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The development of pharmacodynamic (PD) biomarkers in oncology has implications for design of clinical protocols from
preclinical data and for predicting clinical outcomes from early clinical data. Two classes of biomarkers have received particular
attention. Phosphoproteins in biopsy samples are markers of inhibition of signalling pathways, target sites for many novel agents.
Biomarkers of apoptosis in plasma can measure tumour cell killing by drugs in phase I clinical trials. The predictive power of PD
biomarkers is enhanced by data modelling. With pharmacokinetic models, PD models form PK/PD models that predict the time
course both of drug concentration and drug effects. If biomarkers of drug toxicity are also measured, the models can predict drug
selectivity as well as efficacy. PK/PD models, in conjunction with disease models, make possible virtual clinical trials, in which
multiple trial designs are assessed in silico, so the optimal trial design can be selected for experimental evaluation.

1. Introduction

The well-known limitations of cancer chemotherapy are its
toxicity to normal tissues (a reflection of limited selectivity),
its low clinical response rates (often 20% or less), and the
narrow clinical spectrum of existing drugs. The toxicity to
normal tissues of classical cytotoxic agents reflects the fact
that these drugs target processes central to division of all cells,
whether normal or transformed, such as DNA replication,
RNA transcription, or microtubule function. The newer
“targeted agents” designed to exploit specific molecular
lesions in individual cancers are indeed less toxic to normal
tissues than are cytotoxic drugs, but this greater therapeutic
index has been achieved at the cost of a narrower antitumour
spectrum. This narrow spectrum is being addressed by
“stratified medicine,” that is, by matching the treatment to
the presence in a tumour, or to the expression level, of the
molecular target against which the targeted agent is directed.
For example, if an experimental drug has been shown to
be selectively active against cells with mutant, constitutively
activated K-ras, a stratified clinical trial would treat patients
whose tumours expressed that mutation as a separate group,
This approach is statistically powerful, but can lead to
complex clinical trial designs: for example, if treatment is
to be stratified according to expression of three biomarkers,

for example, wild-type versus mutant K-ras, wild-type versus
mutant p53, and normal versus mutant B-raf, this would
require an eight-arm trial. In practice, human tumours may
carry large numbers of genetic abnormalities—often fifty or
more—any of which could influence drug response. It is thus
argued that ultimately, to optimise the treatment of a partic-
ular patient will require “personalised medicine,” in which
treatment will be determined by the expression of a large
panel of biomarkers, ultimately, perhaps, by a whole genome
mRNA expression analysis. Some commentators distinguish
between “predictive” biomarkers, that can predict response
of cells to treatment at the level of cell biology or biochemical
pharmacology, and the more restricted class of “prognostic”
markers, which can be related to clinical outcome (as, e.g.,
expression of estrogen receptor in breast cancer predicts
for clinical response to tamoxifen). A cellular or molecular
response to treatment does not guarantee a clinical response,
but without a molecular response clearly there cannot be a
clinical response.

In contrast to predictive biomarkers, which attempt to
predict from the properties of the tumour whether it is likely
to respond to a particular treatment, pharmacodynamic
(PD) biomarkers provide a measure, posttreatment, of
whether the drug has reached its target and exerted a
pharmacological response, and if so, what was the degree of
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response [1-3]. Once again, a PD response is no guarantee of
a significant clinical response, but without a pharmacological
response, we would not expect to see a clinical response. PD
biomarkers can thus be used to make a decision on whether
to continue treatment, to stop treatment, or to switch to
a different treatment. Currently, the clinical application
of PD biomarkers is confined to this kind of qualitative
decision-making. If we want to use PD biomarkers to make
quantitative decisions, for example, to adjust the dose, or
change the schedule of administration, a PK/PD model is
the appropriate tool. The first review of PD modelling of
biomarker data in oncology was published recently [4],
and the authors commented on the small number of reports
in the literature. However, biomarker measurements are
becoming standard in phase I clinical studies, and investi-
gators are increasingly starting to fit their biomarker data
to PD models. The next few years will see PD modelling of
biomarker data become as widely used as PK modelling of
drug concentrations.

2. Current Uses of PD Biomarkers

Historically, phase I clinical trials in oncology used a starting
dose that was expected to be safe, based upon toxicology in
two animal species. The dose in the phase I patients would
then be escalated until a dose-limiting toxicity was identified.
A phase II clinical trial would be designed based upon a
dose and schedule of administration that was tolerated in
phase I. This approach had several limitations: it provided
no estimate of what the target phase I maximum tolerated
dose (MTD) was likely to be, and it gave no clue as to
whether the dose and schedule taken into phase II was likely
to be therapeutically effective. A majority of the phase I
patients were exposed to doses that were too low to have any
chance of being active. These limitations have been partially
surmounted through the use of PK modelling. Preclinical PK
studies in the same species used for preclinical antitumour
studies (usually mice, sometimes rats) made it possible to
correlate antitumour responses with PK. Plasma concentra-
tions achieved in the test species could be compared with
concentrations known to have in vitro activity. Preclinical PK
studies would also give an estimate of oral bioavailability. The
peak plasma level and AUC that correlated with preclinical
antitumour activity gave an indication of the dose to be
aimed for in the phase I clinical trial, reducing the number
of dose escalations needed and minimising the number of
patients exposed to subtherapeutic doses. The power of
preclinical data could be enhanced by fitting the data to
a PK model. This made it possible to use mouse or rat
data to predict PK in other species (including humans). PK
models can be used to predict optimal dosing schedules,
by relating plasma clearance or plasma half-life to different
dosing intervals. Such is the power of PK modelling that it
would be unthinkable to take an investigational oncology
drug into clinical trials without having fitted preclinical data
to a PK model, and without then obtaining clinical PK data.
The preclinical model is usually adapted to predict clinical
PK for different routes and schedules of administration, in
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patients of different body weights, and different degrees of
kidney or liver function.

