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Abstract: Damping asymmetry is one of the most important factors that determines the performance
of Coriolis Vibratory Gyroscope. In this paper, a novel damping tuning method for the resonator
with parallel plate capacitors is presented. This damping tuning method is based on resistance heat
dissipation and the tuning effect is characterized by the control force in Whole-Angle mode. As the
damping tuning and stiffness tuning in the resonator with parallel plate capacitors are coupled with
each other, a corresponding tuning system is designed. To verify the tuning effects, experiments are
conducted on a hemispherical resonator gyroscope with Whole-Angle mode. The damping tuning
theories is demonstrated by the testing results and 87% of the damping asymmetry is reduced by
this tuning method with a cost of 3% decaying time. Furthermore, the angle-dependent drift in rate
measurement after tuning is only 15.6% of the one without tuning and the scale factor nonlinearity
decreases from 5.49 ppm to 2.66 ppm. The method can be further applied on the damping tuning in
other resonators with symmetrical structure.

Keywords: whole-angle mode; hemispherical resonator gyroscope; damp tuning; resistance heat
dissipation; damping asymmetry

1. Introduction

Coriolis vibratory gyroscopes with integrated Micro-Electro Mechanical Systems (MEMS) are
widely used in automotive, consumer electronics, industrial, aerospace, and other fields due to their
small size, low power consumption, and low cost [1–3]. Conventional vibratory gyroscope works in
Force to Rebalanced (FTR) mode as a rate gyroscope. In this mode, the gyroscope measures the angular
rotation rate by forcing one of its resonance modes to vibrate and detect the Coriolis force-induced
vibration of the second mode [4–7]. The most representative MEMS gyroscopes in FTR mode are the
Disk Resonator Gyroscope (DRG) reported by Boeing [8] with a bias stability of 0.012◦/h and the micro
hemispherical resonator gyroscope reported by the University of Michigan [9] with a bias stability
of 0.0103◦/h. Although the FTR mode has excellent performance in rate measurement, it suffers
from limited dynamic range and accumulative errors [10–12]. Whole-Angle (WA) mode is another
control strategy of a vibratory gyroscope, in which the vibration pattern of resonator is allowed to
freely precess along with the input of angular rate [13]. Compared to FTR mode, WA mode has the
advantages of direct angular output, stable scale factor, and wide dynamic range [14].

However, WA mode has a strict requirement for the symmetry of a resonator and the main source
of error in WA mode is the unequal mass, stiffness, and damping of the gyroscope’s two vibration
modes [15]. Generally, the errors caused by stiffness asymmetry is handled by electrostatic frequency
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tuning [16–18] but the regulation of damping distribution is more sophisticated than the one of stiffness,
which makes the damping mismatch still a non-negligible error source [19].

Damping in the resonators mainly comes from the air damping, surface loss, support loss,
thermoelastic damping, and electrical damping [20–22]. And once the gyroscope resonator is vacuum
packaged, only the electrical damping is tunable. In [23,24], the damping asymmetry is characterized
by releasing the angle from an initial set point and observing the exponential decaying time constant.
Though this approach is not suitable for gyroscopes of high quality, it provides the information for
damping distribution. In [25], a weight energy control algorithm is proposed to keep the amplitude
of oscillation constant in an inertial frame by maintaining the prescribed total energy. And in [26,27],
an additional damping compensation loop is created based on the energy loop and reduces the
root mean square of drift by 25%. Besides, virtual rotation is applied to average the error at a
different pattern caused by damping asymmetry [28,29] and an offline extended Kalman filtering
is proposed based on parameter identification and drift compensation for a MEMS ring vibratory
gyroscope, reducing the angular drift to 1◦/s [30,31]. Among these methods, only the effects caused by
damping asymmetry are compensated but the physical damping asymmetry have not been reduced.
The practical damping tuning method based on the resistance heat dissipation is presented and
the method is verified by applying it on a comb-like single-axis gyroscope [32,33]. The damping
tuning in the disk resonator gyroscope using parallel plate capacitors for driving is presented in [34].
However, in this article, the damping tuning is based on FTR mode and the tuning effect is only
discussed on a single axis but not around the gyroscope. Besides, the approach to assess the damping
tuning effect in [34] is testing the time constant, which is really an inefficient task.

