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Background: Understanding underlying mechanisms of neurodevelopmental

impairment following preterm birth may enhance opportunities for targeted interventions.

We aimed to assess whether placental DNA methylation of selected genes affected

early neurological functioning in preterm infants.

Methods: We included 43 infants, with gestational age <30 weeks and/or birth weight

<1,000 g and placental samples at birth. We selected genes based on their associations

with several prenatal conditions that may be related to poor neurodevelopmental

outcomes. We determined DNA methylation using pyrosequencing, and neurological

functioning at 3 months post-term using Prechtl’s General Movement Assessment,

including the Motor Optimality Score-Revised (MOS-R).

Results: Twenty-four infants had atypical MOS-R, 19 infants had near-optimal MOS-

R. We identified differences in average methylation of NR3C1 (encoding for the

glucocorticoid receptor) [3.3% (95%-CI: 2.4%−3.9%) for near-optimal vs. 2.3% (95%-

CI: 1.7%−3.0%), p = 0.008 for atypical], and at three of the five individual CpG-sites.

For EPO, SLC6A3, TLR4, VEGFA, LEP and HSD11B2 we found no differences between

the groups.

Conclusion: Hypomethylation of NR3C1 in placental tissue is associated with poorer

neurological functioning at 3 months post-term in extremely preterm infants. Alleviating

stress during pregnancy and its impact on preterm infants and their neurodevelopmental

outcomes should be further investigated.
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INTRODUCTION

Approximately one in 10 infants is born preterm, before
37 completed weeks of gestation (1). Despite substantial
improvements in modern neonatal care, preterm infants,
especially those born very to extremely preterm, are at
higher risk of adverse neurodevelopmental outcomes (2). These
neurodevelopmental impairments may include cognitive and
motor delays and socio-emotional functioning, both short-term
and long-term (3, 4).

The causes leading to neurodevelopmental impairment
following preterm birth are multifactorial and not always well
understood. One theory is that adverse intrauterine conditions
can lead to “fetal programming,” which in turn may have
implications for neurodevelopment. Epidemiological and clinical
studies report that adverse fetal environments could have major
impacts on pathophysiological processes across the lifespan (5),
which supports this theory. A mechanism through which fetal
programming can occur regards DNA methylation, which is
an epigenetic alteration that regulates gene expression. Several
adverse intrauterine conditions may play a direct or indirect
role in neurodevelopmental impairment following preterm birth,
including inflammation, hypoxia, reduced supply of macro- and
micronutrients in fetal growth restriction with resulting altered
angiogenesis, delayed neuronal growth, and an altered stress
response. All these conditions may affect DNA methylation of
associated genes.

Several genes of interest that may impact neurodevelopmental
impairment include the genes encoding for erythropoietin
(EPO), the sodium-dependent dopamine transporter (solute
carrier family 6 member 3, SLC6A3), toll-like receptor 4
(TLR4), vascular endothelial growth factor A (VEGFA), leptin
(LEP), the glucocorticoid receptor (nuclear receptor subfamily
3 group C member 1, NR3C1) and hydroxysteroid 11-beta
dehydrogenase 2 (HSD11B2). EPO is mainly associated with the
proliferation, maturation, and differentiation of red blood cells,
but has also been proven important in the direct development,
maintenance, protection, and repair of the central nervous
system (6). SLC6A3 encodes for the dopamine transporter,
with dopamine being an important neurotransmitter for the
central nervous system. SLC6A3 plays a role in the dopamine
re-uptake pathway and has been identified as a key gene
in neurodevelopment (7). TLR4, belonging to the family of
pattern recognition receptors, is involved in immunomodulation.
It binds to bacterial lipopolysaccharides, which triggers the
intracellular signaling pathway of innate immune response
activation, and production of pro-inflammatory cytokines (8).
In the case of preterm birth, this pathway is often upregulated,
which signals intrauterine inflammation (8). VEGFA plays an
important role in angiogenesis, which is required for endothelial
cell proliferation and growth (9), and may be related to
hypoxic states during pregnancy due to placental insufficiency,
affecting preterm growth and development. LEP is a crucial
metabolic hormone for body weight regulation, placental and
fetal growth, that is highly expressed in the placenta (10). LEP
is also important for angiogenesis and brain development in
fetuses (10). NR3C1 encodes for the glucocorticoid receptor.

