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Abstract
Purpose Accurate segmentation of brain resection cavities (RCs) aids in postoperative analysis and determining follow-up
treatment. Convolutional neural networks (CNNs) are the state-of-the-art image segmentation technique, but require large
annotated datasets for training. Annotation of 3D medical images is time-consuming, requires highly trained raters and may
suffer from high inter-rater variability. Self-supervised learning strategies can leverage unlabeled data for training.
Methods We developed an algorithm to simulate resections from preoperative magnetic resonance images (MRIs). We
performed self-supervised training of a 3D CNN for RC segmentation using our simulation method. We curated EPISURG,
a dataset comprising 430 postoperative and 268 preoperative MRIs from 430 refractory epilepsy patients who underwent
resective neurosurgery. We fine-tuned our model on three small annotated datasets from different institutions and on the
annotated images in EPISURG, comprising 20, 33, 19 and 133 subjects.
Results The model trained on data with simulated resections obtained median (interquartile range) Dice score coefficients
(DSCs) of 81.7 (16.4), 82.4 (36.4), 74.9 (24.2) and 80.5 (18.7) for each of the four datasets. After fine-tuning, DSCs were
89.2 (13.3), 84.1 (19.8), 80.2 (20.1) and 85.2 (10.8). For comparison, inter-rater agreement between human annotators from
our previous study was 84.0 (9.9).
Conclusion We present a self-supervised learning strategy for 3D CNNs using simulated RCs to accurately segment real RCs
on postoperative MRI. Our method generalizes well to data from different institutions, pathologies and modalities. Source
code, segmentation models and the EPISURG dataset are available at https://github.com/fepegar/resseg-ijcars.
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Introduction

Motivation

Approximately one-third of epilepsy patients are drug-
resistant. If the epileptogenic zone (EZ), i.e., “the area of
cortex indispensable for the generation of clinical seizures”
[26], can be localized, resective surgery to remove the EZ
may be curative. Currently, 40% to 70% of patients with
refractory focal epilepsy are seizure-free after surgery [16].
This is, in part, due to limitations identifying the EZ. Ret-
rospective studies relating presurgical clinical features and
resected brain structures to surgical outcome provide use-
ful insight to guide EZ resection [16]. To quantify resected
structures, first, the resection cavity (RC) must be segmented
on the postoperative magnetic resonance image (MRI). A
preoperative image with a corresponding brain parcellation
can then be registered to the postoperative MRI to identify
resected structures.

RC segmentation is also necessary in other applications.
For neuro-oncology, the gross tumor volume, which is the
sum of the RC and residual and residual tumor volumes, is
estimated for postoperative radiotherapy [10].

Despite recent efforts to segment RCs in the context of
brain cancer [10,18], little research has been published in
the context of epilepsy surgery. Furthermore, previous work
is limited by the lack of benchmark datasets, released code
or trained models, and evaluation is restricted to single-
institution datasets used for both training and testing.

Related works

After surgery, RCs fill with cerebrospinal fluid (CSF). This
causes an inherent uncertainty in delineating RCs adjacent
to structures such as sulci, ventricles or edemas. Nonlin-
ear registration has been presented to segment the RC for
epilepsy [6] and brain tumor [4] surgeries by detecting
non-corresponding regions between pre- and postoperative
images. However, evaluation of these methods was restricted
to a very small number of images. Furthermore, in cases
with intensity changes due to the resection (e.g., brain shift,
atrophy, fluid filling), non-corresponding voxelsmay not cor-
respond to the RC.

Decision forests were presented for brain cavity segmen-
tation after glioblastoma surgery, using four MRI modalities
[18]. These methods, which aggregate hand-crafted features
extracted from all modalities to train a classifier, can be
sensitive to signal inhomogeneity and unable to distinguish
regions with intensity patterns similar to CSF from RCs.
Recently, a 2D convolutional neural network (CNN) was
trained to segment the RC on MRI slices in 30 glioblastoma
patients [10]. They obtained a ‘median (interquartile range)’
Dice score coefficient (DSC) of 84 (10) compared to ground-

truth labels by averaging predictions across anatomical axes
to compute the 3D segmentation. While these approaches
require four modalities to segment the resection cavity, some
of the modalities are often unavailable in clinical settings
[9]. Furthermore, code and datasets are not publicly avail-
able, hindering a fair comparison across methods. Applying
these techniques requires curating a dataset with manually
obtained annotations to train the models, which is expensive.