For all its advantages, the predictive power of PK mod-
elling is limited. Its most conspicuous limitation is that it is
normally based upon plasma PK, while the therapeutically
relevant drug concentration is that in the tumour, and the
toxicologically relevant drug concentration is that in the
normal tissue which is the site of dose-limiting toxicity. These
concentrations can sometimes be obtained in preclinical
studies, but almost never in phase I clinical studies, since
they would require frequent, multiple biopsies of tumour
and normal tissues. The usefulness of plasma PK is also
limited by the fact that many anticancer drugs, including
all the nucleoside antimetabolites, are actually prodrugs. The
cellular concentrations of their active nucleotide species have
a complex and indirect relationship to the plasma concen-
trations of their nucleoside precursors. The concentration
dependence of drug-target interactions may vary widely
between species, which complicates preclinical-clinical cor-
relations. This can be partially mitigated by doing preclinical
studies against human tumour xenografts in immune-
deficient mice. However, the normal tissues are still those of
mice, making it impossible to draw firm conclusions about
drug selectivity. Another limitation is that antiumour effects
are normally timedependent, as well as dosedependent. For
example, many anticancer agents induce caspase-dependent
apoptosis, a process that lags many hours behind the critical
drug concentration that induced it, and drug exposures,
even above the critical concentration, that last for less than
the critical exposure time, produce only transient, reversible
effects, rather than cell death. Classical PK modelling cannot
describe these complex dose-time relationships. Indirect PK
models have been used to describe antitumour drug effects
[5] and these models can describe systems in which the effect
lags the drug concentration. However, the time-dependence
of antitumour drug effects is frequently a function of the
cytokinetic properties of the tumour, and these often differ
extensively between mouse and human tumours.

Pharmacodynamic (PD) endpoints address all these
limitations. By measuring a drug effect at the tumour
site (or at the site of a toxic drug effect), they provide
direct evidence that the drug has reached its target, and
they provide a quantitative measure of the degree of drug
response and (given sufficiently frequent sampling) of the
time dependence of the drug response. Currently, most PD
biomarkers are measured in biopsy material, which imposes
limitations on their clinical use, but plasma biomarkers and
noninvasive imaging biomarkers are becoming increasingly
used. Preclinical PD biomarker data can assist in phase I
clinical trial design. By comparing a PD biomarker response
with an antitumour response in mice, it is possible to
establish what degree of biomarker response will predict for
a clinical response. An increasing number of oncology phase
I clinical trials are supplementing clinical and toxicological
endpoints with PD biomarker endpoints. In this way,
biomarkers can assist in dose-ranging in phase I studies. If a
biomarker reaches an optimal endpoint before dose-limiting
toxicity is seen, this may indicate that it is not necessary or
desirable to treat patients at or near an MTD, as has been
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customary in oncology. As a long-term objective, it should
be possible to validate PD biomarkers as surrogate efficacy
endpoints. This has been done in other therapeutic areas, but
not yet in oncology.

Although the use of PD biomarkers in preclinical anti-
cancer drug development has become very common and
biomarker use is becoming more frequent in phase I clinical
trials, very few investigators have fitted their PD data to a
PD model [4]. It would be almost unthinkable to measure
PK data and not model it, because modelling maximises
the information content and predictive power of the data.
The qualitative or semiquantitative uses of PD biomarkers
discussed above have established that knowing the PD effects
of anticancer drugs can provide important insights. So why is
greater use not made of PD modelling? Probably because it is
more difficult than PK modelling. It is instructive to consider
why this is, and what can be done about it.

3. Differences between PK and PD Modelling

PK modelling is a generic technology, that is, the same
techniques, the same equations, and the same software can be
used across all therapeutic areas. PD modelling, by contrast,
is likely to be specific to a particular therapeutic area, or even,
depending upon the exact PD biomarker employed, to a
particular drug target, or drug class. This obviously increases
the difficulty, the cost, and time commitment of developing
a new PK/PD model. Because PD models are more drug-
specific, they tend to be more mathematically complex and
more computationally intensive. The parameterization and
validation are likely to be more experimentally intensive.

The experimental methods used to obtain PK data
are also generic across all therapeutic areas, and currently
almost always use the powerful analytical technique of
liquid chromatography with mass spectrometric detection
(LC/MS). In contrast, PD endpoints use a wide range of
analytical techniques, and again will usually require new
analytical method development for each endpoint.

PD modelling necessarily requires describing events
at the drug target site. For some anticancer drugs (e.g.,
therapeutic antibodies), the target sites are extracellular, and
assuming that concentrations in the extracellular fluid closely
mirror plasma concentrations may be a reasonable approxi-
mation for such drugs. However, most anticancer drugs act
at intracellular sites. While several detailed physiologically
based PK models have been described that accurately predict
drug levels in tumour and normal tissues, such models are
usually developed long after the drug has been through early
clinical trials. The PK models that guide phase I and phase II
clinical trial design are almost invariably based upon plasma
PK.

4. Techniques of PD Modelling in Oncology

4.1. PD Models and PK/PD Models. PD models are frequently
developed and validated in vitro, using constant drug
concentrations. In such conditions, a pharmacodynamic
response can be related directly to drug concentration. In

vivo, with a constantly changing drug concentration, the
pharmacodynamics and pharmacokinetics are inextricably
linked. It is, of course, possible to relate a biomarker PD effect
to an administered drug dose without explicitly modelling
drug concentrations. However, in practice, PK data and a PK
model are usually available, so that PD modelling studies in
the in vivo and clinical situation generally imply a PK/PD
model.

