattern
of reported suspected influenza cases in 2 regions ofThailand
during the years 2009 to 2014. We used autocorrelation and
partial autocorrelation plots to determine the ARIMAmodel
that predicts the future influenza cases with a linear function
of time lag values (autoregressive part) plus uncorrelated
random variables (moving average part). The relationships
between the climate data and reported influenza cases were
evaluated using cross-correlation function. We followed
previous suggestions [5–11] and investigated each climatic
variable (the amount of rainfall, average temperature, aver-
age maximum relative humidity, average minimum relative
humidity, and average relative humidity) that may influence
the influenza cases as input time-series in the ARIMAX
model.Themost appropriateARIMAXmodel for each region
is presented, based on the previous data and climate variables.

2. Materials and Methods

2.1. Data Sources. Data ofmonthly influenza cases from 2009
to 2014 were extracted from the National Notifiable Disease
Surveillance Report of the Bureau of Epidemiology at the
Ministry of Public Health [20]. Most positive cases were sus-
pected influenza cases, based on clinical diagnosis made
by attending physicians. The clinical criteria for influenza
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Figure 1: The spatial distribution of weather stations (red stars) in
the central (blue area) and southern (green area) regions.

were fever, cough, sore throat, headache, and myalgia. Sam-
ples from some suspected influenza cases were then tested
using RT-PCR for laboratory confirmation. The suspected
influenza cases are reported only from the public hospitals
and some private hospitals. In this work, we analyzed only the
influenza cases in 2 regions, the central and southern regions,
which exhibit more flu cases than other regions inThailand.

There are three seasons in the central region: the rainy
season (mid-May to mid-October), the winter season (mid-
October to mid-February), and the summer season (mid-
February to mid-May). However, in the southern region, the
year is divided into only two seasons: the rainy season (June
to February) and the summer season (March to May). Geo-
graphically, the southern region is a peninsula located bet-
ween the Andaman Sea on the west and the South China Sea
on the east, whereas the central region has higher latitude.

The monthly rainfall, monthly average temperature
(𝑇mean), average maximum relative humidity (RHmax), and
average minimum relative humidity (RHmin) were obtained
from the Research Data Archive (RDA), which is maintained
by the Computational and Information Systems Laboratory
(CISL) at the National Center for Atmospheric Research
(NCAR).Themonthly original data can be obtained from the
RDA (http://rda.ucar.edu/) in the dataset number ds512.0.We
extracted the climate data from 39 weather stations, with 23
stations located in the central region and 16 stations located
in the southern region (Figure 1). The climate data extracted
from each station were used to determine the average climate
value that represented the regional climate data. We also
obtained data on rainfall variations in Thailand from the
US National Climate Data Center (NCDC). Data is available
from 171 stations in Thailand, including 35 stations for the
central region and 15 stations for the southern region.
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2.2. Time-Series Analysis. The time-series data from 2 regions
were divided into 2 parts; the first 60 months of data (from
2009 to 2013) was used to calibrate the time-series model,
and the last 12 months of data (in 2014) was used to test the
model prediction. In this study, we used the autoregressive
integrated moving average, ARIMA(𝑝, 𝑑, 𝑞)(𝑃,𝐷,𝑄)

𝑠
model.

For a complete description of ARIMA analysis, we refer
readers to [21]. Briefly, theARIMAunivariate analysismodels
consisted of 3 subprocesses: (a) autoregression (AR), (b)mov-
ing average (MA), and (c) differencing forming a stationary
time-series [21–24]. 𝑝, 𝑑, and 𝑞 are the orders of the AR,
the differencing, and the MA process, respectively, whereas
𝑃, 𝐷, and 𝑄 are the seasonal orders of AR, differencing,
and MA process, respectively; 𝑠 is the seasonal period. In
the ARIMA model, the predicted influenza cases at time 𝑡,
𝑌
𝑡
, have been obtained by applying the weight (𝜃) to the

uncorrelated randomvariables (𝑒
𝑡
) in the 𝑞th order.The time-

series of𝑌
𝑡
may be written as a linear function of the lag value

at 𝑝th order, as follows:

𝑌
𝑡
= 𝜙
1
𝑌
𝑡−1
+ 𝜙
2
𝑌
𝑡−2
+ ⋅ ⋅ ⋅ + 𝜙

𝑝
𝑌
𝑡−𝑝
+ 𝑒
𝑡
− 𝜃
1
𝑒
𝑡−1
− ⋅ ⋅ ⋅

− 𝜃
𝑞
𝑒
𝑡−𝑞
.