This paper proposed a damping tuning method based on the resistance heat dissipation and
Whole-Angle mode. The tuning theories are derived into the two degree-of-freedom resonator and the
corresponding tuning system is designed. Instead of measuring the time constant, we take advantage of
the energy control force in Whole-Angle mode to characterize the damping distribution. Experiments
are conducted using a hemispherical resonator gyroscope under Whole-Angle mode and during the
tuning, the damping and frequency changes are characterized by the control force in Whole-Angle
mode. The research conclusions of this paper are also of great significance to other kinds of gyroscopes.

2. The Basic Theory of Damping Tuning

Figure 1 illustrates the basic structure of the damping tuning method based on resistance heat
dissipation. In this system, the surface of the resonator and electrode form the two parallel plates of the
capacitor and when the resonator is oscillating, the mechanical displacement at the parallel capacitor
will generate an electric current. As the current flows through the resistance, part of its energy will
be converted to heat, which means that the original mechanical energy is lost. The amount of energy
loss can be controlled by the resistance and voltage values. In this way, the damping of the system is
tunable. Define the initial capacitive gap between the resonator and electrode as d0 and the effective
area of the capacitor as A. In the case that the effective area of the resonator is large enough when
compared with the capacitive gap, the fringing field effect is neglected and the capacitance C(x) can
be calculated as:

C(x) =
εε0 A

d0 + x
(1)

x is the relative displacement of the resonator surface and the motion of the resonator can be
modeled as:

mẍ + cẋ + kx = − ∂

∂x

(
−1

2
C(x)V2

)
(2)

where m and k are the effective mass and stiffness of the resonator and c is the damping factor. V is the
voltage on the tuning electrode and the relationship between the V, and the bias voltage Vb can be
described as:



Micromachines 2020, 11, 945 3 of 15

V = Vb − R d
dt (C(x)V)

= Vb − RV dC(x)
dt − R2 d2(C(x)V)

dt2 C(x)
. (3)

Neglect the infinitesimal fraction o(R), the actual voltage on the tuning electrode V can
be obtained:

V =
Vb

1− Rεε0 A
(d0+x)2 ẋ

. (4)

Substitute the (4) into (2), and use Taylor expansion for x and ẋ, we can obtain the simplified
dynamic equation by ignoring the higher-order term:

mẍ +
(

c + 3α2V2
b R
)

ẋ +

(
k−

αV2
b

d0

)
x−

12α2RV2
b

d0
ẋx = −

αV2
b

2
(5)

where constant α is defined as α = εε0 A/d2
0.

It can be seen that the damping factor and the effective stiffness of the resonator are affected by
the tuning resistance R and the bias voltage Vb:

∆c=3α2V2
b R, ∆k = −αV2

b /d0. (6)

And the bias voltage will affect both the damping and stiffness while the resistance mainly affect
the damping. Besides, there is a coupling term xẋ in (5), which will lead to the coupling of the damping
and stiffness of the resonator and result in damping and stiffness nonlinearity. The ratio of the coupling
term and damping related term can be described as:

rc = −
x
d0
·

12α2V2
b R

c + 3α2V2
b R

= − x
d0
· 4∆c

c + ∆c
. (7)

Usually, the motion of the electrode is much smaller than the capacitive gap and the tuning should
not change the initial damping too much. Hence, this ratio satisfies |rc| << 1 and the coupling term’s
influence in damping is negligible. Similarly, the ratio of the coupling term and stiffness related term
is described as:

rk = −
12α2RV2

b
d0

ẋ

k− αV2
b

d0

= −12αRẋ∆k
k + ∆k

= − 12∆k
k + ∆k

· RC0 ẋ
d0

(8)

where C0 = εε0 A/d0 is the essential capacitance. When the resonator is oscillating with its resonant
frequency ω, the maximum of ẋ is about ωxm, where xm is the maximum movement of the electrode.
And the value of rk satisfies:

|rk| <
12∆k

k + ∆k
· xm

d0
· RC0ω. (9)

When using the resistance heat dissipation method, the time constant of the system RC0 should be
smaller than the oscillation period 2π/ω to guarantee the energy dissipating entirely in each oscillation
period. The tuning effect on stiffness should also keep ∆k << k and the maximum movement should
satisfy xm << d0. Thus, it can be concluded that the coupling term’s influence in stiffness is also slight
and this term is usually ignored for the simplification of the tuning process.