4.2. Direct PK/PD Models. The simplest form of PK/PD
model consists of a dose-response equation coupled to a
PK model. Usually the dose-response equation will be
a Hill equation, often referred to by pharmacologists as
the Emax equation. This is a three-parameter equation,
with parameters describing the maximal effect (Emax), the
concentration of drug that gives a 50% maximal effect
(IC50), and the slope, m (the Hill coefficient). If m = 1, the
dose-response curve is a rectangular hyperbola. When m >
1, the dose-response curve is steeper and sigmoidal, with an
inflection point at a drug concentration of IC50. When m <
1, the dose-response curve is more shallow. In some cases,
maximal drug concentrations do not completely reduce the
biological response to zero, but give a plateau. These dose-
response curves can be described by a four-parameter version
of the Hill equation, in which the fourth parameter is the
plateau value of the effect.

Equations other than the Hill equation have been used
in direct PK/PD models [6]. For irreversible inhibitors, or
reversible inhibitors with very slow “off” rates, the dose-
response relationship may be approximately linear. Killing
of bacteria by antibiotics has been described by logarithmic
dose-response curves [6], and some receptor ligands show
biphasic (bell-shaped) dose-response curves, in which the
drug effect reaches a maximal value and then decreases with
further increase in drug concentration.

Some anticancer drugs may affect biochemical pathways
with relaxation times that are very short in comparison with
drug clearance times. In such cases, if the PD biomarker
being measured reflects a direct product of the inhibited
reaction, the pharmacodynamics may track the drug con-
centration closely in time. Some protein phosphorylation
biomarkers may fall into this category. The anticancer
thymidylate synthase inhibitor, Thymitaq (AG337), enters
and exits cells very rapidly, and its inhibitory effects on
thymidylate synthase are immediate. The phase I clinical trial
used circulating deoxyuridine as a measure of thymidylate
synthase inhibition [7], and the kinetics of the system are
such that this plasma biomarker tracks a direct PK/PD
relationship.

4.3. Indirect PK/PD Models. Direct PK models describe the
situation where the drug effect is immediate, so that the PD
effect directly tracks the drug concentration. For many drugs,
the effect is a function of both concentration and time, and
for such drugs the total effect may be proportional to C X t
(where C is concentration and ¢ is time). In PK terminology,
for such drugs the effect is proportional to AUC. Kalns



et al. [8] noted that a more generally applicable relationship
is given by

s= C" X L, (1)

where s denotes drug sensitivity for a particular system and
n is a pharmacodynamic exponent that relates the relative
importance of concentration and time in determining drug
effects. When n > 1, concentration is the primary determi-
nant of the drug effect, and when n < 1 the effect is primarily
time dependent. Kalns et al. suggested that the value of
the n parameter had implications for selection of optimal
clinical dosage regimens. For instance, when n > 1, bolus
administration should be more effective than an infusion.
The s parameter may be obtained from experimental data by
either a two-step process in which IC50 values are obtained
for a range of exposure times, and the IC50 estimates
(representing C) are fitted to the equation of Millenbaugh
et al., or, alternatively, the data values for all time points are
fitted by nonlinear regression to
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where f is the fraction affected, m is the Hill coefficient, and
C, t, n, and s are as defined for the equation of Millenbaugh
et al. [6, 8].

Sharma and Jusko [5] considered four kinds of indirect
PD relationship. If a PD effect is mediated by accumulation
of a particular metabolite or ligand, and the drug effect
inhibits or accelerates that accumulation, then the drug
will have antagonistic or agonistic effects, respectively, in
that system. If the PD effect is mediated by depletion of a
metabolite or ligand, a drug that inhibits or accelerates that
depletion will again have antagonistic or agonistic effects.
Sharma and Jusko derived equations to describe these four
kinds of indirect PD effect [5]. Jordan and Gieschke [9]
derived alternative, explicit forms of these relationships and
published a computer program for solving them. Most anti-
cancer drugs exert their effects after a protracted time delay,
so that indirect PD models are usually the most appropriate
description. A recent example of PK/PD modelling of a
biomarker response that used an indirect PD model is the
work of Choo et al. [10], studying, the Genentech allosteric
MEK inhibitor, G-573. In this case the biomarker was the
immediate reaction product, phospho-ERK, measured in
tumour xenograft tissue.

Two kinds of indirect PD effect are frequently seen with
anticancer drugs. Many drugs cause cell cycle perturbations,
causing, for example, cell cycle arrest specifically in a par-
ticular cell cycle phase. For example, compounds that cause
DNA strand breaks will trigger DNA damage responses,
which arrest cell cycle progression of cells in G1 phase
and S phase. Drugs that inhibit tubulin polymerisation or
depolymerisation cause cell cycle arrest in M phase. These
drugs will only affect cells that are in the sensitive phase
of the cell cycle, so to exert their maximal effect they must
be present for a significant fraction of the cell cycle time,
which for human tumour cells is often about 24 hours.
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Many anticancer drugs kill tumour cells by inducing caspase-
dependent apoptosis, a process that typically takes about
5-24 hours. These two kinds of indirect PD effect are so
important in oncology that specialised PD models have been
developed to describe their effects, which are considered
below.

