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Pediatric glioblastoma cells are
sensitive to drugs that inhibit
eIF2a dephosphorylation and its
phosphomimetic S51D variant

Karin Eytan1, Ziv Versano1,2, Roni Oren3,
Jasmine Jacob-Hirsch4,5, Moshe Leitner1, Alon Harmelin3,
Gideon Rechavi2,4,5, Amos Toren1,2, Shoshana Paglin1

and Michal Yalon1,6*

1Pediatric Hemato-Oncology, Edmond and Lilly Safra Children’s Hospital and Cancer Research
Center, Sheba Medical Center, Ramat Gan, Israel, 2Sackler School of Medicine, Tel Aviv University,
Tel Aviv, Israel, 3Department of Veterinary Resources, The Weizmann Institute of Science,
Rehovot, Israel, 4Sheba Cancer Research Center (SCRC), Chaim Sheba Medical Center,
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Gan, Israel, 6Chaim Sheba Medical Center, Ramat Gan, Israel
We found that pediatric glioblastoma (PED-GBM) cell lines from diffuse intrinsic

pontine glioma (DIPG) carrying the H3K27M mutation or from diffuse

hemispheric glioma expressing the H3G34R mutation are sensitive to the

combination of vorinostat (a histone deacetylase inhibitor) and PARP-1

inhibitors. The combined treatment increased the phosphorylation of eIF2a
(P-eIF2a) relative to each drug alone and enhanced the decrease in cell

survival. To explore the role played by increased P-eIF2a in modulating PED-

GBM survival and response to treatments, we employed brain-penetrating

inhibitors of P-eIF2a dephosphorylation: salubrinal and raphin-1. These drugs

increased P-eIF2a, DNA damage, and cell death, similarly affecting the

sensitivity of DIPG cells and derived neurospheres to PARP-1 inhibitors.

Interestingly, these drugs also decreased the level of eIF2Bϵ (the catalytic

subunit of eIF2B) and increased its phosphorylation, thereby enhancing the

effect of increased P-eIF2a. Transient transfection with the S51D

phosphomimetic eIF2a variant recapitulated the effect of salubrinal and

raphin-1 on PED-GBM survival and sensitivity to PARP-1 inhibitors.

Importantly, either salubrinal or raphin-1 dramatically increased the sensitivity

of DIPG cells to radiation, the main treatment modality of PED-GBM. Finally,

PED-GBM was more sensitive than normal human astrocytes to salubrinal,

raphin-1, and the treatment combinations described herein. Our results

indicate that combinations of histone deacetylase inhibitors and PARP-1

inhibitors should be evaluated for their toxicity and efficacy in PED-GBM

patients and point to drugs that increase P-eIF2a or modulate its

downstream effectors as a novel means of treating PED-GBM.
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Introduction

Pediatric glioblastomas (PED-GBM) harboring somatic

heterozygous missense H3K27M or H3KG34R/V/D mutations

are invariably fatal. H3-mutant PED-GBM are distinguished by

chromatin modifications, which lead to altered gene expression

supporting their specific genetic programs (1–7). H3K27M

mutation characterizes the diffuse midline GBM (DMG)

tumors located in the pons (DIPG), cerebellum, thalamus, and

spine, while H3G34R/V/D-mutant GBM tumors are found in

the hemispheric region (8). Consequently, a significant

percentage of these tumors are either completely or partially

inaccessible for surgical resection. To date, the main treatment

modality of PED-GBM is ionizing radiation, which provides

only temporary relief. In addition, unlike in adult GBM, the

addition of temozolomide in PED-GBM did not show a survival

benefit compared to radiation therapy alone, even in tumors

with methylated O6methylguanine-DNA-methyltransferase

(MGMT) promoter (9).

Grasso et al. demonstrated the inhibitory effect of

panobinostat, a pan-histone deacetylase inhibitor (HDACi), on

the growth of DMG human cell lines in culture and in tumor

xenograft models (10), while Chornenkyy et al. showed that

niraparib, the brain-penetrating PARP-1 inhibitor (PARPi),

decreased survival and enhanced the sensitivity of pediatric

high-grade astrocytomas to ionizing radiation both in cell

culture and in a tumor xenograft model (11).

Relevant to these studies are the findings that HDACis

sensitize breast, ovarian, myeloid leukemia, and prostate

cancer cells to treatment with PARPis, regardless of their

innate capacity for repairing dsDNA breaks (12–15). We have

also previously shown that the combination of vorinostat and

veliparib (an HDACi and a PARPi, respectively) enhanced the

killing of breast cancer and GBM cell lines, including

H3.3G34V-expressing KNS-42 cells (12, 16, 17). To the best of

our knowledge, the effect of combining HDACis and PARPis on

DMG survival has not been reported to date in either preclinical

or clinical trials.

