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Abstract

Background: MicroRNAs (miRNAs) are known to be important regulators of both organ development and tumorigenesis.
MiRNA networks and their regulation of messenger RNA (mRNA) translation and protein expression in specific biological
processes are poorly understood.

Methods: We explored the dynamic regulation of miRNAs in mouse lung organogenesis. Comprehensive miRNA and mRNA
profiling was performed encompassing all recognized stages of lung development beginning at embryonic day 12 and
continuing to adulthood. We analyzed the expression patterns of dynamically regulated miRNAs and mRNAs using a
number of statistical and computational approaches, and in an integrated manner with protein levels from an existing mass-
spectrometry derived protein database for lung development.

Results: In total, 117 statistically significant miRNAs were dynamically regulated during mouse lung organogenesis and
clustered into distinct temporal expression patterns. 11,220 mRNA probes were also shown to be dynamically regulated and
clustered into distinct temporal expression patterns, with 3 major patterns accounting for 75% of all probes. 3,067 direct
miRNA-mRNA correlation pairs were identified involving 37 miRNAs. Two defined correlation patterns were observed upon
integration with protein data: 1) increased levels of specific miRNAs directly correlating with downregulation of predicted
mRNA targets; and 2) increased levels of specific miRNAs directly correlating with downregulation of translated target
proteins without detectable changes in mRNA levels. Of 1345 proteins analyzed, 55% appeared to be regulated in this
manner with a direct correlation between miRNA and protein level, but without detectable change in mRNA levels.

Conclusion: Systematic analysis of microRNA, mRNA, and protein levels over the time course of lung organogenesis
demonstrates dynamic regulation and reveals 2 distinct patterns of miRNA-mRNA interaction. The translation of target
proteins affected by miRNAs independent of changes in mRNA level appears to be a prominent mechanism of
developmental regulation in lung organogenesis.
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Introduction

MiRNAs are a class of small RNAs (,21–24 nt) that regulate the

expression of target genes at the post-transcriptional level. They are

first transcribed from miRNA genes in the genome as primary

miRNA (pri-miRNAs) and then processed by an RNase III enzyme,

Drosha, into premature miRNAs (pre-miRNAs) with hairpin

structures. With the help of Exportin 5, pre-miRNAs are then

transported into the cytoplasm, where they are cleaved by another

RNase III enzyme, Dicer. The cleavage results in double-stranded

duplexes. Usually, one strand of a duplex becomes the mature

miRNA [1]. Mature miRNAs are then recruited into nucleoprotein

complexes called RNA-induced silencing complexes (RISC). Based

on the pairing of miRNAs and their target sites, the complexes can

inhibit translation by either degradation of the messenger RNAs

(mRNAs), or by blocking translation without degrading the targets

[1,2].

Individual miRNAs may target multiple mRNAs. Conversely,

individual mRNAs may contain sequences complementary to

multiple miRNA family members [3,4]. It is estimated that

miRNAs may be responsible for regulating the expression of

nearly one-third of the human genome [5]. MiRNAs are known to

play multiple roles in carcinogenesis, immune responses and organ

development [6,7], and have been implicated in many critical

cellular processes, including apoptosis, proliferation, and differen-

tiation [8]. Despite the identification of more than 800 mature

human miRNAs and 700 mouse miRNAs, much remains to be

discovered about their functional targets and biologic role.

The development of the mouse lung is initiated at embryonic

day 9.5(E9.5), followed by the morphologically characterized
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pseudoglandular (E11.5–16.5), canalicular (E16.5–17.5), saccular

(E17.5–P5) and alveolar stages (P5–30). The primitive airways

begin as a ventral outpouching of foregut epithelium, with almost

immediate branching to form the two main stem bronchi.

Interactions between the surrounding mesenchyme and the

developing airway epithelium function to promote further

branching morphogenesis through the pseudoglandular and

canalicular stages up to E17.5. Alveolarization begins in the

saccules of the lung in parallel with development of the alveolar

capillary bed, and proceeds up to completion at approximately 1

month of age [9,10]. As in the organogenesis of many structures,

formation of the lung is dependent on a myriad of interactions

among signaling molecules and their receptors that mediate cell

proliferation, differentiation, and other diversified functions under

the control of complex regulatory networks [9].