Unsupervised learning methods can leverage large, unla-
beled medical image datasets during training. In self-
supervised learning, training instances are generated auto-
matically from unlabeled data and used to train a model to
perform a pretext task. The model can be fine-tuned on a
smaller labeled dataset to perform a downstream task [5]. The
pretext and downstream tasks may be the same. For example,
a CNN was trained to reconstruct a skull bone flap by simu-
lating craniectomies on CT scans [17]. Lesions simulated in
chest CT of healthy subjects were used to train models for
nodule detection, improving accuracy compared to training
on a smaller dataset of real lesions [25].

Contributions

We present a self-supervised learning approach to train a 3D
CNN to segment brain RCs from T1-weighted (T1w) MRI
without annotated data, by simulating resections during train-
ing. We ensure our work is reproducible by releasing the
source code for resection simulation and CNN training, the
trained CNN and the evaluation dataset. To the best of our
knowledge, we introduce the first open annotated dataset of
postoperative MRI for epilepsy surgery.

This work extends our conference paper [22] as fol-
lows: (1) we performed a more comprehensive evaluation,
assessing the effect of the resection simulation shape on per-
formance and evaluating datasets from different institutions
and pathologies; (2)we formalized our transfer learning strat-
egy.

Methods

Learning strategy

Problem statement

The overall objective is to automatically segment RCs from
postoperative T1w MRI using a CNN fθ parameterized by
weights θ . Let Xpost : Ω → R and Y cavity : Ω → {0, 1} be
a postoperative T1w MRI and its cavity segmentation label,
respectively, where Ω ⊂ R

3. Xpost and Y cavity are drawn
from the data distribution Dpost. In model training, the aim
is to minimize the expected discrepancy between the label
Y cavity and network prediction fθ (Xpost). Let L be a loss
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function that estimates this discrepancy (e.g., Dice loss). The
optimization problem for the network parameters θ is:

θ∗ = argminθ EDpost

[L (
fθ

(
Xpost

)
,Y cavity

)]
(1)

In a fully supervised setting, a labeled dataset Dpost =
{(Xposti ,Y cavityi )}

npost
i=1 is employed to estimate the expecta-

tion defined in (1) as:

EDpost

[L (
fθ

(
Xpost

)
,Y cavity

)]

≈ 1

npost

npost∑

i=1

L( fθ (Xposti ),Yposti ) (2)

In practice, CNNs typically require an annotated dataset
with a large npost to generalize well for unseen instances.
However, given the time and expertise required to annotate
scans, npost is often small. We present a method to artifi-
cially increase npost by simulating postoperative MRIs and
associated labels from preoperative scans.

Simulation for domain adaptation and self-supervised
learning

Let Dpre = {Xprei }
npre
i=1 be a dataset of preoperative T1w

MRI, drawn from the data distribution Dpre. We pro-
pose to generate a simulated postoperative dataset Dsim =
{(Xsimi ,Y simi )}nsimi=1 using the preoperative dataset Dpre.
Specifically, we aim to build a generative model φsim :
Xpre �→ (Xsim,Y sim) that transforms preoperative images
into simulated, annotated postoperative images that imi-
tate instances drawn from the postoperative data distribution
Dpost. Dsim can then be used to estimate the expectation in
(1):

EDpost

[ L (
fθ

(
Xpost

)
,Y cavity

)]

≈ 1

nsim

nsim∑

i=1

L( fθ (Xsimi ),Y simi ) (3)

Simulated images can be generated from any unlabeled
preoperative dataset. Therefore, the size of the simulated
dataset can be much greater than the annotated dataset Dpost,
i.e., nsim � npost. The network parameters θ can be opti-
mized by minimizing (3) using stochastic gradient descent,
leading to a trained predictive function fθ sim . Finally, fθ sim
can be fine-tuned on Dpost to improve performance on the
postoperative domain Dpost.

Resection simulation for self-supervised learning

φsim takes images from Dpre to generate training instances
by simulating a realistic shape, location and intensity pattern

for the RC. We present simulation of cavity shape and label
in sections “Initial cavity shape” and “Cavity label”, respec-
tively. In section “Simulating cavities filled with CSF”, we
present our method to generate the resected image.