In search of vorinostat downstream effectors that mediate its

sensitizing effect on the cellular response to PARPis, we found

that vorinostat increased the level of phosphorylation of eIF2a
(P-eIF2a) in PARPi-treated cells twofold relative to PARPi

treatment alone, a phenomenon that in and of itself was

sufficient to increase the cellular sensitivity to PARPis (12, 16).

eIF2a is a subunit of eIF2, which forms a ternary complex

with GTP and tRNAiMET. This complex transfers tRNAiMET to

the small ribosomal subunit, which, in association with other

initiation factors, scans the mRNA until it reaches the start

codon, where it is joined by the large ribosomal subunit. Upon

recognition of the start codon, GTP is hydrolyzed, and eIF2·GDP

is released. Replenishment of eIF2·GTP is executed by eIF2B, a

decameric GDP/GTP exchange factor. However, during cellular

stress, eIF2a is phosphorylated, turning eIF2 from a substrate of
Frontiers in Oncology 02
eIF2B into its inhibitor, leading to decreased levels of the ternary

complex and, with it, to a global attenuation of protein

translation (18). In addition to the interaction with P-eIF2a,
the activity of eIF2B is also regulated by the phosphorylation

of its catalytic epsilon subunit. Decreased phosphorylation of

eIF2Bϵ at S539 increases the GDP/GTP exchange activity of

eIF2B and diminishes the inhibitory effect of P-eIF2a (19, 20).

Due to its relatively low cellular level, eIF2B is a rate-limiting

factor in the eIF2·GDP/GTP exchange reaction (18). Thus, even

relatively small changes in the cellular level of P-eIF2a,
phosphorylated eIF2Be (P-eIF2Be) or eIF2Be may have an

impact on the rate of protein translation.

The global attenuation of protein translation goes hand in

hand with the increased translation of a subset of mRNAs that

mostly code for proteins that modulate the protective response

to stress, such as transporters and transcription factors (18, 21).

However, to allow for the translation of the newly transcribed

mRNAs, the increased P-eIF2a has to be transient (22).

Therefore, a sustained and excessive elevation in P-eIF2a often

leads to cell death (23, 24).

Dephosphorylation of P-eIF2a is accomplished by protein

phosphatase 1 (PP1) in complex with either one of its two

regulatory subunits—the constitutive CReP or the stress-

induced GADD34—and with G-act in (25–27). The

physiological outcome of increased P-eIF2a has been assessed

by employing inhibitors of eIF2a dephosphorylation (salubrinal

and raphin-1) and the non-phosphorylatable (S51A) and

phosphomimetic (S51D) eIF2a variants (16, 28–30). Salubrinal

inhibits eIF2a dephosphorylation by interfering with the

interaction of PP1 with its regulatory subunits CReP and

GADD34 (28 ) . I t s i nh ib i t o ry e ff e c t on i so l a t ed

hollophosphatase is reproducible, although milder than that

observed within the cells (31). At relatively low concentrations,

raphin-1 inhibits the recruitment of P-eIF2a to the PP1-CReP

complex, while at concentrations higher than 10 μM, it also

inhibits the activity of PP1 when in complex with GADD34. Its

inhibitory effect on the activity of isolated hollophosphatase is

similar to that observed within cells (32). Both salubrinal and

raphin-1 penetrate the blood–brain barrier, but unlike

salubrinal, raphin-1 did not adversely affect the long-term

memory of the mice (32).

Another compound that can assist in evaluating the role of a

moderate increase in cellular P-eIF2a is ISRIB. Although ISRIB

and P-eIF2a bind to eIF2B at different sites, they do so in a

mutually exclusive manner. Therefore, at low P-eIF2a levels,

ISRIB binds to and stabilizes eIF2B, thereby counteracting the

effect of increased P-eIF2a. However, when P-eIF2a is sustained

and excessive, ISRIB fails to bind to and stabilize eIF2B (33).

Modulation of P-eIF2a also affects the response of cells to

anti-neoplastic treatments. While mouse embryonic fibroblasts

expressing S51A-eIF2a are more sensitive to doxorubicin and

HDACis than their wild-type counterparts, increased P-eIF2a
mediates IL24-induced death of squamous cell carcinoma, an
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effect diminished upon the expression of S51A-eIF2a (34, 35).

Also, ONC201 which demonstrated clinical efficacy toward

DMG patients (36) is known to decrease survival and increase

P-eIF2a in colon carcinoma cell lines (37). In addition, we have

previously demonstrated that a sustained increase in P-eIF2a
mediates the anti-neoplastic activity of ionizing radiation and

vorinostat in a variety of human breast cancer cell lines (16).

In the experiments reported herein, we evaluated the effect of

increased P-eIF2a on PED-GBM survival and response to

treatments. Toward that end, we employed raphin-1,

salubrinal, and plasmids expressing eIF2a phosphomimetic

variants. The results indicated that increased P-eIF2a
decreases PED-GBM survival and increases PED-GBM’s

sensitivity to PARPis and ionizing radiation. Increased

sensitivity to ionizing radiation is of particular importance in

light of the resistance of DIPG to this sole available treatment

and the absence of a clinically effective radio enhancer. In

addition, to the best of our knowledge, this report shows for

the first time the direct effect of increased P-eIF2a on DNA

integrity in cancer cells and the effect of raphin-1 and salubrinal

on the ratio of P-eIF2Bϵ to eIF2Bϵ (P-eIF2Bϵ/eIF2Bϵ). The
possible mechanisms underlying these two phenomena are