However, the analysis above is based on a linear model, which is limited by the onset of
nonlinearities. According to the nonlinear theory [35–38], nonlinearity will cause higher order terms
in x such as x2 and x3, to result in extra terms for stiffness. The additional terms ẋ3, ẋx2, and x2 ẋ,
which are all on the same order as x3, will result in nonlinear dissipative contributions and interfere
the damping tuning. Hence, this damping tuning method will not be suitable for resonators working
with a large amplitude.
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Figure 1. Schematic of the damping tuning based on the resistance heat dissipation.

3. Practical Damping Tuning Method for CVG

3.1. The Concept of Damping Tuning in CVG

Based on the theory in Section 2, the method is applied to a two degree-of-freedom resonator with
a symmetrical structure. Figure 2 shows the schematic of damping tuning with multiple electrodes.

Figure 2. Damping tuning in a two degree-of-freedom resonator. (a) Effect on damping and (b) effect
on stiffness.

The direction with maximum damping around the resonator is defined as the major damping axis
and the orthogonal direction, which has the minimum damping, and is defined as the minor damping
axis. c1 and c2 are the damping factors of major and minor damping axis. θτ is the angle between
the major damping axis and the direction of the excitation electrode. From the circular symmetry,
the damping factor along an arbitrary direction can be described as:

c(ϕ) = c1cos2(ϕ− θτ) + c2sin2(ϕ− θτ) + ∑ ∆cicos2(ϕ− θi) (10)

where θi indicates the direction of each tuning electrode and ∆ci is the damping change caused by
tuning. After tuning, the new angle of damping axis can be calculated by:

∂c(ϕ)

∂ϕ

∣∣∣ϕ=θ′τ = 0. (11)

The solution of (11) is:

tan 2θ′τ =
(c1 − c2) sin 2θτ + ∑ ∆ci sin 2θi
(c1 − c2) cos 2θτ + ∑ ∆ci cos 2θi

(12)
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and the new damping factor of the damping axis became:

c′1 = c1cos2(θ′τ − θτ) + c2sin2(θ′τ − θτ) + ∑ ∆cicos2(θ′τ − θi) (13)

c′2 = c1sin2(θ′τ − θτ) + c2cos2(θ′τ − θτ) + ∑ ∆cisin2(θ′τ − θi). (14)

The aim of damping tuning is to achieve θ′τ = 0 and c′1 = c′2, which can be described as:{
(c1 − c2) sin 2θτ + ∑ ∆ci sin 2θi = 0
(c1 − c2) cos 2θτ + ∑ ∆ci cos 2θi = 0

. (15)

Similarly, the theoretical tuning effect on stiffness can also be described as:{
(k1 − k2) sin 2θω + ∑ ∆ki sin 2θi = 0
(k1 − k2) cos 2θω + ∑ ∆ki cos 2θi = 0

(16)

where k1 and k2 are the effective stiffness coefficients of the major stiffness axis and minor stiffness axis
(the definition of the stiffness axis is similar to the one of damping axis). θω is the angle between the
major damping axis and the direction of excitation electrode.