Initial cavity shape

To simulate a realistic RC, we consider its topological and
geometric properties: it is a single volumewith a non-smooth
boundary.Wegenerate a geodesic polyhedronwith frequency
f by subdividing the edges of an icosahedron f times and
projecting each vertex onto a parametric sphere with a unit
radius centered at the origin. This polyhedronmodels a spher-
ical surface S = {V , F} with vertices V = {

vi ∈ R
3
}nV
i=1

and faces F = {
f k ∈ N

3
}nF
k=1, where nV and nF are the

number of vertices and faces, respectively. Each face f k =
{i k1 , i k2 , i k3 } is a sequence of three non-repeated vertex indices.

To create a non-smooth surface, S is perturbed with sim-
plex noise [24], a procedural noise generated by interpolating
pseudorandom gradients on a multidimensional simplicial
grid. We chose simplex noise as it simulates natural-looking
textures or terrains and is computationally efficient for multi-
ple dimensions. The noise η : R3 → [−1, 1] at point p ∈ R

3

is a weighted sum of the noise contribution for ω different
octaves, with weights {γ n−1}ωn=1 controlled by the persis-
tence parameter γ . The displacement δ of a vertex v is:

δ(v) = η

(
v + μ

ζ
, ω, γ

)
(4)

where ζ is a scaling parameter to control smoothness and
μ is a shifting parameter that adds stochasticity (equiva-
lent to a random number generator seed). Each vertex vi
is displaced radially to create a perturbed sphere: Vδ ={
vi + δ(vi )

vi‖vi‖
}nV
i=1

= {vδi }nVi=1.

Next, a series of transforms is applied to Vδ to modify
the mesh’s volume and shape. To add stochasticity, random
rotations around each axis are applied to Vδ with the rota-
tion transform TR(θ r) = Rx (θx ) ◦ Ry(θy) ◦ Rz(θz), where ◦
indicates a transform composition and Ri (θi ) is a rotation of
θi radians around axis i . TS(r) is a scaling transform, where
(r1, r2, r3) = r are semiaxes of an ellipsoid with volume v

used to model the cavity shape. The semiaxes are computed
as r1 = r , r2 = λr and r3 = r/λ, where r = (3v/4)1/3

and λ controls the semiaxes length ratios.1 These transforms
are applied to Vδ to define the initial resection cavity surface
SE = {VE, F}, where VE = {TS(r) ◦ TR(θ r)(vδi )}nVi=1.

1 Note the volume of an ellipsoidwith semiaxes (a, b, c) is v = 4
3πabc.
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Cavity label

The simulated RC should not span both hemispheres or
include extracerebral tissues such as bone or scalp. This sec-
tion describes our method to ensure that the RC appears in
anatomically plausible regions.

A T1w MRI is defined as Xpre : Ω → R. A full brain
parcellation P : Ω → Z is generated [3] for Xpre, where
Z is the set of segmented structures. A cortical gray matter
mask Mh

GM : Ω → {0, 1} of hemisphere h is extracted from
P , where h is randomly chosen from H = {left, right} with
equal probability.

A “resectable hemisphere mask” Mh
R is generated from P

andh such thatMh
R( p)=1 if P( p) �={MBG, MBT, MCB, Mĥ}

and 0 otherwise, where MBG, MBT, MCB and Mĥ are the
labels in Z corresponding to the background, brainstem,
cerebellumand contralateral hemisphere, respectively.Mh

R is
smoothed using a series of binary morphological operations,
for realism.

A random voxel a ∈ Ω is selected such that Mh
GM(a) =

1. A translation transform TT(a − c) is applied to SE, so
Sa = TT(a − c)(SE) is centered on a.

A binary image MSa : Ω → {0, 1} is generated from Sa
such that MSa ( p) = 1 for all p within Sa and MSa ( p) = 0
outside. Finally, MSa is restricted by Mh

R to generate the
cavity label Y sim = MSa � Mh

R, where � represents the
Hadamard product. Fig. 1 illustrates the process.

Simulating cavities filled with CSF

BrainRCs are typicallyfilledwithCSF.Togenerate a realistic
CSF texture, we create a ventricle mask MV : Ω → {0, 1}
from P , such that MV( p) = 1 for all p within the ven-
tricles and MV( p) = 0 outside. Intensity values within
the ventricles are assumed to have a normal distribution
[14] with a mean μCSF and standard deviation σCSF cal-
culated from voxel intensity values in {Xpre( p) | p ∈
Ω ∧ MV( p) = 1}. A CSF-like image is then generated as
XCSF( p) ∼ N (μCSF, σCSF),∀ p ∈ Ω .