discussed herein.
Materials and methods

Cell lines

SU-DIPG-VI-GFP-LUC (SU-DIPG-VI) and SU-DIPG-IV

cell lines derived from pediatric DIPG primary tumors

expressing H3.3K27M and H3.1K27M, respectively, were a

generous gift from Dr. Michelle Monje (Stanford University,

Stanford, CA). The KNS-42 cell line, which was derived from a

16-year-old patient glioma and harbors H3.3G34V mutation,

was obtained in 2019 from the Japanese Collection of Research

Bioresources Cell Bank (Osaka, Japan). Following a short

propagation period, these cell lines were frozen, and aliquots

were resuscitated and used for 8 weeks. Normal human

astrocytes (HAs) were obtained from ScienCell Research

Laboratories (Carlsbad, CA). All the cells were routinely tested

for the presence of mycoplasma.
Growth conditions

KNS-42 cells were grown in Eagle’s minimal essential

medium, supplemented with 5% fetal bovine serum (FBS), 1%

L-glutamine, penicillin, and streptomycin (Biological Industries,

Kibbutz Beit-Haemek, Israel). SU-DIPG-VI and SU-DIPG-IV

cells were grown in a tumor stem medium consisting of 50%

Neurobasal™-A Medium, 50% DMEM/F-12, 1% HEPES (1 M),

1% sodium pyruvate, 1% non-essential amino acids, 1%
Frontiers in Oncology 03
GlutaMAX and 1% antibiotic antimycotic, 2% B-27 (Thermo

Fisher Scientific, Waltham, MA), 0.02% heparin (STEMCELL

Technologies, Canada), 20 ng/ml EGF and bFGF, and 10 ng/ml

PDGF-AA and PDGF-BB (PeproTech Asia, Rehovot, Israel).

HA cells were grown in complete astrocyte medium

supplemented with 1% penicillin and streptomycin, 2% FBS,

and 1% astrocyte growth supplements (all from ScienCell).
Reagents

Vorinostat was obtained from LC Laboratories (Boston,

MA), o lapar ib and nirapar ib were obta ined from

MedChemExpress (Monmouth Junction, NJ), salubrinal was

obtained from Sigma-Aldrich (Merck KGaA, Darmstadt,

Germany), raphin-1 was obtained from Tocris Bioscience

(Bristol, UK), and veliparib was obtained from APExBIO

(Houston, TX). All the drugs were added from stock solutions

in dimethyl sulfoxide (DMSO), and the control cultures received

equal amounts of the vehicle. The final concentration of DMSO

in the culture medium did not exceed 0.1%. All the other

materials were of analytical grade.
Survival assays

SU-DIPG-VI cells were plated in triplicates at a density of

3,500 cells per well in 96-well plates (11,550 cells/cm2). SU-

DIPG-IV cells, which grow faster than SU-DIPG-VI cells, were

plated in triplicates at a density of 1,000 cells per well in 96-well

plates (3,300 cells/cm2). When specified, survival of KNS-42 was

determined by plating 500 cells/well in six-well plates (55 cell/

cm2) and performing clonogenic assay (16, 38), or by

plating 60,000 cells per well in six-well plates (6,600 cells/cm2)

for survival assay. At 24 h post-plating, cells from one

triplicate were dissociated and counted to determine the cell

number at the time of treatment initiation (T0). Seven to eight

days later, the number of surviving cells was determined by

counting the trypan blue-excluding cells (Te). Cell survival was

expressed as a percent of control according to the following

formula:

100 � AVG   cell   #   at  Te   (treated) −  AVG   cell   #   at  T0
AVG   cell   #   at  Te   (control) − AVG   cell   #   at  T0

Cell death was calculated as follows:

100 � AVG   cell   #   at  T0  −  AVG   cell   #   at  Te
AVG   cell   #   at  T0

The growth rate of HAs was higher than that of SU-DIPG-

VI. Therefore, to compare the effects of the various treatments

on the number of cell divisions, we plated both cell types at a

density of 3,300 cells/cm2, which is lower than the regular

density of SU-DIPG-VI (11,550 cells/cm2). The cells were
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plated in triplicates, and the number of cells at T0 was

determined as described above. The cells were counted 7 days

later (Te), and the percent of cell division relative to control was

calculated according to the following formula:

100 � log2 AVG   cell   #   at  Te   (treated)=AVG   cell   #   at  T0ð Þ
log2 AVG   cell   #   at  Te   (control)=AVG   cell   #   at  T0ð Þ

The experimental combination indices (CIs) were obtained

by employing the computer program CompuSyn, according to

the method used by Chou (39). CI< 1 indicated a synergistic

interaction, while CI = 1 indicated an additive interaction.