According to (5) and (6), the method simultaneously affect the stiffness and damping but the
tuning effect on stiffness and damping is the opposite. Hence, if the angle between the stiffness axis
and damping axis satisfies (17) and (18), it is possible to eliminate both the stiffness and damping
asymmetry by this method:

(c1 − c2)(k1 − k2) cos 2θτ cos 2θω ≤ 0 (17)

(c1 − c2)(k1 − k2) sin 2θτ sin 2θω ≤ 0 (18)

In this case, the bias voltage Vb is adjusted to meet the requirement of frequency tuning and after
the determining of bias voltage, the resistance can still be adjusted to complete the damping. However,
if the distribution of damping cannot satisfied (17) or (18), the tuning of the frequency will intensify
the damping asymmetry. On such occasions, the bias voltage is not determined by the frequency
asymmetry and an additional frequency tuning system is needed to offset the tuning effect caused
during the damping tuning as well as tune the original frequency asymmetry:{

(k1 − k2) sin 2θτ + ∑ ∆ki sin 2θi + ∑ ∆k j sin 2θj = 0
(k1 − k2) cos 2θτ + ∑ ∆ki cos 2θi + ∑ ∆k j cos 2θj = 0

(19)

where θj and ∆k j is the tuning parameters of the additional system. Theoretically, the bias voltage of
the damping tuning in this case should be as small as possible to decrease the frequency tuning effect
caused by itself.

Generally, the voltage adjustment is much more convenient than the resistance adjustment and
the damping axis and stiffness axis can not always meet the requirements in (17) and (18), so it is
better to divide the tuning method into two systems, one of which focuses on the damping tuning
and ignores the side effect caused on stiffness while the other one only tunes the stiffness. And in
each tuning system, the electrodes used can usually be divided into the axis tuning electrode whose
major tuning effect acts on θτ or θω, and mismatch tuning electrode whose major tuning effect is on
the damping or stiffness coefficients.

Particularly, if the axis tuning electrode is at 45◦ or 135◦ and the mismatch tuning electrode is at
0◦ or 90◦, the equation of damping tuning can be simplified as:{

∆cτ−axis = |(c1 − c2) sin 2θτ |
∆cτ−damp = |(c1 − c2) cos 2θτ |

. (20)
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Similarly, the simplified stiffness tuning can also be described as:{
∆kω−axis + ∆kτ−axis = − |(k1 − k2) sin 2θω |
∆kω− f req + ∆kτ− f req = − |(k1 − k2) cos 2θω |

. (21)

Substitute (6) into (20) and (21), then the bias voltage and resistance are determined as:
RaxisV2

τ−axis = |(c1 − c2) sin 2θτ |
/

3α2

RdampV2
τ−damp = |(c1 − c2) cos 2θτ |

/
3α2

V2
ω−axis + V2

τ−axis =
∣∣d0(k1 − k2) sin 2θω

/
α
∣∣

V2
ω− f req + V2

τ−damp =
∣∣d0(k1 − k2) cos 2θω

/
α
∣∣ . (22)

Equation (22) provides an approach to calculate the required bias voltage and resistance. However,
in actual practice, because the precise value of some parameters is hard to know, the calculation results
can only provide an approximate value for tuning.

3.2. Approach for Damping Asymmetry Observation

The traditional method to characterize the damping is testing the decaying time of the resonator.
However, the result obtained in this way only indicates the damping of a certain vibration pattern.
Furthermore, in order to get the distribution of damping, experiments needs to be repeated under a
different vibration pattern. In Whole-Angle mode, the test of damping distribution becomes much
easier. According to Lynch’s theory [39,40],the gyroscope’s motion in WA mode can be solved using
the method of averaging, resulting in three first-order nonlinear differential equations using which the
dynamics of energy, quadrature error, pattern angle, and phase can be studied:

Ė = −
[

2
τ
+ ∆

(
1
τ

)
cos 2(θ − θτ)

]
E−
√

E
ω

fas (23)

Q̇ = − 2
τ

Q− ∆ω sin 2(θ − θω)E +

√
E

ω
fqc (24)

θ̇ = −κΩ +
1
2

∆
(

1
τ

)
sin 2(θ − θτ) +

1
2

∆ω cos 2(θ − θω)
Q
E
−

fqs

2ω
√

E
(25)

˙δφ = φ̇ +
1
2

∆ω cos 2(θ − θω) +
1
2

∆(
1
τ
) sin 2(θ − θτ)