HSD11B2 is the enzyme entailing the barrier function of the
placenta, responsible for limiting the amount of circulating
cortisol that is passed to the fetus, by converting cortisol into
its inactive metabolites. High fetal exposure to glucocorticoids,
such as cortisol or the “stress hormone”, have been implicated
in altered neuroendocrine environment often associated with
poor neurological outcomes (11, 12). Together, these genes may
provide insight into which processes affect neurodevelopmental
outcomes following preterm birth.

A method to reliably assess early neurological functioning
is by assessing the early motor repertoire of infants. At 9–16
weeks post-term, the early motor repertoire includes fidgety
movements (FMs), small circular movements visible in all joints
(13), as well as several other movement and postural patterns,
which together form the basis for the motor optimality score
– revised (MOS-R) (14). The early motor repertoire, including
the MOS-R, is reported to be predictive of cerebral palsy (CP).
The absence of FMs predicts CP with a sensitivity of 98% and a
specificity of 91% respectively (13). Additionally, for other areas
of neurodevelopment, such as neurological deficits, intelligence,
and cognition, evidence is accumulating that this non-invasive
tool is predictive of even minor issues as well, from childhood up
to and including adulthood (15–17).

Understanding the underlying mechanisms of
neurodevelopmental impairment following preterm birth
may enhance opportunities for targeted early interventions.
Therefore, our aim was to assess whether placental DNA
methylation of the aforementioned genes affected early
neurological functioning in preterm infants born before 30
weeks of gestation.

MATERIALS AND METHODS

Study Population
We screened the first 70 infants with a gestational age of <30
weeks and/or a birth weight of <1,000 g that participated in the
prospective cohort study NeoLifeS for eligibility in the current
study. For this hypothesis-generating study, a feasible sample
size of about 40 infants was determined, based on a previous
study from our group (18). Infants were excluded for the current
study if they had missing placenta samples (n = 6) or missing
placental examinations, which were performed by a pathologist
(n = 19). Two additional infants were excluded because of
extremely poor quality of the placental samples. Our final sample
therefore consisted of 43 infants. The NeoLifeS cohort study was
approved by the Institutional Review Board of the University
Medical Center Groningen (METc 2013/262). Written informed
consent was obtained from all parents.

Selection of Genes and Primer Design
We selected relevant genes based on their associations with
several prenatal conditions that may be related to poor
neurodevelopmental outcomes. The genomic target region we
chose (Table 1) was based on existing literature. All primers
for the target regions were designed using the Pyromark Assay
Design software (Qiagen). We preferably selected CpG-rich areas
in the promotor part of the gene because of their putative
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TABLE 1 | PCR forward and reverse primer sequences accompanied by sequencing primer and the sequence to analyze, and their genomic region.

Gene Primers Sequence to analyze Genomic region

EPO F:5
′
-GGGGGTAGGGGTTGTTATTTGTATG-3

′

R:5
′
-Biotin-

CCCAAACCTCCTACCCCTACTCTAACC-3
′
S

5
′
-GGGTTGTTATTTGTATGTG-3

′

TGYGTGYGYGGGTGGGGGTG GGGGAGAGGTTGTGTGYGTG

AGGGGTYGTTAGGGGTAGGG GTTATTYGGGGTTAGAGTAG

GGGTAGGA

Chromosome 7:

100720774–100720822

SLC6A3 F:AGTTATATTTATTTAGGGTAGGTGGTATT

R:5
′
-Biotin-

AATTTCCCCAATTACCCTACTAACCC

S:AGGGTAGGTGGTATTAT

TTYGYGTGAGAGAGTTGGGY GGAGGATGGATAGGGTTTTA

TYGYGGGAATTAGTTTTTGG GTTAGTAGG

Chromosome 5:

1443000–1448000

TLR4 F:5
′
GTTGAGGTTTATTTTTAGTTTTGTATGTG3

′

R:

5
′
-Biotin-AACCTCATTCTACCTTACATACC3

′

S:5
′
GTGAGTTTTTTTATAAGAAGGG 3

′

GYGGGTTAAA TTGTGTTTTG TAAAAATTTA TATATYGAAG

TTTTAATTTT TTTATTTTAG A

Chromosome 9

117703726–117703786

VEGFA F:5
′
-GGGAGTAGGAAAGTGAGGT-3

′

R:5
′
-Biotin-TTCCCCTACCCCCTTCAATAT-3

′

S:5
′
-AGTAGGAAAGTGAGGTTA-3

′

YGTGYGGATA GGGTTTGAGA GTYGTTTTTT TTTTGTTAGG

AATATTGA

Chromosome 6:

43769854–43769901

LEP F: 5
′
-GGTGTATATTGAGGGTTTAGGGTTAGTA-

3
′
R:

5
′
-Biotin-

CCATACCTACCCCCCCCTCTTATAAC-3
′
S1:

5
′
- GGTTTAGGGTTAGTAGT -3

′
S2: 5

′
-

GGGAGTTGGAGTTAGAAATG -3
′

S1:YGTTYGGTAYGTYGTTATTTTGAGGGGYGGGGY

GGGAGTTGGYGTTAGAAATG

S2:YGTYGGGGTTTGYGGGGTAGTTGYGTAAGTTGTGA

TYGGGTYGTTATAAGAGGGGYGGGTAGGTATGGAGTTT

Chromosome 7:

128241151–128241276

NR3C1 F:5
′
- AGTTTTAGAGTGGGTTTGGAG -3

′
R:5

′
-

Biotin- CCCCCAACTCCCCAAAAA-3
′

S:5
′
-GAGTGGGTTTGGAGT−3

′

YGYGGAGTTGGGYGGGGGYG G

GAAGGAGGTAGYGAGAAAAGAAATTGGAGAAATT

Chromosome 5:

143403500–143405000

HSD11B2 F:5
′
-Biotin-GGGTGTGTGAGTTAGGGATTT-3

′

R:5
′
-ACATCCCCATACCCTTTACTAATC−3

′

S:5
′
-AACCAACCCATACTCACC−3

′

CRATCTCCRCTACCRCTACCRCTACCRC

CCRCRCCCRTACACRCRCCRCACTCCCAC

Chromosome 16:

67427000–67432000

F, forward primer; R, reversed primer; S ,sequence primer; S1, sequence 1; S2, sequence 2.

regulatory function on transcriptional activity. For EPO, the
analyzed promotor region includes the binding site for the
hypoxia inducible factor (HIF) complex, that has been reported
to repress transcription through hypermethylation in cancer (19).
SLC6A3 has been identified to be differentially methylated in
preterm newborn by Arpón et al. (7). Our assay was designed
to include their position Cg00997378. For TLR4 the selected
area included a binding site for Sp-1 and regulatory factor
X1, a transcription suppressor, strongly associated with TLR4
expression (20, 21). For VEGFA we included an area with a
hypoxia inducible factor complex site where hypomethylation
is present in placental tissue after preeclampsia (22). Our
investigated LEP region overlaps with the promotor region,
that is reported to be regulated by methylation (23). For
NR3C1, we analyzed the locus also identified by Giarraputo
and colleagues, also using the same reverse primer (24). Lastly,
our HSD11B2 assay was designed to include several CpG
positions defined in literature, especially those found by Marsit
et al. (25).

Quantification of Methylation and
Pyrosequencing
Paraffin-embedded placenta samples of the fetal side were
provided by the pathology department, after standard assessment
had been performed. Five cut cores with a diameter of