SU-DIPG-VI images were captured with the EVOS® FL

imaging system (Thermo Fisher Scientific, Waltham, MA) with a

10× objective.
Radiation

The cells were irradiated in an X-ray irradiator (Polaris SC-

500 series II) 24 h post-plating at a dose rate of 100 cGy/min.
Cell lysis and Western blotting

Unless otherwise noted, treatments were initiated 24 h post-

plating for DIPG cells and 48 h post-plating for KNS-42, and

incubation was continued for the specified time before the cells

were harvested. The cells were washed with ice-cold Dulbecco’s

phosphate-buffered saline (DPBS) and collected in a buffer

containing 150 mM sodium chloride (NaCl), 50 mM Tris (pH

7.5) , 2% sodium dodecy l su l f a te (SDS) , 1 .7 mM

ethy lened iamine te t raace t i c ac id , 1 .5 mM sodium

orthovanadate, 100 mM sodium fluoride, 1.5 mg/ml pepstatin,

and Roche anti-protease cocktail. Following heating at 95°C and

clearing by centrifugation, the protein concentration was

determined with a bicinchoninic acid reagent (Bio-Rad,

Hercules, CA). Equal loading was verified by measuring the

absorbance at 520 nm of Ponceau S extracted with DPBS

supplemented with 1.125 M NaCl and 0.6% Tween-20 from

individual strips of a twin run (16, 38). Gels were blotted onto

nitrocellulose membranes using the Trans-Blot Turbo system

(Bio-Rad). Rabbit anti-P-eIF2a, anti-eIF2a, anti-eIF2Be, and
anti-HA were obtained from Cell Signaling Technology

(Danvers, MA); anti-P-eIF2Be was obtained from Thermo

Fisher Scientific (Waltham, MA), anti-CD2 was obtained from

Abcam (Cambridge, UK), and HRP-coupled goat anti-rabbit

IgG was obtained from Jackson ImmunoResearch Laboratories

(West Grove, PA). Blots were exposed to an X-ray film for

chemiluminescence following treatment with West Pico ECL

reagent (Thermo Fisher Scientific). Values for the integrated

light density of autoradiograms were obtained with the ImageJ

software and were employed to determine treatment-induced

changes in protein levels.
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Transfection of cells with plasmid coding
for eIF2a variants

WT, S51A, and S51D heIF2a variants in pcDNA3.CD2

expression vectors were obtained from Addgene (Cambridge,

MA). WT, S51A, and S51D heIF2a in pcDNA3.1(+)-N-HA

were obtained from GenScript USA Inc. (Piscataway, NJ). KNS-

42 were plated in six-well plates for clonogenic assay at a density

of 55 cells/cm2 or for survival assay at a density of 13,200 cells/

cm2 and transfected 24 h post-plating with eIF2a variants in

pcDNA3.CD2 or in pcDNA3.1(+)-N-HA by employing 0.5–1-

μg/ml plasmids and jetPEI transfection reagent (Polyplus, New

York, NY), according to the manufacturer’s instructions.
Alkaline comet assay

SU-DIPG-VI and HAs cells were washed with DPBS,

dissociated with diluted TrypLE™ Express Enzyme (1×) (1:4 in

DPBS) (Thermo Fisher, MA), washed with cold DPBS, embedded

in agar, and layered over the slides, according to the

manufacturer’s instructions (Trevigen Inc., Bio-Techne

Corporation, Minneapolis, MN). Following incubation with lysis

buffer, the cells were further incubated in an alkali solution and

then subjected to electrophoresis at 21 V for 18 min. The slides

were stained with 1× SYBR Gold and viewed in a fluorescent

Nikon Eclipse Ti microscope equipped with a Nikon Intensilight

C-HHGFI camera using a 20× objective. The experiments were

reproduced three times with DIPG and twice with HAs, and 100

cells were scored for each treatment in each experiment. Cells

showing DNA tails, equal to or longer than their radii, were

counted as comet-bearing cells. The images for Figure 4 were

prepared with PowerPoint software, and the same brightness

(+20%) and contrast (-20%) were applied to all panels.
Statistical analysis

The significance of the differences between the surviving

fractions of the treatments relative to the untreated control cells

and between the combination treatment and each of its

components was verified by employing unpaired Student’s t-test.

p< 0.05 in each comparison was considered statistically significant.
Results

The combination of vorinostat and
PARPis is deleterious to PED-
GBM survival

To test the effect of vorinostat, PARPis, and their

combination on PED-GBM survival, we employed three
frontiersin.org

https://doi.org/10.3389/fonc.2022.959133
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Eytan et al. 10.3389/fonc.2022.959133
different specific PARPis: veliparib, olaparib, and niraparib, the

most potent of which are olaparib and niraparib (40). Because

the H3.3 and H3.1 K27M-mutant DIPG cell lines were reported

to respond differently to treatments (41, 42), we included in our

experiments both H3.3K27M-SU-DIPG-VI and H3.1K27M-SU-

DIPG-IV, along with H3.3G34V-mutant KNS-42. As noted in

Figures 1A–F and S1, the combination of vorinostat and PARPis

decreased cell survival relative to each drug alone. Under our

experimental conditions, the interaction between vorinostat and

PARPis was mostly synergistic, or additive at low concentrations

of niraparib and vorinostat. The SU-DIPG-VI cells were most

sensitive to the combination of vorinostat and niraparib while

the SU-DIPG-IV and KNS-42 cells showed similar degrees of

sensitivity to the combination of vorinostat with either niraparib

or olaparib. In addition, the sensitivity of PED-GBM to the

combination of vorinostat and PARPis was higher than that of

the HAs (Figures 1J, K). Because astrocytes grow faster in culture

than PED-GBM, we had to plate for these experiments a smaller

number of DIPG cells than that plated for the experiments

shown in Figures 1A, B. This led to an observed increase in the

sensitivity of PED-GBM to the drug combinations, relative to

that noted in Figures 1A, B.