Q
E
+

fac

2ω
√

E
(26)

where E and Q reflect the gyroscope’s energy and quadrature motion. θ stands for the vibration pattern
angle and δφ is the phase reference error. κ is the angle gain of the gyroscope. fas, fqc, fqs, and fqc

are the control force of each loop. 1/τ and ∆(1/τ) stands for the average and difference of the time
constant while ω and ∆ω is the average frequency and frequency mismatch:

1
τ = c1+c2

2m , ∆
(

1
τ

)
= c1−c2

m

ω2 = k1+k2
2m , ω∆ω = k1−k2

m

. (27)

The method of averaging takes advantage of the fact that the resonator motion can be described
as the behavior of a pair of coupled linear oscillators, both having natural frequencies very close to ω.
The solutions will be very nearly sinusoidal oscillations at or near this frequency [39], with amplitudes
and phases that vary slowly on a time scale determined by the period 2π/ω.

When the gyroscope is working, as shown in Figure 3, the control system should keep the
resonator at the state of Ė ≈ 0, Q ≈ 0, and Q̇ ≈ 0. And the relative control force will become an
efficient observer of the asymmetry:
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fas = −ω
√

E
[

2
τ
+ ∆

(
1
τ

)
cos 2(θ − θτ)

]
(28)

fqc = ω∆ω
√

E sin 2(θ − θω). (29)

As shown in (24) and (25), the asymmetry of damping will cause the control force varying with the
pattern angle of the gyroscope and sinusoidal portion of each force concerned with the corresponding
mismatch and bias angle. As for fas, there will even exist a bias of related with the average of damping
factor, which can also be used to observe the damping changes.

Figure 3. Illustration of the vibration pattern of an gyroscope in Whole-Angle mode. (a) The general
vibration state and (b) the vibration state under control.

4. Experimental Results

4.1. Device and Testing Platform

The experiments are carried out on the Hemispherical Resonator Gyroscope (HRG). The testing
platform consists of two printed circuit boards. One is used to drive and sense the HRG’s vibration
while the other is used for signal processing and the implementation of the controllers. The block
diagram of this platform is illustrated in Figure 4. The digital hardware including phase-lock loop,
modulation, demodulation, and control algorithms are all implemented in an Xlinx field-programmable
gate array (FPGA) using Verilog programming language with a reference clock of 100 MHz. The 16
bit digital to analog converters(DAC) and analog to digital converters(ADC) have a sampling rate of
2 MHz. The experiment setup and the gyroscope are shown in Figure 5.

The gyroscope works in n = 2 mode and the resonant frequency of this mode is about 4.8 kHz.
The resonator has 8 parallel plate capacitive electrodes inside that are used for sensing and driving in
various control loops. Around the resonator, there exists 16 electrodes designed for tuning and the two
opposite electrodes works as a pair. As shown in Figure 6, among these electrodes, 4 pairs of them can
be used for the axis tuning of damping or stiffness while the other 4 pairs work for mismatch tuning.
In addition, the electrodes used for damping tuning has to link to a resistance before the connection of
bias voltage. To decrease the bias voltage needed in the damping tuning and to reduce the side effect
in stiffness tuning, the resistance is determined as 9.1 MΩ.

In n = 2 mode, if the angle between two tuning electrodes is 90◦, these two electrodes will have
the same tuning direction, which means the voltage on these electrodes will synchronously reduce the
asymmetry or synchronously aggravate it. During the axis tuning or mismatch tuning, if the stiffness
tuning effect caused by damping is opposite to the required effect, all 4 pairs of electrodes can be
used (2 pairs for damping and 2 pairs for stiffness) while if the effect is the same, only 2 pairs can
be used and the other 2 pairs need to be unconnected. As for the gyroscope used in the experiment,
the electrode at 67.5◦ is used for the damping axis tuning while the electrode at 157.5◦ is used for
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stiffness axis tuning. The damping mismatch tuning uses electrodes at 0◦ and 90◦ and the frequency
tuning uses ones at 45◦ and 135◦.

Figure 4. Block diagram of the electronics and control loops. The control system is implemented based
on FPGA algorithm.