We use Y sim to guide blending of XCSF and Xpre as
follows. A Gaussian filter is applied to Y sim to obtain a
smooth alpha channel Aα : Ω → [0, 1] defined as Aα =
Y sim ∗ GN (σ ), where ∗ is the convolution operator and
GN (σ ) is a 3D Gaussian kernel with standard deviations
σ = (σx , σy, σz). Then, XCSF and Xpre are blended by the
convex combination

Xsim = Aα � XCSF + (1 − Aα) � Xpre (5)

Weuseσ > 0 tomimic partial-volume effects at the cavity
boundary. The blending process is illustrated in Fig. 2.

Experiments and results

Data

Public data for simulation

T1w MRIs were collected from publicly available datasets
Information eXtraction from Images (IXI), Alzheimer’s
Disease (AD) Neuroimaging Initiative (ADNI) and Open
Access Series of Imaging Studies (OASIS), for a total
of 1813 images. They are used as control subjects in
our self-supervised experiments (section “Simulation for
domain adaptation and self-supervised learning”). Note that,
although we use the term “control” to refer to subjects that
have not undergone resective surgery, they may have other
neurological conditions. For example, subjects in ADNImay
suffer from AD.

Multicenter epilepsy data

We evaluate the generalizability of our approach to data from
several institutions: Milan (n = 20), Paris (n = 19), Stras-
bourg (n = 33) and EPISURG (n = 133). We curated
the EPISURG dataset from patients with refractory focal
epilepsy who underwent resective surgery between 1990
and 2018 at the National Hospital for Neurology and Neu-
rosurgery (NHNN), London, United Kingdom. All images
in EPISURG were defaced using a predefined face mask
in the Montreal Neurological Institute (MNI) space to pre-
serve patient identity. In total, there were 430 patients with
postoperative T1w MRI, 268 of which had a correspond-
ing preoperative MRI. EPISURG is available online and can
be freely downloaded [21]. The same human rater (F.P.G.)
annotated all images semi-automatically using 3DSlicer 4.10
[11].

Brain tumor datasets

The Brain Images of Tumors for Evaluation (BITE) dataset
[19] consists of ultrasound and MRI of patients with brain
tumors. We use 13 postoperative T1w MRIs with gadolin-
ium contrast enhancement (T1wCE) to perform a qualitative
assessment of our model’s generalization to images from a
substantially different domain (contrast-enhanced images)
and different pathology, where different surgical techniques
may affect RC appearance.

Preprocessing

For all images, the brain was segmented using ROBEX [15].
They were resampled into the MNI space using sinc interpo-
lation to preserve image quality. After resampling, all images
had a 1-mm isotropic resolution and size 193 × 229 × 193.
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Fig. 1 Simulation of the
ground-truth cavity label. Sa
(blue) is computed by centering
SE on a, a random positive
voxel (red) of Mh

GM (a). MSa is
a binary mask derived from Sa .
Y sim (c) is the intersection of
MSa and Mh

R (b)

(a) (b) (c)

Fig. 2 Simulation of resected image Xsim. We use a checkerboard for visualization. Two scalar-valued images Xpre (a) and X2 (b) are blended
using Y sim (c) and σi = 0mm to create an image with hard boundaries (d) and σi = 5mm (e) for an image with soft boundaries (f), mimicking
partial-volume effects

Network architecture and implementation details

We used the PyTorch deep learning framework, training with
automatic mixed precision (AMP) on two 32-GB TESLA
V100 GPUs.We used Sacred [13] to configure, log and visu-
alize experiments.

We implemented a 3D U-Net [7] variant using two con-
tractive and expansive blocks, upsampling with trilinear
interpolation for the synthesis path and 1/4 of the filters for
each convolutional layer.We used dilated convolutions, start-
ing with a dilation factor of one, then increased or decreased
in steps of one after each contractive or expansive block,
respectively. Our architecture has the same receptive field
(88mm3) but ≈ 77× fewer parameters (246,156) than the
original 3D U-Net, reducing overfitting and computational
burden.