Genetically engineered mouse mutant models using gene

knockout [11], conditional alleles [12,13], or transgenic misex-

pression [14] have all been used to gain insight into the specific

genetic pathways controlling lung morphogenesis. Conditional

ablation of Dicer in the mouse lung produces an abnormal

phenotype with a dramatic reduction in branching morphogenesis

[15]. Mice with deletion of the miR17-92 cluster die shortly after

birth with lung hypoplasia and cardiac anomalies [16]. It is

unknown if other individual or microRNA clusters exist with

significant roles in lung organogenesis.

A number of miRNA profiling studies evaluating mouse and rat

lung development have recently emerged and demonstrated the

dynamic regulation of miRNAs during lung organogenesis. Williams

et al performed miRNA profiling at 3 time points (P1, P14 and P60)

of the developing mouse lung using a panel of 156 individual

miRNAs [17]. They demonstrated that the overall expression profile

was similar for mouse and human tissue, suggesting evolutionary

conservation of miRNA expression during lung development. Lu et al

performed miRNA cloning and sequencing at 2 time points (E11.5

and E17.5) and identified differences in the relative abundance of

miRNAs across the 2 time points [18]. Further transgenic

experiments suggest that miRNAs encoded by the miR-17-92 cluster

positively promote proliferation of epithelial progenitor cells and

inhibit their differentiation [19]. Bhaskaran et al performed miRNA

profiling at 7 time points in rat lung development using an in-house

platform and identified 21 miRNAs in 4 clusters that showed

significant changes in expression [20]. No studies yet reported have

explored interactions in the regulatory control of mRNA modules by

individual or groups of miRNAs.

The purpose of this study was to identify and systematically

explore dynamically regulated miRNAs and potential miRNA-

mRNA interaction networks specific to mouse lung development.

We performed comprehensive miRNA and mRNA profiling over

a 7-point time course, encompassing all recognized stages of lung

development beginning at embryonic day 12 and continuing to

adulthood. We also systematically predicted potential direct

mRNA targets of miRNAs through both miRNA-mRNA and

miRNA-protein correlations. The results demonstrate evidence for

two distinct patterns of miRNA-mRNA interaction, and reveal

that translation of target proteins affected by miRNAs, indepen-

dent of changes in mRNA level, appears to be a prominent

mechanism of developmental regulation in lung organogenesis.

Methods

Preparation of timed-pregnant mice and isolation of total
RNA

Approval of the study protocol was obtained from The Mayo

Clinic Institutional Animal Care and Use Committee. All mice

were maintained in a specific-pathogen-free animal facility at

Mayo Clinic and all animal experiments were carried out

according to the provisions of the Animal Welfare Act, PHS

Animal Welfare Policy, and the principles of the NIH Guide for

the Care and Use of Laboratory Animals. ICR female mice were

bred for timed pregnancies. The day of plug observation was

considered day 0 of gestation. Lungs were isolated by manual

dissection with the aid of a dissecting microscope where necessary.

Lungs were washed with PBS. Total RNA was isolated from

pooled whole lungs using Trizol (Invitrogen) for mRNA expression

microarray and mir VanaTM miRNA Isolation Kit (Ambion) for

ABI microRNA real-time PCR array according to the manufac-

turer’s instructions. RNA quality and integrity was confirmed by

denaturing gel electrophoresis.

mRNA and miRNA arrays
The mRNA expression profiling was performed using the

Affymetrix GeneChip Mouse Genome 430 2.0 Array containing

probes to query more than 39,000 transcripts. The reverse

transcription, labeling and hybridization of mRNA were per-

formed in the Mayo Microarray Shared Resource. The data has

been submitted to the Gene Expression Omnibus (GEO) database

with accession number GSE20954.

MiRNA expression profiling was performed using the Taqman

Rodent MicroRNA Array Card A and Card B (Applied

Biosystems) containing all 521 mature mouse miRNAs in miRBase

10.1 http://microrna.sanger.ac.uk. In brief, miRNA was reverse

transcribed to cDNA using the Megaplex TM RT Rodent Primers

Pool and the TaqMan MicroRNA Reverse Transcription Kit.

Quantitative 384 well TaqMan Low Density Array real-time PCR

was run on the ABI PRISM 7900 System using the TaqMan

Universal PCR Master Mix. Raw miRNA array data was

analyzed by using RQ manager software on the ABI system. All

undetectable data and the data with CT values greater than 35

were treated as 35 [21]. Normalized CT (DCT) was calculated by

comparing each miRNA value to that of small nuclear U6 RNA.