4.4. Cytokinetics-Based PD Modelling. Cytokinetics is the
quantitative description of the progression of cells through
the cell division cycle. Cells are characterised by the cell cycle
time (the time required for a newly replicated cell to progress
through a complete round of growth and replication) and by
the time the cell spends in each of the phases of the cell cycle:
GI phase, in which a newly replicated cell doubles in size;
S phase, in which the cell doubles its DNA content; G2 phase,
in which the replicated DNA is deconvoluted and prepared
for packaging into chromosomes; M (mitosis) phase, in
which the replicated chromosomes are sorted into two
complete sets and moved to opposite poles of the cell, prior
to the act of cytokinesis, in which one tetraploid cell becomes
two diploid sells. Other important cytokinetic parameters are
the size of the GO fraction, cells that move reversibly from G1
phase into a noncycling state, the cell loss factor, that is, the
fraction of newly replicated cells that are defective and unable
to continue replicating, and the fraction of Gl cells that
irreversibly leave the cell cycle to become differentiated or
senescent cells. These cytokinetic transitions are controlled
by a complex group of positive and negative growth factors,
and their associated signal transduction pathways. Internal
regulation of the cell cycle is through a number of cell
cycle checkpoints. For example, cells that have not reached
a critical size or have not activated the transcription factors
required for generate DNA precursors are unable to progress
from GI into S phase (the G1 checkpoint). Mitotic cells
that have not correctly sorted their replicated chromosomes
into two equal sets are unable to proceed to cell division
(the spindle assembly checkpoint). Cells with DNA damage
(strand breaks, cross-links, or apurinic or apyrimidinic sites)
are unable to continue DNA replication (DNA damage
checkpoint).

Cancer is a disease of cell cycle regulation, specifically, it
is a disease of cell cycle checkpoints. All tumour cells have
a dysfunctional G1 checkpoint, either because of mutation,
deletion, or epigenetic silencing of checkpoint components
such as p53, pl6, or p21, or because of overexpressed or
constitutively activated growth factor receptors or signalling
proteins (e.g., ras) which result in override of the Gl
checkpoint [11, 12]. All cancer cells are aneuploid [13]. This
is either because of defects in the spindle assembly check-
point, which means that cells with incorrectly sorted chro-
mosomes proceed to cell division before they are ready, or
because cells with a defective DNA damage response allow
cell division to occur before DNA damage has been repaired.

Consistent with this view of cancer as a disease of two
or more cell cycle checkpoints, almost all anticancer drugs
act on control of the cell cycle. Cytotoxic anticancer agents
typically inhibit DNA synthesis or cause DNA damage, or
block microtubule function, and modern targeted agents
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typically block growth factor signalling, inhibit checkpoint
components, or trigger apoptosis, selectively in cells with
aberrant checkpoint function.

Two kinds of biomarkers of cell cycle perturbation are
used. It is possible to determine the proportion of cells
in different phases of the cell cycle, for example, by flow
cytometry, and this can be used as a PD biomarker for drugs
that cause cell cycle-specific effects. Alternatively, proteins
that are expressed specifically at particular stages of the cell
cycle, or which are phosphorylated at certain points in the
cycle, can be measured by immunoassay or western blotting.
Models of the cell cycle have been reported that describe the
process in terms of cytokinetic parameters, and with varying
amounts of molecular detail [6, 14-17]. These models can
be used to describe PD effects on both cytokinetic and
molecular biomarkers.

4.5. Models of Signal Transduction Pathways. These pathways,
which form a link between growth factor and cytokine
receptors on the cell surface, and transcription factors in
the nucleus, are targets for many anticancer drugs. The
pathway components include G-proteins, protein kinases,
and accessory proteins for transcription factors. The control
of these pathways is complex, involving multiple positive and
negative feedback, convergent and divergent branching, and
cross-talk between pathways [18]. Detailed models have been
published for the EGF signalling pathway [19, 20] and the
Wnt signalling pathway [21], whose components are often
mutated or upregulated in cancer cells.

4.6. Models of Apoptosis. Effective anticancer drugs cause
selective killing of tumour cells—transient, reversible cell sta-
sis or growth delay typically do not confer much therapeutic
benefit, though non-cytotoxic drugs that block metastasis,
or tumour angiogenesis, or stimulate antitumour immunity
are an important growth area in oncology. Biomarkers are
available both for apoptotic cell death and for noncaspase-
mediated cell death pathways such as necrosis. These will be
discussed below. Fussenegger et al. [22] reported a kinetic
model of apoptosis that accurately described the process of
caspase activation, including the prolonged reversible stage
before the irreversible production of active caspase-3. This
approach was extended and further validated by Hua et al.
[23] and Bentele et al. [24]. Their models have been applied
to PD modelling of anticancer drug PD, and experimental
examples will be discussed below.

4.7. Complex Dynamic System Models for PD Modelling.
The pharmacodynamics of anticancer drugs is particularly
complex because they often require describing processes at
several levels of biological organization. For example, the
effects of an antiangiogenic drug may involve the VEGF
receptors, their associated signalling pathways, replication
and migration of endothelial cells, and effects on blood
supply to tumours and normal tissues. Similarly, the essential
dynamics of an antimetastatic drug involve effects on bio-
chemical pathways, on cells, and on cell distribution among
multiple tissues. The PD of antiangiogenic or antimetastatic

drugs require, minimally, a modelling approach that repre-
sents these hierarchical systems [25, 26]. These hierarchical
models have generally been fitted to biological data (numbers
of blood vessels, numbers of metastatic cells), but in principle
these hierarchical models have the potential to describe
the PD of molecular biomarkers. Eissing et al. [27] have
described a software platform for integrating PK, whole-
body physiology, disease biology and molecular reaction
networks. It is intended that this platform can be used to
develop models than can test hypotheses involving pharma-
cogenomics, drug-drug interactions, and drug-metabolite
interactions. A prototype model based upon this system
simulated the progression of a pancreatic tumour, and its
response to a prodrug of a Raf kinase inhibitor. The model
described signal transduction, cell cycle progression, and
proliferation. A virtual clinical trial modelled treatment out-
comes in a genetically heterogeneous population [27].