The enhanced decrease in cell survival was associated with

increased P-eIF2a in the combination-treated cells relative to

that triggered by each drug alone (Figures 1G–I). Taken

together, these results suggest the possibility that increased P-

eIF2a helps modulate the enhanced response to the combination

of vorinostat and PARPis.
Evaluating the role played by increased
P-eIF2a in PED-GBM survival

To explore the effect of increased P-eIF2a on PED-GBM

surviva l , we employed two inhibi tors of P-eIF2a
dephosphorylation: salubrinal and raphin-1 (26, 30). Both

drugs led to a dose-dependent increase in P-eIF2a, which was

associated with decreased survival (Figures 2 and 3A–D). Here,

PED-GBM also exhibited higher sensitivity to salubrinal or

raphin-1 than HAs (Figure 3E). In line with these results, the

comet assay showed that incubation with raphin-1 increased the

fraction of cells with comet in PED-GBM but failed to do so in

HAs (Figure 4). As mentioned earlier, eIF2B is a limiting factor

in the process of regenerating the eIF2-GTP-tRNAiMET ternary

complex during protein translation. Therefore, even relatively

small changes in its level and phosphorylation are likely to

enhance the outcome of increased P-eIF2a. Unexpectedly, at 15
μM, both raphin-1 and salubrinal led to a reproducible increase

in the ratio of P-eIF2Bϵ/eIF2Bϵ relative to the untreated control

cells, which was associated with decreased level of eIF2Be
(Figure 3F, S2 and Table S1). This indicates that either the

eIF2Bϵ translation decreases or the molecule is being degraded,
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but increased kinase activity maintains a higher ratio of P-

eIF2Be/eIF2Be. The effect of raphin-1 on the level of eIF2Bϵ
was more pronounced than that of salubrinal, which may have

been due to the different interactions with the hollophosphatase,

as will be discussed later.

Transient transfection with the phosphomimetic S51D-

eIF2a variant recapitulated the effects of salubrinal and

raphin-1 on cell survival. We employed plasmids expressing

N-terminal-tagged HA-eIF2a variants and plasmids expressing

the eIF2a variants and a CD2 reporter (Figures 3G, H and Figure

S3). As noted in Figure 3G and S3A, the phosphomimetic eIF2a
variants expressed by either of these plasmids decreased the

survival of KNS-42. Transient transfection of KNS-42 with HA-

tagged eIF2a resulted in a time-dependent expression of the

different variants. At 12 h post-transfection, similar expression

levels of the three variants were detected with anti-HA

(Figure 3H). At 24 and 48 h post-transfection, the expressions

of HA-eIF2a and HA-S51A-eIF2a exceeded that of HA-S51D-

eIF2a, which, in spite of its relatively low cellular level, markedly

decreased the level of endogenous eIF2a (Figure S3C). This

effect of the HA-tagged (S51D) variant on the level of eIF2a was

similar to the effects of 15 μM salubrinal and raphin-1

(Figures 3F, S2).
Salubrinal, raphin-1, and S51D-eIF2a
increase the sensitivity of PED-GBM
to PARPis

The combinations of either salubrinal or raphin-1 with

olaparib in SU-DIPG-VI and KNS-42 increased P-eIF2a
relative to each drug alone, while the combination of raphin-1

and niraparib in SU-DIPG-VI increased P-eIF2a relative to

niraparib but was similar to that obtained by raphin-1

(Figures 5A–C). Nonetheless, all the combinations enhanced

the decrease in cell survival, indicating that treatment with

PARPis makes the cells sensitive to increased P-eIF2a, while
treatment with raphin-1 or salubrinal increases the cells’

sensitivity to PARPi-specific damage. The combination of

raphin-1 and niraparib led to increased DNA damage, as

manifested by the fraction of cells with comet induced by this

treatment relative to each drug alone. In contrast, raphin-1 failed

to increase the fraction of HAs with comet when applied alone or

in combination with niraparib (Figure 4). As noted in Figures 5

and S4, the combination of salubrinal or raphin-1 with PARPis

enhanced the decrease in cell survival, whether added to single

cells 48 h post-plating or to neurospheres 120 h post-plating. In

addition, PED-GBM was more sensitive to the combination

treatments than HAs (Figures 5G, H). Similar to salubrinal and

raphin-1, the phosphomimetic S51D-eIF2a variant increased

the cells’ sensitivity to niraparib relative to the non-

phospohrylatable S51A or the wild-type variant (Figure 5I).
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FIGURE 1