The U6 RNA is a common internal control for each microRNA

array card. The copy number of miRNAs in each cell (assuming

each cell contains 30 pg of total RNA) was calculated from a

formula 10(40-C
T

)/3.34/22 that was estimated using synthetic lin-4

miRNA [22]. The data has been submitted to the GEO database

with accession number GSE21052.

Data processing and analysis
Both mRNA and miRNA array data analysis was performed

with the Partek Genomics Suite 6.4 software. For mRNA

expression data, Affymetrix CEL files were imported. The data

were normalized with the Robust Multichip Average Algorithm

[23] and converted to log2 values. For miRNA expression data, the

DCT value was directly imported as a log2 value. The greater the

DCT value, the lower the miRNA expression value (i.e. copy

number). Log data were used for hierarchical clustering and

statistical analysis.

The normalized data were subsequently analyzed by principal

component analysis (PCA) to determine if any intrinsic clustering

or outliers existed within the data set. A combination of descriptive

statistics such as Min/Max (i.e. minimum/maximum; we use

minimum for miRNA as the greater the copy number the smaller

the expression value), Range (the difference between maximal and

minimal values across 7 time points) and the False Discovery Rate

(FDR) adjusted p-values derived from statistical analysis were used

to identify significantly altered miRNAs and mRNA probes.

We analyzed the time course data using 2 different statistical

approaches, ANOVA and a time-course specific statistical method

Lung MicroRNA Networks
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implemented in an open source software program, the Extraction

of Differential Gene Expression (EDGE, available at http://www.

genomine.org/edge/) [24]. The cut-off values of the descriptive

statistics were empirically set up at a strict level to minimize off-

target correlations derived from ANOVA. A comparative analysis

using the EDGE approach was performed to exclude observations

made on the basis of a single statistical approach.

Hierarchical cluster analyses were performed using dChip

software (www.dchip.org) on filtered datasets to identify temporal

expression patterns of miRNA and mRNA levels in mouse lung

development.

Pearson correlation analysis was performed between two sets of

time-course expression values for significant miRNAs and mRNA

probes to identify negatively correlated miRNA-mRNA pairs

within certain cut off values. The computational mRNA targets of

each significant miRNA retrieved from the miRBase (version 5)

and TargetScanMouse (5.1) databases were used for validation,

with the assumption that overlaps between negatively correlated

mRNA targets and computationally detected mRNA targets may

imply direct mRNA targets for each miRNA. g:Profiler was used

to convert Transcript IDs from miRBase into Affymetrix

mouse430 Probe Set IDs [25].

A protein profiling dataset generated by shotgun mass

spectrometry from a previous study [26] was used to explore

microRNA-protein correlations. The protein profiling data is a

time course study of protein expression levels with 6 time points,

encompassing the protein data from early embryonic stage E13.5

through adulthood during ICR mouse lung development using

gel-free two-dimensional liquid chromatography coupled to

shotgun tandem mass spectrometry (MudPIT). We integrated

the expression values of each protein detected from three organelle

fractions (i.e. nuclear, mitochondrion, cytosol fractions) into a

unified value and then converted these into log2 values. Pearson

correlation analysis was performed between the time-course

expression values of significant miRNAs and the protein data

across 6 time points with a mapping of the two time courses (E14

to E13.5, E16 to E16, E18 to E18, P2 to P2, P10 to P14 and Adult

to Adult). g:Profiler was used to convert the protein UNIProtKB

IDs into the Affymetrix mouse 430 Probe Set IDs. A similar

approach was used to identify the direct miRNA targets through

comparison with the miRBase file.

Gene ontology biological process and pathway analysis
Gene ontology (GO) biological process annotations and

pathway annotations (GenMapp, KEGG) were performed against

Affymetrix annotation files using Partek software. We performed

GO analysis and pathway analysis to gain insight into biological

processes and pathways in lung development among different

expression patterns of mRNAs, among direct mRNA targets of

different expression patterns of miRNAs, and among direct

mRNA targets of each miRNA.

Genome localization of miRNAs
The UCSC Genome Brower (genome.ucsc.edu) was used to

visualize and analyze the chromosome localization for total mouse

miRNAs and significant miRNAs involved in lung development.

Results

In total, the expression values of 45,101 probes for mRNA

profiling in 7 time points (2 samples in each time point) were

obtained after normalization. The normalized expression values of

521 miRNAs in the same 7 time points (2 samples in each time

point) were also obtained. The 3-D graphical visualization of the

principal component (PCA) analysis for both mRNA and miRNA

expression values from replicate samples in each time point have

similar patterns (Figure 1).