(1)

If the time-series were nonstationary, we used log trans-
formation and/or differencing (𝑊

𝑡
= 𝑌
𝑡
− 𝑌
𝑡−1

) to remove
the nonstationary terms. The 𝑝 and 𝑞 orders can be obtained
using the cutoff time lag of autocorrelation function (ACF)
and partial autocorrelation function (PACF). If the time-
series showed a seasonal pattern with an ACF peak at 𝑠 time
lags, then the same procedure was applied to the seasonal
ARIMA model. The ARIMA model was examined using the
goodness of fit process, in which the residual is likely to be
white noise. The coefficients of the model were estimated
using the mean square method. Akaike’s Information Crite-
rion (AIC) was used to determine the optimal model, which
can avoid overparameterization. However, the root mean
square error (RMSE) was also used to determine the best fit
[11].

The climate variables were used as input time-series in
the ARIMAX model. In the case of strongly autocorrelated
data, it is difficult to determine the correlation between the
time-series of climate and suspected cases. Prewhitening is a
useful method to disentangle this strong linear correlation.
In this work, the prewhitening process was applied to the
climate time-series to avoid autocorrelation with suspected
cases time-series.Then, the cross-correlation function (CCF)
between the prewhitened climate and suspected influenza
case time-series was calculated to identify the significant time
lag. Climate time-series that do not show a significant time
lag were excluded from the ARIMAX model. The predicted
influenza cases at time 𝑡, 𝑌

𝑡
, from ARIMAX model were

determined by𝑌
𝑡
= 𝛽
0
+𝛽𝑋
𝑡−𝑑
+𝑍
𝑡
, where𝑋

𝑡−𝑑
is the climate

series at 𝑑 lags and 𝑍
𝑡
is the predicted influenza cases at time

𝑡 and corresponds to the optimal ARIMA(𝑝, 𝑑, 𝑞)(𝑃,𝐷,𝑄)
𝑠

model from the previous step. The coefficients of the ARI-
MAX model were estimated as described above. The multi-
variate model is used to fit series data and to predict future
cases. The associated RMSE was calculated to determine the
predicted model. R software, version 3.1.1 (the R foundation

Table 1: The range of climatic parameters in Thailand, 2009–2014.

Climate factor Range Mean ± S.D.

Central

Rainfall 4.0–287.07 149.42 ± 64.6
Average temperature 24.24–31.6 28.8 ± 1.4
Maximum relative humidity 66.7–90.6 81.0 ± 4.3
Minimum relative humidity 37.8–64.0 54.4 ± 6.1
Average relative humidity 53.4–76.1 65.2 ± 5.0

Southern

Rainfall 18.7–621.0 201.0 ± 86.7
Average temperature 26.2–29.7 27.8 ± 0.7
Maximum relative humidity 88.9–96.9 92.5 ± 1.6
Minimum relative humidity 42.2–70.2 58.5 ± 5.3
Average relative humidity 68.5–84.3 76.3 ± 3.5

Rainfall in mm, temperature in ∘C, and relative humidity in percent.

for Statistical Computing, https://www.R-project.org/) was
used for the time-series analysis and graphic display, and
𝑃 < 0.05 was considered to be statistically significant.

3. Results

3.1. Climate Patterns. We found that the southern region exp-
erienced small temperature variations and that its lowest tem-
perature value is higher than in the central region.The regions
also have different climatic variables (Figure 2). The peak
temperature in both regions occurred in the summer season.
The mean climatic parameters are shown in Table 1. Monthly
rainfall in the central and southern regions showed slightly
different patterns, with the lowest rainfall level occurring at
the end of the year in the central region. We found greater
variations in the southern region, with peaks occurring from
April to November each year. RHmax in the central region is
low, whereas RHmax in the southern region is higher year-
round. This pattern is similar to RHmin, which shows high
value year-round, with the lowest variation in the southern
region. RHmin and RHmax peaks occurred midyear.