five µm per core were used per placental sample to isolate
DNA. DNA isolation was performed using the QIAamp DNA
Formalin-Fixed, Paraffin-Embedded Tissue Kit (Qiagen). Quality
and concentration of the isolated DNA was assessed using
the NanoDrop R©ND-1000 spectrophometer (Thermo Fisher
Scientific, Waltham, MA). Obtained concentrations ranged
between 121.1 and 482.4 ng/µl. Afterwards, DNA was bisulfite
converted, using the EZ methylation Gold-Kit (Zymo Research,
Irvine, CA), according to the supplier’s protocol. In total, 500
ng of DNA sample was bisulfite converted for subsequent
analysis. For polymerase chain reaction (PCR) amplification, we
used a master mix of 12.5 µl HotStarTaq DNA Polymerase,
10.5 µl sterile water, a 1 µl mix of forward and reverse
primer and a 1 µl bisulfite template, according to the
manufacturer’s instructions. We included a negative control
to check for contamination. Cycling conditions for PCR
were the same for all assays, except for HSD11B2: 95◦C for
15min, 45 cycles of 94◦C for 30 s, 58◦C (HSD11B2 56◦C)
for 30 s, 72◦C for 30 s, followed by a final step of 72◦C
for 7min. Afterwards, a DNA ladder and 3–5 µl of each
PCR product was loaded and run on 2% agarose gel with
ethidium bromide staining to visualize presence or absence
of PCR products and contamination. Next, pyrosequencing
was performed using the PyroMarkQ24 (Qiagen). Methylation
levels were analyzed with associated software. Each of the CpG
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TABLE 2 | Participant characteristics (N = 43).

MOS-R <25

(n = 24)

MOS-R 25–28,

(n = 19)

P-value

Gestational age

(weeks)

27.6 ±1.52 27.5 ±1.50 0.85T

Birth weight (g) 1,023.2 ±216.4 986.6 ±279.1 0.63T

Small for

gestational age

3 (12.5) 2 (10.5) 0.84F

Male sex 14 (58.3) 8 (42.1) 0.36F

Multiple

pregnancy

2 (8.3) 4 (21.1) 0.38F

C-section

delivery

10 (41.7) 12 (63.2) 0.86X

Prenatal steroids 15 (62.5) 15 (78.9) 0.24X

Apgar score 8 (7–8) 8 (7–9) 0.34U

NICU stay (days) 15.0 (5.0–29.0) 16.5 (8.3–23.8) 0.57U

Postnatal

steroids

5 (20.8) 3 (15.7) 1.00F

Mechanical

ventilation (days)

6 (1–11) 2 (1–19) 0.83U

NEC 3 (12.5) 5 (26.3) 0.43F

Sepsis 7 (29.2) 3 (15.7) 0.47F

PDA 12 (50.0) 10 (52.6) 1.00F

Genes present

EPO 20 (83.3) 18 (94.7) 0.36F

SLC6A3 19 (79.2) 18 (94.7) 0.21F

TLR4 20 (83.3) 16 (84.2) 1.00F

VEGFA 23 (94.8) 16 (84.2) 0.31F

LEP 20 (83.3) 16 (84.2) 1.00F

NR3C1 18 (75.0) 17 (89.5) 0.27F

HSD11B2 14 (48.3) 12 (63.2) 0.75F

Characteristics given as mean ± SD, median (P25–P75), n (%) according to

their distribution.

MOS-R, Motor Optimality Score-Revised; NICU, Neonatal Intensive Care Unit; NEC,

Necrotizing Enterocolitis defined as Bell stage >2A; PDA, Persistent Ductus Arteriosus

treated with ibuprofen or clip. Sepsis was blood culture proven. Small for gestational age

was defined as a birth weight below the 10th percentile on Dutch growth charts.
U Mann–Whitney U-Test, T Students T-test, X Chi-square Test, F Fisher’s Exact Test.

sites was quality control checked and the percentage of DNA
methylation at individual CpG sites was calculated. Additional
information on the pyrosequencing method used and two
representative examples of the sequencing results are provided
in Supplementary Figure 1.

Early Neurological Functioning
Infants were videotaped for approximately 10min at 3 months
post-term to assess their spontaneous movement repertoire.
During the recording the infants were in active wakefulness,
partly dressed, and in supine position. All video recordings were
assessed according to Prechtl’s GMA (13). Each video recording
was assessed by two trained assessors, who were blinded to
the infant’s medical history. In case of disagreement, a senior
assessor (AFB), also a licensed GM tutor, was consulted. In
previous studies, the inter-scorer agreement for the MOS-R was
reported to be good to excellent with Cohen’s Kappa statistics

TABLE 3 | Average methylation of the selected genes.