Three criteria were used for identifying mRNA probes and

miRNAs which changed significantly in expression level during

different time points of lung development. For mRNA expression

data, the cut-off value for the descriptive statistic Max was set as

.7, and the cut-off value of Range as .1.2 (i.e. fold change.2.3).

The p value for ANOVA analysis was set as p,0.05 and further

adjusted by FDR (Step Up, FDR,0.05) to p,0.03. From these

filters, 11,220 probes were identified as dynamically regulated

across the time course. Using the EDGE statistical approach,

11,118 probes were identified as dynamically regulated across the

time course. The overlap between the 2 approaches was 11,046

probes in total, or 98.45% of all probes identified by ANOVA.

For miRNA expression data, a cut-off value for Min was set as

DCT ,10 and a cut-off value for Range was .2.2 (i.e. fold

change.4.6). The p value for ANOVA was set as p,0.05 and

further adjusted by FDR (FDR,0.05) to p,0.017. In total, 117

Figure 1. Scatter plots of miRNA and mRNA data by Principle Component Analysis (PCA). (A) Expression array data for mRNA. (B)
Expression array data for miRNA. Samples are colored by different mouse lung development time points. The same color represents the replicate
samples.
doi:10.1371/journal.pone.0010854.g001

Lung MicroRNA Networks
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dynamically regulated miRNAs were identified through these

filters. Using the EDGE approach, 121 dynamically regulated

miRNAs were identified, with 116 (99.15%) overlapping with

those identified by ANOVA. Of these 116 miRNAs, miR-466d-3p

(1520 fold), miR-449a (975 fold), miR-29a (479 fold), miR-146b

(278 fold) and miR-409-3p (255 fold) were the top five miRNAs

which had the highest fold changes across the dataset. miR-126-

3p, miR-24, miR-16, miR-19b, and miR-17 were the top five

miRNAs with the highest absolute expression values. Of these,

MiR-126-3p has the highest expression value with DCT value 0.14

(i.e. copy number 159299).

mRNA expression
For characterizing the expression patterns of lung development,

hierarchical clustering analysis was performed to generate a

dendrogram of both mRNA and miRNA data sets that met the

above criteria.

Through analysis of the dendrogram for 11,220 mRNA probes,

we identified 6 temporal expression patterns (i.e. Cluster 1–6 in

Figure 2A) across 7 time points accounting for 94% of all

significant probes. Clusters 3 and 6 cover the majority of probes,

accounting for approximately 76% of the total. Cluster 3 shows

that expression values of 4686 (42%) mRNA probes are high at the

early embryonic stage (E12), decrease gradually through E16, and

then decrease dramatically at the late embryonic stage (E18) and

through postnatal and adult stages. Cluster 6 shows that expression

values of 3793 (34%) mRNA probes are low at the early

embryonic stage (E12) and increase gradually through all stages

and reach a peak at the adult stage. Cluster 1 demonstrates those

expression values of 674 (6%) probes peaking at the late embryonic

stage (E18) and decreasing dramatically after birth through adult

stages. The remaining 3 clusters, accounting for 12% of total

probes, show patterns distinct from the above 3 patterns.

Functional analysis using Gene Ontology annotation was

performed. In all clusters, the genes are enriched in categories of

‘‘transcription’’, ‘‘regulation of transcription’’, ‘‘transport’’, ‘‘mul-

ticellular organismal development’’, ‘‘protein amino acid phos-

phorylation’’ and ‘‘metabolic process’’. Excluding these common

functions, the top 20 GO terms ranked by the number of probes

display distinct enrichment profiles across different clusters

(Figure 2B). For Cluster 3 in which genes are active in the early

embryonic stage of lung development, enrichment occurs for genes

involved in ‘‘cell cycle’’, ‘‘mRNA processing’’, ‘‘translation’’,

‘‘RNA splicing’’, ‘‘cell division’’, ‘‘response to DNA damage

Figure 2. Temporal expression patterns of mRNA using hierarchical cluster analysis and biological functional patterns by GO
biological process and pathway analysis. (A) 6 temporal expression patterns represented by color heat maps and bar graphs (x axis indicating
the 7 time points, y axis indicating the relative expression value of group probes). The relative expression values in each time point are the ratios
normalized against those in the adult group. (B) Biological process patterns of 6 expression clusters represented by bar graphs (x axis indicating top
20 GO terms on biological process, y axis indicating the number of probes) (C) Pathway patterns of 6 expression clusters represented by bar graphs
(x axis indicating top 20 GenMAPP pathway annotations, y axis indicating the number of probes).
doi:10.1371/journal.pone.0010854.g002
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stimulus’’, ‘‘DNA repair’’, ‘‘mitosis’’ and ‘‘DNA replication’’. This