5. Examples of PD Modelling of Biomarker Data

5.1. Plasma Biochemical Markers. One of the first plasma
PD biomarkers of an anticancer drug to be used clinically
was circulating deoxyuridine in patients treated with the
thymidylate synthase inhibitor, Thymitaq (AG337) [7]. The
biomarker data from that study were not modelled, but PD
models exist that can be used to model this data [28].

5.2. Cytokinetic Markers. Cytokinetic data, mainly obtained
from flow cytometry, have formed the basis for a number
of PD modelling studies. Basse et al. [29] developed a
cytokinetic model of the melanoma cell line NZM13. The
model was used to study effects of paclitaxel on cytokinetic
properties of the cells, including rate of entry into mitosis
and rate of drug-induced DNA degradation. The model was
subsequently used to study radiation-induced changes to five
human melanoma cell lines [30]. Irradiation at 9 Gy caused
G2 phase arrest in all lines for at least 96 hr. Two cell lines
with wild-type p53 also exhibited G1 arrest with recovery
over 15hr, as well as evidence of cell loss. Resumption of
cycling of surviving cells was consistent with the results
of clonogenic assays. Circulating tumour cells have been
used as a PD biomarker in lung cancer patients [31]. In
nasopharyngeal carcinoma, a tumour linked with Epstein-
Barr virus infection of the malignant cells, circulating viral
load, has been used as a PD biomarker [32].

5.3. Protein Phosphorylation Markers. Since many targeted
anticancer agents act by inhibiting protein kinases in sig-
nalling pathways, measurement of the phosphoproteins that
are products of these reactions has become an important
source of PD biomarkers in tumour biopsies [33]. Phospho-
protein biomarkers have been developed for inhibitors of
Bcr-abl [34], c-Met kinase [35], MEK [10, 36], PI-3 kinase
[37], and VEGF-R2 tyrosine kinase, and these biomarker
studies formed the basis for PD modelling. These studies
have been used to relate the extent of pathway inhibition
to tumour response in mice, to suggest clinical doses based



upon preclinical data and to identify optimal combinations
of targeted agents [33].

5.4. Spindle Checkpoint Biomarkers. Many important anti-
cancer drugs, including vinca alkaloids and taxanes, act by
blocking mitosis. Prolonged mitotic arrest may be followed
by apoptosis or by escape of the arrested cells back into
the cell cycle. Cells in which mitosis has been disrupted
may undergo abnormal cell division, resulting in polyploidy
or aneuploidy. Several newer experimental drugs inhibit
components of the mitotic apparatus, including kinesin
spindle proteins, aurora kinase A, aurora kinase B, polo-
like kinase 1, and NEK-2. It is believed that the anticancer
selectivity of drugs that block mitosis arises from the
fact that tumour cells frequently have a defective mitotic
spindle assembly checkpoint (SAC). This checkpoint acts to
prevent cells entering anaphase (in which pairs of replicated
chromosomes separate, with one member of each pair
migrating to opposite poles of the dividing cell), until the
chromosomes are correctly attached. The SAC ensures that
each daughter cell receives one, and only one, copy of each
replicated chromosome.

Kinetic models of the SAC have been described that
include the site of action of aurora kinase B [38-40], using
phosphorylation of histone H3 as a biomarker. Inhibition
of aurora kinase B decreases histone H3 phosphorylation
[39, 41]. Polyploidy was also used as a cytogenetic biomarker
for aurora kinase B inhibition [41]. The model was later
extended to include the site of action of aurora kinase
A [42]. Biomarkers of aurora kinase A inhibition include
mitotic arrest, increased phosphorylation of histone H3, and
decreased aurora kinase A autophosphorylation. This model
was used as the PD component of a PK/PD model [43] which
was used to describe biomarker dynamics in tumour-bearing
mice treated with the aurora kinase A/B inhibitor CYC116
[41].

5.5. Toxicity Biomarkers. Ideally cancer treatment should
be monitored by measuring toxicity biomarkers as well as
tumour response biomarkers, in order to quantify selectivity
as well as efficacy. There have been very few published studies
of this kind. Lindauer et al. [44], in a study of sunitinib, mea-
sured plasma levels of VEGF-A and VEGF-C and of soluble
VEGF-receptor 2 as PD biomarkers in healthy volunteers,
as well as plasma PK. Simultaneously, blood pressure was
measured as a toxicity marker. Greystoke et al. reported a
clinical biomarker study in which nucleosomal DNA and
CK18 were measured as biomarkers of apoptosis, and FLT3
ligand was measured as a biomarker of myelosuppression in
lymphoma patients undergoing chemotherapy [45]. These
biomarkers are now undergoing large-scale validation in a
multicentre phase III study.