Combined treatment of vorinostat and PARPis enhanced the decrease in PED-GBM survival: SU-DIPG-VI cells (A, B) and SU-DIPG-IV cells (C, D)
were plated in triplicates at a density of 11,550 or 3,300 cells/cm2, respectively. Drugs were added 24 h post-plating. KNS-42 were plated either
for clonogenic assay (E) or for survival assay (F) at a density of 55 or 6,600 cells/cm2, respectively. Values are mean survival (%) ± S.D relative to
control. Differences among all experimental groups, as well as between each experimental group and control, were significant - *p< 0.5, **p<
0.005. (G–I). Cells were processed for Western blot analysis of treatment-induced changes in the ratio of peIF2a/eIF2a. Numbers at the bottom
of the autoradiograms indicate changes of peIF2a/eIF2a and differences in loaded proteins (Ponceau) relative to control. (J, K). SU-DIPG VI and
HAs cells were plated in triplicates at the same density (3,300 cells/cm2) and treated with drugs 24 h post-plating. Values are the mean number
of cell division or cell death (%) ± S.D relative to control. Differences between treated and untreated experimental groups, as well as between
SU-DIPG-VI and HAs, were significant *p< 0.05, **p< 0.005. V—vorinostat, Ola—Olaparib, Vel—veliparib, Nir—niraparib. The experiments were
reproduced at least twice with similar results.
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Salubrinal and raphin-1 increase the
sensitivity of PED-GBM to
ionizing radiation

In light of the transient inhibitory effect of radiation on

DMG tumor progression and the absence of a clinically available

radio enhancer, we tested the effect of salubrinal and raphin-1 on

the sensitivity of SU-DIPG-VI to ionizing radiation. As noted in

Figures 6A, B and S5, salubrinal increased the level of P-eIF2a in

the irradiated PED-GBM cells relative to that noted in the cells

subjected to irradiation alone and decreased their survival

relative to each treatment alone. In addition, the combination

of either salubrinal or raphin-1 with 1.5 Gy, which led to cell

death in DIPG cells, had only a mild effect on the proliferation of

HAs (Figure 6C).
Discussion

PED-GBM responded to the combination of vorinostat and

PARPis by enhancing the decrease in cell survival and increasing

P-eIF2a relative to that triggered by each drug alone. Tightly

regulated P-eIF2a is required for maintaining metabolic
Frontiers in Oncology 07
demands under basal conditions and in response to stress.

Thus, it has been demonstrated that a deficiency in P-eIF2a
signaling due to homozygosity for eIF2a A/A and excessive

phosphorylation resulting from a knockout of CReP interferes

with proper embryonic development (30, 33). Therefore, to

explore the role played by a sustained increase of P-eIF2a in

PED-GBM survival and response to treatments, we employed

inhibitors of P-eIF2a dephosphorylation and the S51D

phosphomimetic variant of eIF2a.
Both salubrinal and raphin-1 led to a dose-dependent increase

of P-eIF2a and decreased cell survival. Their effects on cell survival

were recapitulated by phosphomimetic variants. Interestingly, the

phosphomimetic variant and 15 μM salubrinal and raphin-1

decreased the level of eIF2a, which, in addition to increasing P-

eIF2a, is bound to further decrease the rate of protein translation.

The mechanism underlying the decreased level of eIF2a, whether
by decreasing the level of its mRNA, decreasing translation, or

increasing degradation, has yet to be determined.

Our results also demonstrate that 15 μM raphin-1 or

salubrinal decreases the eIF2Bϵ level and increases the ratio of

P-eIF2Bϵ/eIF2Bϵ, which is expected to decrease the GDP/GTP

exchange activity of eIF2B. Although raphin-1 and salubrinal led

to a similar increase in P-eIF2a, the effect of raphin-1 on the
B C

A

FIGURE 2

Salubrinal and raphin-1 increase P-eIF2a: (A–C). Cells were processed for Western blot analysis of treatment-induced changes in the ratio of
peIF2a/eIF2a at the indicated time. Numbers at the bottom of the autoradiograms indicate changes of peIF2a/eIF2a and differences in loaded
proteins (Ponceau) relative to control. Sal—salubrinal, R1—raphin-1. The experiments were reproduced at least twice with similar results.
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FIGURE 3

Salubrinal and raphin-1, as well as S51D-eIF2a, decreased cell survival and affected the eIF2Be level and phosphorylation: (A, B). SU-DIPG-VI and
SU-DIPG-IV cells were plated in triplicates at a density of 11,550 or 3,300 cells/cm2, respectively, and treated 24 h post-plating. (C). KNS-42
cells were plated in triplicates for clonogenic survival assay and treated 24 h post-plating. Values (A–C) are mean survival (%) ± S.D relative to
control. Differences among all experimental groups, as well as between each experimental group and control, were significant—*p< 0.5, **p<
0.005. (D). A representative image of SU-DIPG-VI neurospheres 18 days post-treatment with salubrinal and raphin-1. Bar, 400 mm. (E). SU-DIPG
VI and HAs cells were plated in triplicates at the same density (3,300 cells/cm2) and treated 24 h post-plating. Values are mean number of cell
division or cell death (%) ± S.D relative to control. Differences between treated and untreated experimental groups, as well as between SU-
DIPG-VI and HAs, were significant—*p< 0.05, **p< 0.005. (F). SU-DIPG-VI cells were processed for Western blot analysis of treatment-induced
changes in the ratios of peIF2a/eIF2a and peIF2Be/eIF2Be and in the cellular level of eIF2Be. Numbers at the bottom of the autoradiograms
indicate changes of peIF2a/eIF2a, peIF2Be/eIF2Be, and eIF2Be and differences in loaded proteins (Ponceau) relative to control. (G). KNS-42 cells
were plated in duplicates at a density of 13,200 cells/cm2 and transiently transfected with 1 mg/ml of plasmids expressing HA-eIF2a (HA-WT) or
HA-S51A-eIF2a (HA-SA) or with HA-S51D-eIF2a (HA-SD) 24 h post-plating. Values are mean survival (%) ± S.D relative to control. Differences
between survival of HA-SD to the HA-WT and HA-SA were significant—**p< 0.005. (H). Cells were transiently transfected as described in G and
12 h later processed for Western blot analysis of HA-tag expression. Numbers at the bottom of the autoradiograms indicate differences in
loaded proteins (Ponceau) relative to HA-WT. Sal—salubrinal, R1—raphin-1. The experiments were reproduced at least twice with similar results.
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FIGURE 4