3.2. ARIMA Model. The monthly number of suspected inf-
luenza cases in the central and southern regions during the
period of 2009–2014 is shown in Figure 3. We found that
the incidences in the central region were higher than in the
southern region and that the case time-series in both regions
tentatively decrease over time. We also found that the cases
time-series peak once each year.

We hypothesized that climate factors are correlated with
suspected influenza time-series. We identified the cross-
correlations of climate factorswith a time lag ofmax 4months
[25, 26] for both regions, as shown inTables 2 and 3.We found
that the case time-series in the central regionwas significantly
correlatedwith rainfall variables at lag of 0–4months; average
temperature at lags 3 and 4; maximum relative humidity at
lags 0 and 1; minimum relative humidity at lags 0–2; and aver-
age relative humidity at lags 0–2. However, in the southern
region, we found significant correlations only with average
temperature at lags 3 and 4 andmaximumrelative humidity at
lag 1. We also fitted the suspected influenza data with several
univariate ARIMA(𝑝, 𝑑, 𝑞)(𝑃,𝐷,𝑄)

𝑠
models using different
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Figure 2: The recorded climate time-series, average temperature (∘C), amount of rainfall (mm), average maximum relative humidity
(percent), and average minimum relative humidity (percent).
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Figure 3: Time-series for influenza cases in the central and southern
regions.

orders. The best models for each region are shown in Tables
4 and 5 as model 1. We then tested several seasonal ARIMAX
models with one or more climate factors at significant lags to
find the most appropriate models.

Table 2: Central region: cross-correlations between the prewhit-
ened climate and case time-series during 2009–2013.

Variable Lag
0 1 2 3 4

Rainfall 0.346∗∗ 0.391∗∗ 0.344∗∗ 0.363∗∗ 0.286∗

𝑃 value 0.0068 0.0022 0.0082 0.0055 0.0325
𝑇mean 0.007 0.042 0.219 0.440∗∗∗ 0.504∗∗∗

𝑃 value 0.9578 0.7508 0.0980 0.0006 <0.0001
RHmax 0.411∗∗∗ 0.427∗∗∗ 0.247 0.141 0.130
𝑃 value 0.0011 0.0008 0.0611 0.2940 0.3382
RHmin 0.498∗∗∗ 0.533∗∗∗ 0.342∗∗ 0.191 0.048
𝑃 value <0.0001 <0.0001 0.0086 0.1543 0.7269
RHmean 0.460∗∗∗ 0.474∗∗∗ 0.283∗ 0.162 0.081
𝑃 value 0.0002 0.0001 0.0314 0.2294 0.5551
∗

𝑃 < 0.05, ∗∗𝑃 < 0.01, and ∗∗∗𝑃 < 0.001.

In the central region, we found several significant mul-
tivariate models, as shown in Table 4. We first tested the
ARIMAX model for one climate variable as input series.
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Table 3: Southern region: cross-correlations between the prewhit-
ened climate time-series and case time-series during 2009–2013.

Variable Lag
0 1 2 3 4

Rainfall 0.098 −0.118 0.058 0.008 −0.041
𝑃 value 0.4549 0.3723 0.6643 0.9507 0.7634
𝑇mean −0.145 −0.004 0.111 0.281∗ 0.401∗∗

𝑃 value 0.2701 0.9741 0.4078 0.0340 0.0022
RHmax −0.035 −0.326∗ −0.017 −0.026 0.140
𝑃 value 0.7918 0.0118 0.8963 0.8453 0.3049
RHmin 0.139 0.066 0.147 0.052 −0.120
𝑃 value 0.2888 0.6183 0.2696 0.6995 0.3775
RHmean 0.082 −0.080 0.098 0.032 −0.055
𝑃 value 0.5335 0.5451 0.4628 0.8106 0.6899
∗

𝑃 < 0.05, ∗∗𝑃 < 0.01, and ∗∗∗𝑃 < 0.001.