5.6. Biomarkers of Apoptosis. Apoptosis biomarkers have
been a subject of great interest in oncology, because induc-
tion of apoptosis represents the final downstream event in
the action of many, perhaps most, anticancer drugs. In pre-
clinical systems, many of the molecular events in this process
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have been tracked in detail as a function of time: caspase-3
activation, cleavage of poly-ADP ribose polymerase (PARP),
and terminal dUTP nick end labelling (TUNEL), a measure
of DNA fragmentation. After treatment of tumour cells with
apoptosis-inducing drugs, flow cytometric studies generally
show accumulation of cells with a sub-G1 DNA content,
and this has been widely used as a cell death biomarker. By
examining activation of intermediates in the caspase cascade,
it is possible to distinguish between the type I apoptosis
pathway (triggered by activation of cell membrane death
receptors (e.g., receptors for TNE, FAS, and TRAIL) and the
type II pathway (triggered by mitochondrial damage)). For
example, activated caspase-8 and caspase-10 have been used
as biomarkers for type I apoptosis, and activated caspase-9
and Bcl-2 have been used as specific biomarkers for type II
apoptosis [23]. The two pathways converge on a common
downstream effector, caspase-3, which may be used as a
biomarker for total apoptosis. Hua et al. [23] modelled both
pathways and validated their model against experimental
data from Jurkat human T cells. They used their model to
study the kinetics of death signalling by FAS ligand.
Biomarkers of apoptosis have a great advantage over most
of the other PD biomarkers of anticancer drug action that
have been studied. Whereas most biomarkers are specific
for the action of drugs acting on a particular target site,
or at best a particular target pathway, almost all anticancer
drugs ultimately induce apoptosis, so these markers may be
regarded as generic (drug-independent) markers of tumour
cell killing. Some of the apoptosis markers most widely used
in preclinical studies are intracellular (caspase activation,
PARP cleavage) or cellular (sub-G1 DNA content), and
thus require biopsy material. This limits their clinical
applicability. For clinical application, attention has focussed
on plasma biomarkers of apoptosis, which are regarded
as minimally invasive (i.e., they just require a drop of
blood). Potential plasma biomarkers for apoptosis that have
been assessed include a-fetoprotein [46], f-human chorionic
gonadotrophin [46], lactate dehydrogenase [31, 46], and
nucleosomal DNA [45, 47]. However, most attention has
been focussed on plasma levels of cytokeratin-18 (CK18)
and caspase cleavage fragments of CK18 [48]. Linder and
colleagues [48-50] and Barak et al. [51] pointed out that
cytokeratins are expressed primarily in epithelial tissues.
When the epithelial cells of the skin die, their contents are
sloughed outside the body. When the epithelial cells of the
intestine die, their contents are sloughed into the intestinal
lumen. Thus, only low baseline levels of cytokeratins or
cytokeratin fragments are normally seen in plasma. However,
dying epithelial tumour cells release cytokeratins into the
blood. Cancer patients frequently have elevated levels of
circulating cytokeratins, which has been attributed to release
from spontaneously necrotic or apoptotic tumour cells [49].
Research in this area was facilitated by the availability of
antibodies against CK18, termed M65 [52] or TPS [51].
Another antibody, M30, recognises a neoepitope on a
fragment of CK18 specifically generated by caspase cleavage.
ELISA assays bave been developed based upon the M30 and
M65 antibodies, which are commercially available (Peviva
AB, Bromma, Sweden). It is thus argued that M30 gives a
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measure of apoptotic cell death and M65 gives a measure
of total epithelial cell death, including necrosis [49, 52].
Cummings et al. [53] showed that an antisense compound
(AEG35156) targeted against the antiapoptotic protein XIAP
caused elevations of the M30 and M65 signals in blood
samples of patients with advanced cancer. The antibody
data were validated against quantitative RT-PCR. The same
investigators also studied the BH-3 mimetic ABT-737 in mice
bearing small-cell lung cancer xenografts [54]. Circulating
levels of CK18 and caspase-cleaved CK18 were shown to
correlate with tumour burden. ABT-737 caused increases
in cleaved CK18 that subsequently declined. Cummings
and colleagues also studied the aurora kinase inhibitor
AZD1152 in mice with SW620 human colon tumour
xenografts and concluded that M30 was a biomarker of
AZD1152-induced apoptosis, while M65 was a biomarker of
therapeutic response [55]. In patients with testicular cancer,
M30 and M65 were shown to give a measure of cell death
after treatment with bleomycin, etoposide, and cisplatin
[46]. Olofsson et al. showed that the affinity of the M30
antibody for murine caspase fragments was relatively low, so
that in mice carrying human tumour xenografts, the M30
response following drug treatment was primarily from the
human tumour cells [56]. Dean et al. [57] studied CK18
and apoptosis biomarkers in small cell lung cancer (SCLC)
lines in vitro, and in SCLC patients treated with obatoclax,
an inhibitor of the antiapoptotic protein Bcl-2 [57]. In
preclinical studies, peak levels of apoptosis occurred 24
hours after obatoclax treatment. In the clinical study, all the
patients classified as responders after two cycles of treatment
showed significantly increased levels of CK18 and cleaved
CK18 on day 3 of the study. Dive et al. [58] discussed the
use of CK18 and cleaved CK18 as biomarkers for treatment
of pancreatic cancer. The M65 levels were higher in patients
with metastatic disease compared with locally advanced
disease, which were in turn higher than in patients following
resection. The baseline levels in patients with pancreatic
cancer were affected by the presence of obstructive jaundice,
but the authors concluded that clinical biomarker studies
of serial CK18 levels gave useful information in pancreatic
cancer, providing consideration was given to the potentially
confounding factors.

Nonepithelial tumours, such as lymphomas, do not ex-
press CK18. Increases in circulating CK18 in lymphoma
patients treated undergoing chemotherapy were attributed to
epithelial toxicity [45]. Circulating nucleosomal DNA could
be used as a PD biomarker in these patients [45].