Gene N Median

methylation

(IQR)

MOS-R <25

Median

methylation

(IQR) MOS-R

25–28

P-value

EPO 38 2.4 (1.7–2.5) 2.4 (2.1–2.8) 0.34

SLC6A3 37 45.5

(39.2–51.9)

44.8

(40.9–51.3)

0.84

TLR4 36 40.8

(37.8–47.8)

41.1

(35.2–48.5)

0.74

VEGFA 39 3.2 (3.0–3.5) 3.3 (3.0–4.0) 0.86

LEP 36 19.6

(13.9–27.4)

20.1

(16.0–26.0)

0.92

NR3C1 35 2.3 (1.7–3.0) 3.3 (2.4–3.9) 0.008

HSD11B2 26 3.1 (3.1–4.9) 2.1 (1.5–2.9) 0.10

N, number of infants; IQR, interquartile range; MOS-R, motor optimality score.

between 0.75 and 0.91 (26). First, the infants’ FMs were classified
as either normal or aberrant (meaning abnormal or absent).
Second, the MOS-R was determined. The MOS-R consists of
five categories: FMs, observed movement patterns, age-adequacy
of the movement repertoire, observed postural patterns, and
movement character. Points awarded according to the manual
are 4 for normal, 2 for reduced and 1 for absent. For FMs, scoring
is slightly different, with 12 points awarded for normal FMs, 4
points for abnormal FMs, and 1 point for absent FMs. After
individual categories are scored, the sum of the categories forms
the MOS-R, ranging from 5 to 28 points. A score between 25 and
28 was considered near-optimal, whereas a score below 25 was
considered atypical.

Statistical Analyses
First, we present demographic data using descriptive statistics.
Distribution of data was assessed using visual inspection of
Q–Q plots, as well as a Shapiro–Wilk test. Second, we tested
differences in average DNA methylation of the selected genes
between infants with near-optimal MOS-R and atypical MOS-R
using independent samples t-tests or Mann–Whitney-U tests as
appropriate. For genes that were significantly different between
the two groups, we also tested differences in individual CpG
sites between infants with near-optimal MOS-R and atypical
MOS-R using independent samples t-tests or Mann-Whitney
U-tests as appropriate. When a statistically significant result was
found, we then performed a univariable andmultivariable logistic
regression analysis, in which we adjusted for sex and mode of
delivery. Analyses were performed using SPSS for Windows,
version 28.0 (IBM Corporation, NY, USA). A p-value <0.05 was
considered statistically significant.

RESULTS

Characteristics of the Study Population
In this study, we included 43 neonates. We present all participant
characteristics in Table 2. Characteristics did not differ between
infants who had an atypical MOS-R of <25 and infants with
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a near-optimal MOS-R of 25–28. None of the infants suffered
from severe intracranial hemorrhages (grade 3 or 4), cystic
periventricular leukomalacia, or cerebellar hemorhages. During
the pyrosequencing analysis, the quality of some samples was too
low for methylation to be measured, which resulted in unequal
sample sizes for each gene. The MOS-R ranged from 12 to 28,
with 24 infants scoring below 25.

Average DNA Methylation of Selected
Genes
We present the average methylation for each of the included
genes in Table 3. We found a statistically significant difference
forNR3C1 between the two groups of 3.3% (95% CI: 2.4%−3.9%)
vs. 2.3% (95% CI: 1.7%−3.0%), p = 0.008. In univariable logistic
regression analysis the odds ratio for an atypical MOS-R with
each percent increasing methylation in the NR3C1 gene was 3.23
(95% confidence interval 1.26–8.28, p= 0.015). After adjustment
for sex and mode of delivery, results remained statistically
significant (odds ratio 3.36, 95% confidence interval 1.21–9.37,
p= 0.020). For EPO, SLC6A3, TLR4, VEGFA, LEP andHSD11B2
we did not find statistically significant differences between the
two groups.