is in contrast to Cluster 6 where genes are predominantly active in

adult stages, with enrichment in genes involved in ‘‘signal

transduction’’, ‘‘cell differentiation’’, ‘‘immune response’’, ‘‘cell

adhesion’’, ‘‘oxidation reduction’’, and ‘‘angiogenesis’’.

Pathway analysis using GenMAPP and KEGG annotations was

performed for all 6 clusters. Figure 2C shows a comparison of the

top 20 pathways ranked by the number of genes. No common

pathway was identified across all 6 clusters. For Cluster 3, genes

are enriched for pathways ‘‘mRNA processing binding reactome’’,

‘‘cell cycle KEGG’’, ‘‘G1 to S cell cycle reactome’’, and ‘‘DNA

replication reactome’’; whereas for Cluster 6, genes are enriched in

pathways ‘‘smooth muscle contraction’’, ‘‘G protein signaling’’,

‘‘integrin-mediated cell adhesion KEGG’’, ‘‘TGF beta signaling

pathway’’ and ‘‘Wnt signaling’’. For Cluster 1, genes are enriched

rich for ‘‘smooth muscle contraction’’ and ‘‘G protein signaling’’.

miRNA expression
Through analysis of the cluster dendrogram for 117 dynami-

cally regulated miRNAs, we identified 5 temporal expression

patterns from two major pattern groups across 7 time points. For

the first pattern group, the expression values are low at early

embryonic stages and increasing to reach a peak at late embryonic

or postnatal and adult stages. There are 61 miRNAs in this group,

in which 3 distinct temporal expression patterns (i.e. Clusters 1–3

in Figure 3) were identified. Cluster 1 show that the expression

values of miRNAs increase gradually through all stages and reach

a peak at the adult stage (P30), whereas Cluster 2 peaks at the late

embryonic stage (E18) and Cluster 3 at the postnatal stage (P10).

For the second pattern group, the expression values are high at

embryonic stages and decrease dramatically at the postnatal and

adult stage. There are 56 total miRNAs in this group, in which 2

temporal expression patterns (i.e. Clusters 4–5 in Figure 3) were

identified. Cluster 5 shows the expression values of miRNAs

decrease gradually through the embryonic stages and then

decrease dramatically after birth through the adult stage, whereas

Cluster 4 peaks at the late embryonic stage (E18) and then

decreases dramatically.

Directly correlated target mRNAs for miRNA clusters
1) Identified by mRNA expression. We performed pair-

wise Pearson correlation analysis across 7 time points to evaluate

Figure 3. Temporal expression patterns of miRNA using hierarchical cluster analysis. (A) 5 temporal expression patterns represented by
color heat maps. (B) 5 temporal expression patterns represented by bar graphs (x axis indicating the 7 time points, y axis indicating the relative
expression values of group miRNAs). With miRNA copy number as an miRNA expression value, The relative expression values in each time point are
the ratios normalized against those in the Adult group.
doi:10.1371/journal.pone.0010854.g003
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potential correlations between 117 miRNA and 11,220 mRNA

expression levels. With setting a cut off value as coefficient .|0.9|,

we detected 69,725 miRNA-mRNA pairs with negative

correlation and 47,532 pairs with positive correlation. We found

that for each miRNA, the greater the number of negatively

correlated pairs, a corresponding greater number of positive

correlation pairs also existed. Interestingly, for those miRNAs in

Cluster 2, 3 and 4, almost no correlated pairs were identified. In

Cluster 5, about 2/3 of miRNAs do not have correlated pairs

identified. Table S1 shows the correlation analysis results of all 117

miRNAs which are sorted by clusters and number of probes.