Figure 5. Experiment setup and the gyroscope for test.

Figure 6. The schematic diagram of the connection between the tuning electronics and voltage sources.

4.2. Damping Axis Tuning and Mismatch Tuning

Before the tuning of the damping, the frequency tuning is roughly conducted to reduce the error
caused by the frequency asymmetry and also spare some margins for damping tuning. When the
voltage Vτ−axis varies from 0 to 25 V, the value of the control force fas is shown in Figure 7. As illustrated
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in Figure 7a, the value of f as has a sinusoidal vibration with the pattern angle, which is consistent
with (28). As the tuning voltage increases, the curve of fas has an obvious upper-right movement,
which indicates the changes of θτ and 1/τ. The variation of the force bias fas−ave and θτ is shown in
Figure 7b.

0 100 200 300 400 500 600
2680

2700

2720

2740

2760

2780

 fas-ave

 

V2
-axis(V

2)

(b)
f as

-a
ve

 (D
ig

ita
l q

ua
nt

ity
)

35

40

45

50

55

0° 90°

 
(°

)

Figure 7. Damping axis tuning (a) the value of fas, and (b) the value of fas−ave and θτ .

When the voltage is 20 V, the phase of the curve is about 45◦ and the peak-to-peak value is the
smallest, which is considered the finish of the damping axis tuning. Then the voltage on 0◦ and 90◦ is
added and the result is shown in Figure 8.
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Figure 8. Damping mismatch tuning (a) the value of fas and (b) the value of fas−ave and fas−max− fas−min.

Consistent with the conclusion in Section 3, the voltages at 0◦ and 90◦ do not change the angle
of damping axis but reduce the mismatch of the two axis. As the tuning effect, the curve of fas only
moves upward and the peak-to-peak value gradually declines. However, when the voltage is larger
than 13 V, the peak-to-peak value of fas begins to increase, which indicates that the tuning is overdone
and the relationship between f as and θ is revised. As shown in Figure 9a, the tendency of the curve
Vτ−damp = 15 V is just opposite to other curves.

During the damping tuning, the frequency is also affected by the tuning voltage. Figure 9 shows
the corresponding changes of fqc when the voltage is adjusted. As illustrated in the figure, the tuning
effect is obvious and the tendency does agree with the theoretical analysis. As the frequency tuning
will not affect the damping of the gyroscope, the remaining frequency asymmetry can be eliminated
easily while the effect of damping tuning can be preserved.
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Figure 9. The value of fqc during damping tuning (a) during axis tuning and (b) during
mismatch tuning.

Experiments are also conducted under a different environmental temperature, which affects the
frequency and damping of the gyroscope. As shown in Figure 10a, when the temperature varies
from 15 ◦C to 35 ◦C, the curve of the control force fas only moves upward but has little changes on its
shape. Hence, it can be concluded that the temperature equally influences the damping all around
the resonator and its effect on asymmetry can be almost neglected. Figure 10b shows the distribution
of fas after damping tuning and the tuning voltages is fixed. As illustrated, in each temperature
point, the tuning method is able to prevent fas from varying with pattern angle, which proves its the
temperature robustness.
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Figure 10. The temperature robustness experiment of damping tuning (a) before damping tuning and
(b) after damping tuning.

4.3. The Improvement after Damping Asymmetry Trimming

After more meticulous adjustments of the voltage, Vτ−axis is determined as 19V while Vτ−damp is
determined as 11.8V and the reduction for damping asymmetry is shown in Figure 11a. When there is
no tuning effect on the gyroscope, the frequency asymmetry interference the process of mode matching
and the value of fas do not agree with the conclusion in (23). After frequency tuning, the curve is close
to a standard sine curve and the peak-to-peak value of fas is about 113. When the damping tuning is
added, the curve moves upward and is substantially flatter. The peak-to-peak value of fas is reduced
to 14 and the bias of fas changes from 2701 to 2774, which indicates that the damping mismatch is
reduced by 87% while the lost of decaying time is less than 3%. Figure 11b shows the measurement
of the gyroscope under a fixed input rate. According to (26), the drift of precession rate is related
to both the frequency and damping asymmetry. When without tuning, the drift is mainly caused
by frequency asymmetry and the peak-to-peak value of measured rate is 0.0278◦/s. After frequency
tuning, there still remains a fluctuation with a peak-to-peak value of 0.0032◦/s, which is considered
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the results of damping asymmetry. After the damping tuning, the residual angle-dependent drift is
only 0.0005◦/s, 15.6% of the one without damping tuning. The degree of improvement is close to the
one observed from the control force fas.