Convolutional layers were initialized using He’s method,
and followed by batch normalization and nonlinear PReLU
activation functions. We used adaptive moment estimation
(AdamW) to adjust the learning rate, with weight decay
of 10−2, and a learning scheduler that divides the learning
rate by ten every 20 epochs. We optimized our network to
minimize the mean soft Dice loss of each mini-batch. For
training, a mini-batch size of ten images (five per GPU) was
used. Self-supervised training took approximately 27h. Fine-
tuning on a small annotated dataset took approximately 7h.

Processing during training

We use TorchIO transforms to load, preprocess and aug-
ment our data during training [23]. Instead of preprocessing
images with denoising or bias removal, we simulate dif-
ferent artifacts in the training instances so that our models
are robust to artifacts. Our preprocessing and augmentation
transforms are: (1) random simulation (RS) of resections
(self-supervised training only), (2) histogram standardiza-
tion, (3) Gaussian blurring or RS of anisotropic spacing, (4)
RS of MRI ghosting, (5) spike and (6) motion artifacts, (7)
RS of bias field inhomogeneity, (8) standardization of fore-
ground to zero-mean and unit variance, (9) Gaussian noise,
(10) RS of affine or free-form transformations, (11) random
flip around the sagittal plane and (12) crop to a tight bound-
ing box around the brain. We refer the reader to our GitHub
repository for details.

Experiments

Overlapmeasurements are reported as ‘median (interquartile
range)’ DSC. No postprocessing is performed for evalua-
tion, except thresholding at 0.5. We analyzed differences in
model performance using a one-tailedMann–WhitneyU test
(as DSCs were not normally distributed) with a significance
threshold of α = 0.05 and Bonferroni correction for n exper-
iments: αBonf = α

n(n−1) .
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Fig. 3 Simulation of RCs with
increasing shape complexity
(section “Resection simulation
for self-supervised learning”):
cuboid (a), ellipsoid (b) and
ellipsoid perturbed with simplex
noise (c)

Self-supervised learning: training with simulated resections
only

In our first experiment, we assess the relation between
the resection simulation complexity and the segmentation
performance of the model. We train our model with sim-
ulated resections on the publicly available dataset Dpre =
{Xpreopi }

npre
i=1, where npre = 1813 (section “Data”). We use

90% of the images in Dpre for the training set Dpre,train

and 10% for the validation set. At each training iteration,
b images from Dpre,train are loaded, resected, preprocessed
and augmented to obtain a mini-batch of b training instances
{(Xsimi ,Y simi )}bi=1. Note that the resection simulation is per-
formed on the fly, which ensures that the network never sees
the same resection during training. Models were trained for
60 epochs, using an initial learning rate of 10−3. We use the
model weights from the epoch with the lowest mean vali-
dation loss obtained during training for evaluation. Models
were tested on the 133 annotated images in EPISURG.

To investigate the effect of the simulated cavity shape
on model performance, we modify φsim to generate cuboid-
shaped (Fig. 3a) or ellipsoid-shaped (Fig. 3b) resections and
compare with the baseline “noisy” ellipsoid (Fig. 3c). The
cuboids and ellipsoid meshes are not perturbed using sim-
plex noise, and cuboids are not rotated.

Best results were obtained by the baseline model [80.5
(18.7)], trained using ellipsoids perturbed with procedural
noise.Models trainedwith cuboids and rotated ellipsoids per-
formed significantly (57.9 (73.1), p < 10−8) and marginally
[79.0 (20.0), p = 0.123] worse.

Fine-tuning on small clinical datasets

We assessed the generalizability of our baseline model by
fine-tuning it on small datasets from four institutions thatmay
use different surgical approaches and acquisition protocols
(including contrast enhancement and anisotropic spacing in
Strasbourg) (section “Multicenter epilepsy data”). Addition-
ally, we fine-tuned the model on 20 cases from EPISURG
with the lowest DSC in section “Self-supervised learning:
training with simulated resections only”.

For each dataset, we load the pretrained baseline model,
initialize the optimizer with an initial learning rate of 5 ×
10−4, initialize the learning rate scheduler and fine-tune
all layers simultaneously for 40 epochs using 5-fold cross-
validation. We use model weights from the epoch with the
lowest mean validation loss for evaluation. To minimize data
leakage, we determined the above hyperparameters using the
validation set of one fold in the Milan dataset.

We observed a consistent increase in DSC for all fine-
tuned models, up to a maximum of 89.2 (13.3) for theMilan
dataset. For comparison, inter-rater agreement between
human annotators in our previous study was 84.0 (9.9) [22].
Quantitative evaluation is illustrated in Fig. 4.