Methylation of Individual NR3C1 CpG-Sites
Of the individual CpG sites analyzed within the NR3C1 gene
(Figure 1), CpG 1, CpG 4 and CpG 5 showed statistically
significantly higher methylation for infants who had a near-
optimal MOS-R of 25–28. At CpG 1, median methylation for
infants with an atypical MOS-R was 1.8%, compared with 2.9%
for infants with a near-optimal MOS-R (U = 291.5, z = 2.9, p =
0.003). At CpG 4, median values were 1.4 vs. 2.3% (U = 255, z =
2.2, p = 0.024). At CpG 5 median values were 1.3 vs. 2.1% (U =

248, z = 2.0, p = 0.048). CpG 2 and CpG 3 also showed higher
methylation in infants with a near-optimal MOS-R, but without
statistical significance.

DISCUSSION

This study aimed to assess whether DNA methylation of seven
selected genes, potentially associated with early neurological
functioning, affected this outcome in extremely preterm infants.
We demonstrated that infants with an atypical MOS-R had lower
DNAmethylation levels in theNR3C1 gene overall and in three of
the five individual CpG sites, compared with infants with a near-
optimal MOS-R. For the other six genes, EPO, SLC6A3, TLR4,
VEGFA, LEP and HSD11B2, we found no differences in DNA
methylation levels between the two groups.

We found placental hypomethylation of three out of the five
individual CpG sites in the NR3C1 gene for infants with poorer
neurological functioning at 3 months post-term. Our results
are in line with those of others, who also reported placental
hypomethylation of NR3C1 to be associated with neurobehavior
in fullterm infants, showing poorer regulatory behavior in
infancy (27, 28). In contrast, Sheinkopf and colleagues report
that higher mean methylation of NR3C1 associates with poorer
regulation reflected in fullterm cry acoustics (29). Our findings
may be explained by the influence of maternal cortisol on

the development of the stress response as coordinated by the
hypothalamic-pituitary-adrenal (HPA) axis (30). Methylation
of NR3C1 has been inversely associated with expression (30),
which would suggest that infants with high maternal stress
during pregnancy and resulting decreased methylation are
potentially exposed to higher cortisol levels in utero. Exposure
to higher cortisol levels may then account for adverse infant
neurodevelopment. In a systematic review by Zijlmans and
colleagues, the effects of prolonged in utero cortisol exposure are
noted to be physical, i.e., lower birth weight or being born small-
for-gestational age, as well as developmental, in infant motor
and cognitive functioning (31). Additionally, in their review,
Waffarn and colleagues report effects of in utero exposure to
cortisol on the development of the developing HPA axis (32).
This may have implications for future treatment in the NICU
as well, because the HPA axis is necessary to cope with stressful
stimuli. Without this adaptive mechanism properly developed,
infants may not be able to regulate stress, and this may in
turn hamper neurodevelopment, evidenced by a wide range of
effects of neonatal stress exposure (33). The hypothesis that
exposure to stress is related to hypomethylation of the NR3C1
gene is also strengthened by postnatal findings in preterm infants
showing that increased stress exposure during NICU stay leads to
hypomethylation of the NR3C1 gene (24). Therefore, the clinical
relevance of NR3C1 methylation may be to identify infants at
risk of a variety of neurodevelopmental impairments already
very early.

To our surprise, we did not find any differences between
the groups in the HSD11B2 gene. Previous studies reported
that the HSD11B2 and NR3C1 genes are interrelated,
with hypomethylation in NR3C1 being correlated with
hypermethylation in HSD11B2 (12, 34). In our study, we
did observe hypermethylation in the HSD11B2 gene for infants
with poorer neurological outcome even though this did not
reach statistical significance, which aligns with these findings.
We believe that our findings could be explained by a lack of
power to detect differences in methylation in HSD11B2, because
of a smaller sample size for this gene. Future studies should
include both genes, as well as other genes in the glucocorticoid
receptor signaling pathway, and focus on the interplay of both
genes in the neurodevelopmental pathway.