The results show that model 10 with minimum relative humi-
dity at lag 1 had the smallest AIC and smallest fitted RMSE.
However, model 10 also had the highest predicted RMSE.
Model 11 with minimum relative humidity at lag 2 had the
smallest predicted RMSE. We further screened the ARIMAX
models including two or three climate factors for coefficients
presenting highest significance. For three climate factors, no
model was found to improve the AIC, fitted or predicted
RMSE (data not shown). When including two climatic fac-
tors, we found that model 16 with the average temperature at
lag 4 and minimum relative humidity at lag 1 has the smallest
AIC but also shows the highest predicted RMSE. The differ-
ence inAIC formodels 16 and 17 is about 3%.However,model
17 showed smallest fitted and predicted RMSE and a higher
𝑃 value coefficient for 𝑇mean and RHmax. Therefore, model 17
(ARIMAX(1, 0, 2)(1, 0, 0)

12
with 𝑇mean at lag 4 and RHmin at

lag 1) is in our view the most appropriate for use. Figure 4
shows the fit and prediction results and concludes that this
model can roughly demonstrate the tendency for future cases.

For the southern region, model 3 with an average temper-
ature at lag 4 had the smallest AIC. This model also had the
smallest predicted RMSE.However, thismodel demonstrated
a high fitted RMSE, whereas model 2 had the smallest RMSE
for prediction (Table 5). For two climate factors, model 6
incorporates 𝑇mean at lag 4 and RHmin at lag 1 and showed
values of AIC and RMSE higher than that of model 3, though
it had a lower 𝑃 value. The difference of fitted RMSE for
models 3 and 5 was less than 1%, but the difference of pre-
dicted RMSE was about 15%. Hence, model 3 (ARIMAX(1, 0,
2)(0, 0, 1)

12
with 𝑇mean at lag 4) which had the smallest RMSE

and smallest AICwas selected formonitoring and prediction.
The fitting result is shown in Figure 5.

4. Discussion

Suspected influenza cases (exceeding approximately ten thou-
sand cases every year) have been reported by the Bureau of
Epidemiology, Thai Ministry of Public Health, on a monthly
basis.This study was conducted to provide information about
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Figure 5: Fitted (blue line) and predicted (red line) values from
model 3 (ARIMA(1, 0, 2)(0, 0, 1)

12
with average temperature (lag 4))

compared with influenza cases (dot) in southern region.

the seasonality of influenza and the impact of climatic vari-
ables in 2 geographical regions in Thailand. In the final
multivariate model, we found that the best model for fitted
and predicted influenza cases for the central region includes
average temperature and minimum relative humidity; in the
southern region, the bestmodel includes average temperature
only.

In this study, we explained the different correlations bet-
ween the central and southern regions by the differences
in climatic conditions of these two regions. In the southern
region, the year is divided into two seasons: the rainy season,
which lasts for 9 months, and the summer season lasting for
3 months. In the central region, seasons comprise the rainy,
winter, and summer seasons, each lasting for 4 months. Peo-
ple in the southern region are exposed to high and relatively
constant humidity all year round.Therefore, one could expect
people in the southern region to be less prone to contract
the influenza virus due to variations of relative humidity
than people in the central region. From cross-correlation
analysis, we found that only maximum relative humidity
correlated with suspected influenza cases in the southern
region, whereas all of the maximum, minimum, and average
relative humidity correlated with suspected influenza cases in
the central region.
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Table 4: Summary of ARIMA model fitting parameters in the central region during 2009–2014.

Model Fit Pred. Climate variables
RMSE AIC RMSE Vars Coef. 𝑃 value

(1) ARIMA(1, 0, 2)(1, 0, 0)
12

0.4550 89.74 0.7837
(2) ARIMAX(1, 0, 2)(1, 0, 0)

12
with Rainfall 0.4425 88.01 0.7810 Rainfall (lag 0) −0.1234 0.046

(3) ARIMAX(1, 0, 2)(1, 0, 0)
12
with Rainfall 0.4420 86.42 0.8339 Rainfall (lag 1) 0.1374 0.0241

(4) ARIMAX(1, 0, 2)(1, 0, 0)
12
with Rainfall 0.4584 89.99 0.8045 Rainfall (lag 2) 0.0643 0.1989

(5) ARIMAX(1, 0, 2)(1, 0, 0)
12
with 𝑇mean 0.4344 82.36 0.7042 𝑇mean (lag 3) −0.2806 0.8523

(6) ARIMAX(1, 0, 2)(1, 0, 0)
12
with 𝑇mean 0.4224 84.13 0.8139 𝑇mean (lag 4) 3.9727 0.0356