Qualitative evaluation on brain tumor resection dataset

We used the BITE dataset [19] to evaluate the ability of our
self-supervised model to segment RCs on images from a dif-
ferent institution, modality and pathology than the datasets
used for quantitative evaluation. For postprocessing, all but
the largest binary connected component were removed. The
model successfully segmented the RC on 11/13 images, even
though some contained challenging features (Fig. 5).

Qualitative evaluation on intraoperative image

We used our baseline model to segment the RC on one
intraoperative MRI from our institution. Despite the large
domain shift between the training dataset and the intraopera-
tive image, which includes a retracted skin flap and amissing
bone flap, the model was able to correctly estimate the RC,
discarding similar regions filled with CSF or air (Fig. 6).

Discussion and conclusion

We addressed the challenge of segmenting postoperative
brain resection cavities from T1w MRI without annotated
data. We developed a self-supervised learning strategy to
train without manually annotated data and a method to sim-
ulate RCs from preoperative MRI to generate training data.
Our novel approach is conceptually simple, easy to imple-
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Fig. 4 DSC without (blue) and
with (orange) fine-tuning of the
model training using
self-supervision. Horizontal
lines in the boxes represent the
first, second (median) and third
quartiles. EPISURG (worst)
comprises the 20 cases from
EPISURG with the lowest DSC
in the experiment described in
section “Self-supervised
learning: training with simulated
resections only”. Numbers in
parentheses indicate subjects per
dataset

Fig. 5 Qualitative results on postoperative brain tumor T1wCE MRI. The model is robust to: air and CSF in the RC (a), anisotropic spacing (b),
presence of edema (c) and a different modality than used for training (all). Note that these images are from a different institution, modality and
pathology than the datasets used for quantitative evaluation. Manual annotations are not available

Fig. 6 Qualitative result on an
intraoperative MRI. The
baseline model correctly
discarded regions filled with air
or CSF outside of the RC

ment and relies on clinical knowledge about postoperative
phenomena.The resection simulation is computationally effi-
cient (< 1 s), so it can run during training as part of a data
augmentation pipeline. It is implemented within the TorchIO
framework [23] to leverage other data argumentation tech-
niques during training, enabling our model to have a robust
performance across MRI of variable quality.

Modeling a realistic cavity shape is important (sec-
tion “Self-supervised learning: trainingwith simulated resec-
tions only”). Ourmodel generalizes well to clinical data from
different institutions and pathologies, including epilepsy and
glioma. Models may be easily fine-tuned using small anno-
tated clinical datasets to improveperformance.Moreover, our
resection simulation and learning strategy may be extended
to trainwith arbitrarymodalities, or syntheticmodalities gen-
erated from brain parcellations [1]. Therefore, our strategy
can be adopted by institutions with a large amount of unla-

beled data, while fine-tuning and testing on a smaller labeled
dataset.

Poor segmentation performance is often due to very small
cavities, where the cavity was not detected, and large brain
shift or subdural edema, where regions were incorrectly seg-
mented. The former issue may be overcome by training with
a distribution of cavity volumes which oversamples small
resections. The latter can be addressed by extending our
method to simulate displacementwith biomechanicalmodels
or nonlinear deformations of the brain [12].

We showed that our model correctly segmented an intra-
operative image, respecting imaginary boundaries between
brain and skull, suggesting a good inductive bias of human
neuroanatomy. Qualitative results and execution time, which
is in the order of milliseconds, suggest that our method could
be used intraoperatively, for image guidance during resec-
tion or to improve registration with preoperative images by
masking the cost function using the RC segmentation [2].
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Segmenting the RCmay also be used to study potential dam-
age to white matter tracts postoperatively [27]. Our method
could be easily adapted to simulate other lesions for self-
supervised training, such as cerebral microbleeds [8], narrow
and snake-shapedRCs typical of disconnective surgeries [20]
or RCs with residual tumor [18].

As part of this work, we curated and released EPISURG,
an MRI dataset with annotations from three independent
raters. EPISURG could serve as a benchmark dataset for
quantitative analysis of pre- and postoperative imaging of
open resection for epilepsy treatment. To the best of our
knowledge, this is the first open annotated database of postre-
section MRI for epilepsy patients.
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