We also did not find any differences between the groups
for the other genes, i.e., EPO, SLC6A3, TLR4, VEGFA and
LEP. Research on these genes and their interplay with
neurodevelopment is limited. EPO andTLR4 have been suggested
as important genes in neurodevelopment, but studies associating
differential methylation in placenta or other tissues with
neurodevelopmental outcomes, have, to our knowledge, not been
published. For SLC6A3, Arpón et al. (7) performed a study that
showed a potential role for this gene in neurodevelopment when
examining differences between methylation profiles in preterm
and fullterm children. This gene has mainly been associated
with attention-deficit/hyperactivity disorder (7), but entailing
features may not be evident in the MOS-R yet. Methylation
of VEGFA has been associated with performance intelligence
quotient, in infants with brain sparing due to fetal growth
restriction (35). Our study included only five infants born
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FIGURE 1 | Average methylation for the NR3C1 gene individual CpG sites. *p < 0.05. MOS-R, Motor Optimality Score-Revised.

small for gestational age, thereby limiting power to detect such
associations. Finally, for LEP, one study by Lesseur et al. (30),
reports that placental hypermethylation is associated with poorer
neurobehavior expressed as lethargy and hypotonicity, in males
only. Both our groups entailed equal numbers of males and
females, whichmay havemasked such an effect, or we simplymay
have lacked power to detect differences.

The role of the placenta as a fundamental link between
the intrauterine environment and early neurodevelopmental
outcomes has become more and more evident. Nugent
and Bale (36) even define this link as the “diplomat for
maternal-fetal relations.” The intrauterine environment is
influenced by both gestational age and environmental factors,
that may trigger placental adaptations which reflect in the
fetal development (36). Our study focused on key processes
that are thought to be relevant in the interaction between
placental adaptations and fetal development, including central
nervous system development, inflammation, angiogenesis,
metabolic processes, and the stress response. Of these
processes, the intrauterine stress response seems to be the most
influential for atypical neurodevelopment among extremely
preterm infants.

Strengths and Limitations
To the best of our knowledge, our study is the first
study investigating the role of placental DNA methylation
of several neurodevelopmentally important genes and their
association with early neurological functioning in a group
of preterm infants born before 30 weeks’ gestation. Other
studies focused on differences between preterm and fullterm

birth, while ours distinguished between preterm infants with
and without (minor) neurological impairments. Based on
their placental DNA methylation profile, we studied potential

pathophysiological pathways that may be responsible for the
neurological impairments, to early identify infants that could

benefit from intervention. Additionally, the technique of general
movements assessment is a very reliable assessment that is

highly predictive for later-life outcomes (13, 37–40). We also
acknowledge our limitations. First, we used paraffin-embedded
placental tissue, with less optimal quality than fresh placenta

material, making DNA isolation more difficult. In future studies,

fresh placental tissue samples may be more optimal. Second,
we did not investigate gene expression and/or hormone levels,

which hampers us to draw definitive conclusions on the impact

of the observed DNA methylation patterns. We purposely
chose to describe our observation without postulating a direct
clinical consequence, because of three main reasons. First,
DNA methylation is not the only factor determining gene

expression, as also the presence of specific transcription factors

is required. Second, expression may be tissue specific, and in
this study, we use the placenta as a surrogate for a general

pattern, in this case the brain. Third, we measured changes
in a homogenate of placenta tissue, meaning that methylation
changes in a subpopulation of cells might be much higher. In
theory, single-cell analysismethods or stainingmethods would be

suitable to get more insights, if no post-transcriptional regulation

takes place, but these methods may not be sensitive enough to
detect differences equivalent to the 1% methylation difference

we observed. Still, an inverse relation between methylation and
expression has previously been described in the NR3C1 gene
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(30). As a next limitation, our study included a limited number
of only 43 infants. Larger prospective studies are warranted
to confirm our results. Those studies may also include gene
expression analyses to further elucidate the relation between
DNA methylation and expression. A final limitation regards
multiple testing. However, because of the hypothesis generating
nature of this study, we chose not to correct for multiple tests
performed, thereby acknowledging that some of our results
may be chance findings. Because of the small sample size and
hypothesis generating nature of this study, we purposely chose
not to perform genome-wide arrays.

CONCLUSION

In conclusion, in our study of 43 extremely preterm infants, the
stress response during pregnancy and related hypomethylation
in placental tissue is associated with poorer neurological
functioning at 3 months post-term. We did not identify evidence
of such associations for other processes associated with preterm
birth. Alleviating stress during pregnancy and its impact on
preterm infants and their neurodevelopmental outcomes should
be further investigated.
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