(7) ARIMAX(1, 0, 2)(1, 0, 0)
12
with RHmax 0.4536 91.47 0.7989 RHmax (lag 0) −0.4727 0.6001

(8) ARIMAX(1, 0, 2)(1, 0, 0)
12
with RHmax 0.4442 86.95 0.7586 RHmax (lag 1) 1.9988 0.0392

(9) ARIMAX(1, 0, 2)(1, 0, 0)
12
with RHmin 0.4549 91.73 0.7843 RHmin (lag 0) −0.0469 0.6372

(10) ARIMAX(1, 0, 2)(1, 0, 0)
12
with RHmin 0.4170 79.37 0.8880 RHmin (lag 1) 2.0353 0.0003

(11) ARIMAX(1, 0, 2)(1, 0, 0)
12
with RHmin 0.4439 85.90 0.6760 RHmin (lag 2) −1.3507 0.0256

(12) ARIMAX(1, 0, 2)(1, 0, 0)
12
with RHmean 0.4544 91.59 0.7911 RHmean (lag 0) −0.2535 0.7034

(13) ARIMAX(1, 0, 2)(1, 0, 0)
12
with RHmean 0.4355 84.52 0.7896 RHmean (lag 1) 1.7995 0.0090

(14) ARIMAX(1, 0, 2)(1, 0, 0)
12
with RHmean 0.4571 89.21 0.7390 RHmean (lag 2) −0.7104 0.3375

(15) ARIMAX(1, 0, 2)(1, 0, 0)
12
with 𝑇mean, RHmax 0.3998 74.98 0.7507 𝑇mean (lag 4)

RHmax (lag 1)
4.4553
2.4223

0.0001
0.0039

(16) ARIMAX(1, 0, 2)(1, 0, 0)
12
with 𝑇mean, RHmin 0.3922 70.78 0.9337 𝑇mean (lag 4)

RHmin (lag 1)
3.8566
1.8012

0.0267
0.0026

(17) ARIMAX(1, 0, 2)(1, 0, 0)
12
with 𝑇mean, RHmin 0.3786 72.82 0.5792 𝑇mean (lag 4)

RHmin (lag 2)
3.8699
−1.9457

<0.0001
<0.0001

(18) ARIMAX(1, 0, 2)(1, 0, 0)
12
with 𝑇mean, RHmean 0.3786 72.14 0.8027 𝑇mean (lag 4)

RHmean (lag 1)
4.9256
2.0620

<0.0001
<0.0001

ARIMAX: autoregressive integrated moving average with input series; fit: fitting results; RMSE: root mean square error; AIC: Akaike’s Information Criterion;
Pred.: prediction of ARIMA model; Coef.: coefficient of climate variables; lag: time lag of climate variables.

Table 5: Summary of the ARIMA model fitting parameters in southern region during 2009–2014.

Model Fit Pred. Climate variables
RMSE AIC RMSE Vars Coef. 𝑃 value

(1) ARIMA(1, 0, 2)(0, 0, 1)
12

0.3486 57.74 0.2496
(2) ARIMAX(1, 0, 2)(0, 0, 1)

12
with 𝑇mean 0.3415 56.65 0.3062 𝑇mean (lag 3) −1.8054 0.6023

(3) ARIMAX(1, 0, 2)(0, 0, 1)
12
with 𝑇mean 0.3471 56.46 0.2235 𝑇mean (lag 4) 2.6311 0.4453

(4) ARIMAX(1, 0, 2)(0, 0, 1)
12
with RHmax 0.3480 58.44 0.2748 RHmax (lag 1) −1.5168 0.6160

(5) ARIMAX(1, 0, 2)(0, 0, 1)
12
with 𝑇mean, RHmax 0.3483 57.49 0.2589 𝑇mean (lag 4)

RHmax (lag 1)
3.3490
3.6432

0.3580
0.3640

ARIMAX: autoregressive integrated moving average with input series; fit: fitting results; RMSE: root mean square error; AIC: Akaike’s Information Criterion;
Pred.: prediction of ARIMA model; Coef.: coefficient of climate variables; lag: time lag of climate variables.