The effect of raphin-1, niraparib, and their combination on DNA integrity. SU-DIPG-VI and HAs cells were plated and treated with raphin-1,
niraparib, and their combination for 48 h, before performing the comet assay. (A). Images of SYBR Gold-stained cells. Bar, 100 µm. (B, C).
Treatment-induced changes in the fraction of cells with comets. Numbers are average ± S.D of fold change relative to control from two or
three independent experiments (HAs and SU-DIPG-VI, respectively). When indicated, p-values denote significance of differences among all
experimental groups, as well as between each experimental group and control—*p< 0.05, **p< 0.005. R1—Raphin-1, Nir—niraparib.
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FIGURE 5

Combination of PARPis and salubrinal or raphin-1 enhanced the decrease in cell survival. (A–C) Cells were processed for Western blot analysis
of treatment-induced changes in the ratio of peIF2a/eIF2a. Numbers at the bottom of the autoradiograms indicate changes of peIF2a/eIF2a
and differences in loaded proteins (Ponceau) relative to control. (D, E). SU-DIPG-VI cells were plated at a density of 11,550 cells/cm2, treated
with drugs either 24 h (D) or 120 h (E) post-plating and incubated for additional 7 days. (F). KNS-42 cells were plated in triplicates for clonogenic
assay at a density of 55 cells/cm2 and treated with drugs 24 h post-plating. Values are mean survival or cell death (%) ± S.D relative to control.
Differences among all experimental groups, as well as between each experimental group and control, were significant—*p< 0.05, **p< 0.005
(D–F). (G, H). SU-DIPG VI and HAs cells were plated in triplicates at a density of 3,300 cells/cm2 and treated with drugs 24 h post-plating.
Values are mean number of cell division or cell death (%) ± S.D relative to control. Differences between treated and untreated experimental
groups, as well as between SU-DIPG-VI and HAs, were significant—*p< 0.05, **p< 0.005. (I). KNS-42 cells were plated in duplicates at a density
of 13,200 cells/cm2 and transiently transfected with 1 mg/ml of plasmids expressing HA-eIF2a (HA-WT) or HA-S51A-eIF2a (HA-SA), or with HA-
S51D-eIF2a (HA-SD) 24 h post-plating. Twenty-four hours later, cells were treated with niraparib for 6 days. Values are mean survival (%) ± S.D
relative to control. Differences between survival of HA-SD with or without niraparib to either treated or untreated HA-SA or HA-WT were
significant—*p< 0.05, **p< 0.005. Sal—salubrinal, R1—raphin-1, Ola—olaparib, Nir—niraparib. The experiments were reproduced at least twice
with similar results.
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eIF2Bϵ level exceeded the minimal albeit reproducible effect of

salubrinal. The observed difference may reflect a different

interaction between the inhibitors and the hollophosphatase

complex and a role played by its components other than in

modulating its enzymatic activity. Thus, the interaction of

raphin-1 with the hollophosphatase complex inhibits the

recruitment of P-eIF2a and leads to a p97 and proteasome-

dependent degradation of CReP (32). In addition to the

interaction of P-eIF2a with the hollophosphatase, it interacts
Frontiers in Oncology 11
with CReP in complexes modulating intracellular traffic (43).

Thus, a reduction in the level of CReP may increase the level of

P-eIF2a, which is free to interact with eIF2B. This interaction, in
contrast to ISRIB, may destabilize the eIF2B complex (44),

triggering the degradation of eIF2Bϵ. Salubrinal and raphin-1

led to a similar increase of P-eIF2Bϵ/eIF2Bϵ, suggesting the

decreased activity of the ERK-1/2 pathway, which is known to

activate PP1 dephosphorylation and inhibition of GSK-3b,
thereby suppressing P-eIF2Bϵ (19, 20).
BA