0 15 30 45 60 75 90
2550

2600

2650

2700

2750

2800

2850

f as
 (D

ig
ita

l q
ua

nt
ity

)

Pattern angle (°)
(a)

  No tuning
  Frequency tuning
  Frequency and damping tuning

0 15 30 45 60 75 90
0.200

0.205

0.210

0.215

0.220

0.225

0.230

0.235

0.240

Pr
ec

es
si

on
 ra

te
 o

f p
at

te
rn

 a
ng

le
 (°

/s
)

Pattern angle (°)
(b)

  No tuning
  Frequency tuning
  Frequency and damping tuning

Figure 11. the improvement of gyroscope after tuning (a) the improvement in damping asymmetry
and (b) the improvement in rate measurement.

Since the damping tuning introduces additional losses into the system and reduces the quality
factor, theoretically it will impact the sensitivity of the gyroscope to some degree. Figure 12a shows the
result of the resolution test. As illustrated, the gyroscope after tuning can still sense the angular input
of 0.001◦/s which is the minimum output of our turntable. Figure 12b shows the Allan variance of
the gyroscope. The angle random work before and after tuning is 0.019◦/

√
h and 0.021◦/

√
h, which

indicates the decrease of Signal-to-Noise Ratio after additional energy losses. As for the bias stability,
it decreases from 0.73◦/h to 0.68◦/h after tuning. As the tuning effect mainly focuses on the symmetry
of the gyroscope and losses of quality factor is only 3%, the influence in gyro’s static performance is not
obvious. Besides, the test of scale factor is also conducted and the scale factor nonlinearity is shown in
Figure 13. When there is no damping tuning, the nonlinearity is extremely severe at a small angular
input due to the angle-dependent bias shown in Figure 11b. After tuning, the nonlinearity decrease
from 5.49 ppm to 2.66 ppm, which reflects the effectiveness of reducing the asymmetry of gyroscope.
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Figure 13. The scale factor nonlinearity of gyroscope before and after damping tuning.

5. Discussion

According to the experimental results, the damping tuning method can efficiently reduce the
asymmetry of damping and its side effect on stiffness tuning can be easily avoided by using an
additional stiffness tuning system. Besides, this method has excellent temperature robustness which
makes the tuning method insensitive to environmental changes. Though this method introduces
additional energy dissipation, the losses in quality factor and resolution are acceptable and the
improvement in gyroscope’s scale factor is obvious. Compared with the other compensation method
dealing with the damping asymmetry, this method changes the essential damping distribution,
which reduces the error caused by damping from its function principle. However, the current damping
tuning method is only suitable for the linear system and there are still lots of neglected influencing
factors such as fringing field effect, geometry, or external nonlinearities, which may be a topic in our
further study.

6. Conclusions

This paper presented a damping tuning method based on the resistance heat dissipation.
The tuning theories were derived and the corresponding tuning system was designed. Experiments
were conducted using a hemispherical resonator gyroscope under Whole-Angle mode. During the
tuning, the energy and quadrature control force were worked as the observer to characterize tuning
effects on damping and frequency. The experimental results coincided with the theories and the
method reduced 87% of the damping asymmetry with a cost of 3% decaying time. In addition,
the angle-dependent drift in the rate measurement was also reduced and remained only 15.6% of the
one without damping tuning, which led to the reduction of scale factor nonlinearity from 5.49 ppm to
2.66 ppm. The method presented in this paper is widely applicable to the other kind of gyroscope,
which may be useful for further researches on inertial sensors with high accuracy.
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