Green and colleagues [59-61] measured apoptosis in
cancer patients treated with the cyclin-dependent kinase
(cdk) inhibitor, seliciclib. Seliciclib is known to induce
apoptosis in sensitive tumours by inhibiting transcription of
the mRNA for the antiapoptotic protein Mcl-1 [62]. Total
CK18 was measured with the TPS antibody, and cleaved
CK18 with the M30 antibody. Seliciclib induced an increase
in circulating apoptotic markers in 50% (20/40) of phase I
cancer patients treated with.800 mg twice daily. Two patients
with sarcomas, which do not express CK18, showed low
baseline levels, and no increase after treatment. Signals given
by the TPS and M30 antibodies were highly correlated. In

patients where both PK and biomarkers were measured, the
M30 score showed a significant correlation with seliciclib
AUC [63]. In 43 phase I patients analyzed, the increase
in both biomarkers following treatment correlated with
seliciclib dose. In this phase I study, the biomarker data
provided a suggestive indication that the higher doses of
seliciclib were triggering the induction of apoptosis in these
patients.

Ward et al. [47], reviewing the literature on serological
biomarkers of apoptosis, emphasise that (in contrast with
tissue biomarkers), serum biomarkers have the great advan-
tage of allowing repeat sampling over time. They concluded
that a single biomarker would often not have the power
to predict proof of concept and patient outcome, but that
the potential existed to do this using panels of multiple
biomarkers, particularly if this could be done in small sample
volumes using multiplex ELISA technologies.

6. PK/PD Models of Apoptosis

The foregoing discussion has demonstrated that the advan-
tages of measuring drug-induced apoptosis by plasma
biomarker assays are its wide applicability across many
classes of anticancer drugs, its minimally invasive nature, the
small sample volumes required, and the ability to sample at
multiple time points. Another advantage of this approach
which has not as yet been widely used is its potential for
data modelling. Cummings et al. [64] examined alternative
methods of data analysis for M30 and M65 assays, using the
B-expectation tolerance interval as an endpoint for assessing
assay accuracy. Lancashire et al. [65] used logistic regression,
fractional polynomial regression, artificial neural networks
(ANN), and support vector machines to derive predictive
models for colorectal cancer, based upon a serum panel
of insulin-like growth factor (IGF) peptides. Serum IGF-I,
IGF-II, and IGF-binding proteins (IGFBP)-2 and -3 were
measured. The greatest predictive power was achieved using
ANN models.

The availability of an extensive data set of M30 and
TPS apoptosis measurements from the phase I clinical trials
of seliciclib made possible the development of a detailed
PK/PD model [63]. The PD portion of the model was a
description of apoptosis based upon the model of Hua et
al. [23], modified to describe tumours that are immortalised
by overexpression of the antiapoptotic protein Mcl-1. The
PK portion of the model was based upon the model of
de la Motte and Gianella-Borradori [66]. Tissue culture
observations had shown that induction of apoptosis required
concentrations to remain above a threshold level (3-10 uM,
depending upon the cell line) for a minimum period of
time (typically 5-8 hr). If drug concentrations fell below
the threshold before the minimum time had elapsed, no
cell killing was observed, though reversible growth arrest
was seen. This time-above-threshold approximation gave a
rough fit to the clinical biomarker data, but the kinetics
of apoptosis could be more accurately described by the PD
model of apoptosis based upon the Hua model. The PD dose-
response curve predicted by this model was highly nonlinear



with a dose threshold of 1000 mg per patient for a single
dose, or 800 mg for repeat dosing [63]. Simulation of a
dose of 1600 mg every 12 hr for 30020days predicted sharp
peaks in plasma concentration, each of which was followed
several hours later by a wave of apoptosis. Divided dosing
was predicted to require a higher total daily dose to induce
apoptosis than a single daily dose. Divided doses gave steeper
dose-response curves than single daily doses, and the curves
for once, twice, and three-times daily treatment converged to
a single asymptote [63].

One advantage of mechanism-based PD models is that
they facilitate “thought experiments” of hypothetical situa-
tions. For example, the question was posed: if a tumour cell
is immortalised by upregulation of Bcl-2, how may this affect
response to seliciclib? The model predicted that such cells
would be much less sensitive in vivo to seliciclib. The reason
appears to be that Bcl-2 transcripts turn over much more
slowly than Mcl-1 transcripts, making Bcl-2 overproducing
cells relatively stable to temporary inhibition of RNA tran-
scription (unpublished simulations of the author).

7. Functional Imaging

The technique of functional imaging using nuclear magnetic
resonance (MRI) or positron emission tomography (PET)
has revolutionised neuroscience by making it possible to
correlate metabolic activity in different parts of the brain
with mental states in conscious humans. The potential exists
for imaging to have an equally profound effect on PD of
anticancer drugs. By devising appropriate reagents, it is
possible to visualise drug effects, as they happen, within
tumour and normal tissues. The first published study of
this kind [67] exploited the depletion of cellular thymidylate
by the thymidylate synthase inhibitor AG337 (Thymitaq)
to increase the fractional retention of [11C]-thymidine.
The PET effect correlated closely with plasma deoxyuridine
concentration. Other early PD studies with this noninvasive
technology were reviewed by Workman et al. [68]. Chung
et al. [69] used MRI to study PD effects of the HDAC
inhibitor LAQ824. Beloueche-Babari et al. [70] discussedd
several studies using MRI to monitor PD effects in preclinical
systems with a number of drugs, including a choline kinase
inhibitor, and a phase I clinical trial with the HSP90 inhibitor
17-AAG. Mitchell et al. [71] used MRI to visualise residual
disease in patients following chemotherapy for recurrent
ovarian cancer and showed that it correlated with the
serological biomarker Cal25. McKinley et al. [72] used
PET imaging with [18F]-fluorodeoxyglucose to demonstrate
a PD effect of the IGF-1R inhibitor OSI-906 on glucose
metabolism in preclinical mouse models of lung cancer.