C

FIGURE 6

Combination of radiation with salubrinal or raphin-1 enhanced decrease in cell survival: (A). SU-DIPG-VI cells were irradiated and treated with
drugs 24 h post-plating and incubated for additional 48 h before processing for Western blot analysis of treatment-induced changes in the ratio
of peIF2a/eIF2a. Numbers at the bottom of the autoradiograms indicate changes of peIF2a/eIF2a and differences in loaded proteins (Ponceau)
relative to control. (B). SU-DIPG-VI cells were plated in triplicates at a density of 11,500 cells/cm2 and 24 h later were irradiated and treated with
salubrinal. Cells were counted 7 days following treatment initiation. Values are mean survival (%) ± S.D relative to control. Differences among all
experimental groups, as well as between each experimental group and control, were significant—*p< 0.05. (C). SU-DIPG VI and HA cells were
plated in triplicates at a density of 3,300 cells/cm2 and treated with drugs and radiation 24 h post-plating. Values are mean number of cell
division or cell death (%) ± S.D relative to control. Differences among all experimental groups as well as between each experimental group and
control were significant for SU-DIPG-VI. When indicated, significance was observed between treated and control untreated HAs, but not among
all experimental groups—*p< 0.05, **p< 0.005. Gy—gray, Sal—salubrinal, R1—Raphin-1. The experiments were reproduced once with similar
results.
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By employing the comet assay, we demonstrated for the first

time that an inhibitor of eIF2a dephosphorylation affects DNA

integrity. Relevant to this finding is our previous report that

demonstrated the inhibitory effect of salubrinal on the repair of

DNA double-strand breaks in green fluorescent protein reporter

plasmids expressed in the breast cancer cell line (16), as well as

the results of Choo et al. (45) regarding the inhibitory effect of

increased P-eIF2a on fork progression.

Exposing PED-GBM to the combination of PARPis with

either salubrinal or raphin-1 decreased their survival relative to

each drug alone. In addition, single SU-DIPG-VI cells and their

neurospheres responded to the combination of raphin-1 and

niraparib through an enhanced decrease in cell survival,

suggesting that this combination may be effective in vivo.

Under our experimental conditions, the level of P-eIF2a in

SU-DIPG-VI treated with the combination of raphin-1 and

niraparib was higher than the level of P-eIF2a in the

niraparib-treated cells but was similar to that observed in the

raphin-1-treated cells. This indicates that the treatment of PED-

GBM with niraparib increases PED-GBM sensitivity to a

further elevation of P-eIF2a, while the treatment with raphin-

1 increases PED-GBM sensitivity to a specific niraparib-

induced damage that is yet to be defined. Finally, similar to

raphin-1 and salubrinal, the S51D phosphomimetic eIF2a
variant increases the sensitivity of PED-GBM to niraparib,

ascertaining the role of P-eIF2a in modulating the PED-GBM

response to PARPis.

As mentioned earlier, radiation is currently the sole

treatment for DMG and results in only a few months of relief.

Therefore, the effects of low concentrations of raphin-1 and

salubrinal on the sensitivity of PED-GBM to low doses of

ionizing radiation are of immediate clinical relevance. The

effects of salubrinal and raphin-1 on the brain have been

reported in several studies. In mouse models, increased P-

eIF2a by injecting salubrinal into the hippocampus impaired

long-term memory (46). In addition, vanishing white matter

syndrome is caused by the decreased activity of eIF2B (47),

which can be affected by mutations or by increased P-eIF2a. In
contrast, in a mouse traumatic brain injury model, salubrinal

suppressed endoplasmic reticulum (ER) stress, autophagy, and

apoptosis (48). Moreover, administration of sephin1, an

inhibitor of GADD34, was effective in two models of

neurodegenerative diseases in mice that are associated with ER

stress—Charcot–Marie–Tooth 1B (CMT-1B) and SOD1-ALS

(49)—and administration of raphin-1 to mouse models of

Huntington disease harboring the HD82Q mutation improved

their weight and decreased the SDS-insoluble huntingtin and

nuclear assemblies in their cortices. Importantly, unlike

salubrinal, raphin-1 did not have any adverse effect on the

mice’s memory (32). In addition, in contrast to its effect on

PED-GBM, our experiments showed that raphin-1 decreased the

fraction of cells with comet in HAs relative to the untreated

control cells, and the sensitivity of HAs to raphin-1, salubrinal,
Frontiers in Oncology 12
and their combination with either PARPis or ionizing radiation

was remarkably lower than that of PED-GBM.

PED-GBM expressing either H3.1K27M or H3.3K27M

define two subgroups of DMG. They differ in the distribution

of the mutated histones in their chromatin leading to differences

in gene expression and dependence on metabolic pathways (41,

42, 50, 51). Also, the two variants are associated with different

additional mutations. While the H3.1K27M variant is associated

with mutations in ACVR1 and PI3K pathway, the H3.3K27M

variant is associated with mutations in the TP53 pathway (52,

53). However, alongside these differences there are similarities—

and both H3.3K27M and H3.1K27M are dependent for their

survival on the wnt/b-catenin pathway (42). Defining the unique

characteristics of each type of PED-GBM is extremely important

for identifying molecular targets that will lead to the

development of specific drugs for each type of PED-GBM,

which may be more potent or specific relative to normal cells.

At the moment, we do not know how and if the different H3

mutations (H3.1K27M, H3.3K27M, or H3.3G34R/V) or their

associated mutations contribute to the sensitivity of PED-GBM

to increased phosphorylation of eIF2a. It is possible that the

different GBM will be sensitive to the same drug either because

they share a common dependence on a certain pathway or

because these drugs may trigger different pathways in each one

of them.

In summary, our studies point to drugs that modulate P-

eIF2a either alone or in combination with PARPis or ionizing

radiation as novel means for treatment of PED-GBM and

suggest that elucidation of their downstream effectors can

reveal additional cellular components that can be targeted for

the treatment of PED-GBM.
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