In general, an association between influenza cases and
local environmental factors, such as humidity and temper-
ature, were found in temperate zones. Low relative humid-
ity increases the rate of infection in guinea pig models,
whereas high relative humidity blocks transmission [12]. Low
influenza virus survival occurred at high temperatures, and
no transmission was detected at temperatures higher than
30∘C [12, 13]. Based on simulated coughs, the results also
showed inactivation of the virus at higher relative humidity
after coughing [15]. However, the findings of this study con-
tradict those of previous research. In the central and southern
regions, the influenza peaks occurred during the rainy season
which is characterized also by high average temperatures. We

can assume that the climate factors may have less influence
on airborne transmission in tropical regions [27]. The time-
series for the influenza cases may be associated with a mini-
mum relative humidity of 38–64% and average temperatures
of 24–32∘C for the central and with average temperatures of
26–30∘C for the southern regions, respectively. Our models
suggest that relative humidity is associated with influenza
transmission in the central region. This finding is consistent
with previous studies performed in other tropical countries.
For example, a negative correlation between the relative
humidity and the influenza incidence rate as obtained by the
ARIMA model was found in Brisbane and Singapore during
2000–2007 [27]. Furthermore, the logistic regression model
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for the influenza transmission in subtropical Guatemala with
a relative humidity similar to the central region in Thailand
also presented a negative correlation with humidity [28].

A positive correlation with temperature was found in this
study. This finding is consistent with the study made in west-
central El Salvador [28]. The average temperatures in both
regions of Thailand are also corresponding to those in west-
central El Salvador, which has average temperatures of 25–
29∘C. In the study [28], it was suggested that temperaturemay
be a proxy for other factors. In a contact transmission exper-
iment, Lowen et al. found that titers from exposed guinea
pigs increase at similar patterns at 30∘C and 20∘C and at both
20% and 80% relative humidity [13]. The amount of virus
shed at 30∘C and 20∘C was not markedly different, which
indicates that the rate of transmission did not decrease with
temperature [13]. These results correspond to the humid-
rainy conditions in tropical climates [26].

In this work, we found that the amount of rainfall was not
significantly correlated with the influenza cases.This associa-
tion has been suggested in several countries, including Brazil
[5], Hong Kong [11], and Senegal [8]. Similarly, some studies
(e.g., in Hong Kong [27, 29, 30] and Singapore [27]) have not
observed a correlation between influenza cases and rainfall.

Our study suggests an association between suspected
influenza cases and some climatic variables in the central and
southern regions ofThailand.Therefore, in countries without
advanced influenza surveillance systems, appropriate use of
ARIMAX models may facilitate the prediction of influenza
transmission at present and in the near future. Due to limita-
tions in available and reliable data of influenza time-series
in Thailand, the influenza forecasting accuracy is impaired.
However, it is hoped that, with further model refinement,
more reliable influenza data, and more suitable environmen-
tal data (e.g., higher spatial resolution data), these ARIMAX
models may provide a sufficiently accurate reference point
for public health officials to prepare for and to respond to
influenza epidemics.

Admittedly, our study has some limitations. The
ARIMA(X) models could only identify correlations, but not
causality between influenza cases and average temperature
in the central region and between influenza cases and both
temperature and average minimum relative humidity in the
southern region of Thailand. Consequently, those correla-
tionsmay act only as proxies for factors not considered in this
study. In this analysis, we used suspected influenza cases as
a proxy of influenza activity, although it could not stand as a
direct measure of influenza morbidity or mortality. However,
the suspected influenza cases are sufficient to determine
the timing of influenza activity in the central and southern
region. The suspected influenza cases are reported only from
public hospitals and some private hospitals. The long sam-
pling period may have caused variations in sampling rate due
to the laboratory test limitations and changing government
policies. Furthermore, this study did not take into account the
effects of vaccination on the correlation between influenza
cases and the climatic variables [31].During 2010–2012, appro-
ximately 8.18 million influenza vaccines were administered
mostly to people of age ≥65 years, people with chronic disea-
ses, and healthcare personnel/poultry cullers [32]. Also, other

social and economic parameters were not regarded, which
likewise may have played a role in affecting the correlation
between influenza activity and climatic variables. Climatic
parameters may also affect social behaviors, such as school
closure and the tendency for people to stay indoors [33, 34].
Finally, the models did not include vitamin D measurements
or solar radiation level data [35, 36].
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