These studies demonstrate the potential of functional
imaging studies in pharmacodynamics. As yet, none of
the PD imaging data thus generated have been fitted to
PD models. The need for frequent repeat scanning may
complicate the use of MRI and PET data in PD modelling,
but the potential advantages of PD models based upon
imaging data are so great that it is likely that such models
will be published before too long.
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8. Biomarkers as Endpoints for
Combination Chemotherapy Studies

One application of PD modelling of biomarker data that
shows great potential is the quantitation of combined drug
effects in clinical trials. Currently, drug combinations are
evaluated in preclinical models, and promising combinations
are tested clinically using classical endpoints—tumour size,
time to progression, or survival. These endpoints are able
to determine in a qualitative way whether the activity of
combinations is equivalent, superior, or inferior to that of
the single agents, but it is usually not possible to quantify the
drug interactions. PD biomarker endpoints can be analyzed
so that combined drug effects on tumour, as well as on
sensitive normal tissues, can be determined. Greco and
Jackson [73] showed that biomarker effects on tumour cells
and normal cells in vitro could be combined with PK data
to predict in vivo or clinical drug interactions from in vitro
data by PK/PD modelling. Iadevaia et al. [33] used a com-
putational procedure that integrated mass action modelling
of phospho-proteomics with particle swarm optimization
to predict optimal combinations of inhibitors of the IGF-1
signalling network in a breast cancer cell line.

For many drug combinations, activity is highly depen-
dent on the order in which the drugs are administered.
Orrell et al. [74, 75] used PD modelling of biomarker data
to predict the sequence-dependence of a drug combination.
Their virtual tumour combined PK data, biomarkers, cell
cycle kinetics, and a three-dimensional structure in which
the central core of the tumour was necrotic. Their sim-
ulations were validated against xenografts, and the model
correctly predicted the different outcomes of simultaneous
and sequential administration of a two-drug combination.

9. Conclusions: Twelve Things You Can Do
with a PK/PD Model

The recent developments in characterization and validation
of PD biomarkers of anticancer drug action have greatly
increased the range and predictive power of PD modelling,
particularly in conjunction with PK. Promising applications
include the following.

(1) Predicting optimal drug doses and routes of admin-
istration. PK models can predict plasma (or tissue)
concentrations, but where drug selectivity is an issue,
which is usually the case in oncology, a PK/PD model
will probably be more predictive.

(2) Predicting optimal scheduling of multiple doses
where drug effects lag behind drug concentrations.
Optimal scheduling will often depend upon the time
course of a PD effect, as well as on PK, so a predictive
model must describe both.

(3) Relating efficacy biomarker responses to clinical out-
come, and determining the comparative information
content of alternative biomarkers in the prediction
of clinical efficacy. Preclinical data can be used to
relate degrees of biomarker response to antitumour
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responses, and the correlation can be extrapolated to
the clinical situation.

(4) Predicting optimal protocols for tumours of differ-
ent cytokinetic properties (e.g., doubling time, cell
loss factor, quiescent fraction), and extrapolating
from human tumour responses in murine xenograft
models, to the clinical situation where cytokinetic
parameters are often different.

(5) Predicting the impact of particular levels of drug
resistance on clinical outcome and prediction of
optimal treatment strategies for tumours that have
developed partial drug resistance.

(6) Predicting when to change the treatment regimen to
minimise or delay the onset of drug resistance.

(7) Relating toxicity biomarker responses to tolerability.
If biomarkers for both efficacy and toxicity are avail-
able, the comparative selectivity of different regimens
may be predicted.

(8) For a drug with multiple sites of action, PK/PD
models can be used to explore the relationship of the
different mechanisms to efficacy and toxicity.

(9) PK/PD modelling of biomarker data can predict the
effects of drug combinations (additivity, synergism,
antagonism) and optimal combination protocol
design, for drugs that have metabolic or cytokinetic
interactions.

(10) Predicting dose and schedule for a particular toxicity
cut-off. By using population PK/PD data we may
make predictions about what proportion of a treat-
ment group may be expected to have particular levels
of response (or particular levels of adverse events) for
a given treatment regimen.

(11) Predicting comparative advantages of alternative
clinical development strategies. PK/PD models can
form the basis of virtual clinical trial software, making
it possible to compare multiple possible trial designs
in silico, before committing resources to the preferred
study design [76-79].

(12) PK/PD models may be used to develop a sampling
strategy, that is, to predict how to time the sampling
of plasma or other tissues to obtain maximum
information from the minimum number of samples.

Finally, in the long term, it will be possible to use PD
biomarker data, in the context of a validated PK/PD model,
as a surrogate endpoint that can predict the efficacy of an
experimental treatment without the need to wait months or
years for a clinical endpoint. This has become routine in
other clinical areas (e.g., atherosclerosis), but the complexity
and heterogeneity of malignant disease has so far meant that
surrogate endpoints have not had sufficient predictive power.
This will change as improved PD biomarkers are developed
and validated, and as PK/PD modelling of these biomarker
endpoints becomes an accepted drug development tool.

Abbreviations

ANN:  Artificial neural network
AUC:  Area under the concentration-time curve
cdk: Cyclin-dependent kinase

CK18: Cytokeratin-18

Gy: Gray (radiation dose unit)

HDAC: Histone deacetylase

HSP90: Heat shock protein 90

IGF: Insulin-like growth factor

IGFBF: Insulin-like growth factor binding protein
MRI:  Magnetic resonance imaging
MTD: Maximum tolerated dose

PARP:  Poly-(ADP-ribose) polymerase
PET: Positron emission tomography
PD: Pharmacodynamic

PK: Pharmacokinetic

SAC:  Spindle assembly checkpoint
SCLC:  Small cell lung cancer

TPS: Tissue polypeptide-specific antigen

TUNEL: Terminal dUTP nick end labelling
VEGEF: Vascular endothelial growth factor.
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