To test if the miRNA-correlated mRNA genes are direct

miRNA targets, we downloaded the miRBase database and

compared the computational targets of each miRNA with the

miRNA negatively correlated mRNA probes. In total, 148,840

miRNA-mRNA probe pairs were identified from the miRBase

database. 3,067 unique pairs were filtered out as direct miRNA

targets with coefficient ,20.9 (Table S1). We found that all of the

miRNAs having direct targets identified are distributed in Cluster

1 and 5. In total, 80 out of 117 miRNAs did not have direct targets

identified as they did not have negatively correlated mRNAs. For

those miRNAs in Cluster 2, 3 and 4, no direct targets were

identified. About 2/3 of miRNAs in Cluster 5 do not have direct

targets identified.

For comparison with miRBase, the TargetScan database was

also used to predict direct miRNA targets. In total, 330 direct

miRNA targets were filtered out and only 7 miRNAs had direct

targets identified. All of them are in cluster 1 and 5 (Table S1),

indicating that the TargetScan database is more stringent with

potentially lower sensitivity than miRBase.

2) Identified by protein expression. We performed pair-

wise Pearson correlation analysis across 6 time points to evaluate

potential correlations between the expression levels of 117

miRNAs and 3330 UniProtKB proteins. After mapping the

UNIProtKB IDs of 3330 proteins onto 6326 Affymetrix mouse430

Probe Set IDs and setting the cut off value as coefficient .|0.8|,

we detected 41,774 miRNA-protein pairs with negative

correlation. By comparing the miRBase computational targets of

each miRNA/mRNA pair with the miRNA/negatively correlated

protein pair, 1345 unique miRNA/protein pairs were identified as

direct miRNA targets (Table S2). Most of the identified miRNAs

had direct mRNA targets identified except for three, indicating

that correlation with protein levels has a higher yield of

computationally predicted mRNA targets versus those obtained

by mRNA profiling alone (97.4% versus 31.6%). Interestingly,

54.9% of the mRNA probes identified as direct targets through

protein expression data do not belong to the significantly changed

subset (n = 11220) of mRNAs.

Genome localization of miRNAs
MiRNAs are found throughout mammalian genomes. Half of the

known miRNAs are located inside or close to fragile sites which are

genomically unstable and common breakpoints associated with

cancer. Nearly 40% of miRNAs exist in genomic clusters. Some

clusters reflect the processing of a number of miRNAs from a single

large polycistronic transcript such that presumably all of the

miRNAs are under control of the same promoter and in the same

transcriptional orientation [27]. With the stringent criteria that a

cluster should consist of more than two members positioned within

1 Mb, there are 22 miRNA clusters identified in mouse [27,28,29].

The largest is the miR-127 cluster with greater than 50 members on

mouse chromosome 12 (Chr.12). Other large clusters include the

miR-29a cluster on Chr.6, the miR-23a cluster on chr.8, the miR-

17-92 cluster on Chr.14 and the miR-106a cluster on Chr.X

(Figure 4A). Significant miRNAs dynamically regulated in lung

development were positioned throughout the genome except for

Chr.5 and Chr.Y (Figure 4B). 23 miRNAs belonging to the miR-

127 cluster were increased, whereas all 6 miRNAs in the miRNA-

17-92 cluster (mir-17, 18a, 19a, 19b-1, 20a, and 92-1) and 3

miRNAs (mir-20b, 90a-2 and 106a) in the miR-106a cluster that all

belong to miRNA cluster 5 were dramatically decreased (Figure 4).

Interestingly, almost all 23 miRNAs in the miR-127 cluster that

have the same strand orientation belong to miRNA Cluster 4 and

have highest expression around E18. Within the miR-127 cluster,

no miRNA targets were identified by miRNA/mRNA pairing

(Figure 4C), while all had direct mRNA targets when miRNA/

protein pairs were analyzed, such as miR-380-5p, miR-370, and

miR-434. This suggests that the miR-127 cluster may be involved in

part of the regulation of the start of alveolar formation by inhibiting

mRNA translation of specific targets without changes in mRNA

levels. A number of further targets were identified through miRNA/

protein correlations, such as the mir-200 family (miR-200a, miR-

200b and miR-200c), miR-191, miR-195, miR-301, and miR-322

(Figure 4D).

Pathway involvement for individual miRNAs
In this study, we found that a number of miRNA families are

dynamically regulated during mouse lung development. This

includes miRNA families miR-30 (miR-30a, miR-30d, miR-30e,

miR-30b, miR-30c, miR-30e*), miR-24 (miR-24, miR-24-2*),

miR-26 (miR-26a, miR-26b), miR-29 (miR-29a, miR-29c), miR-

34 (miR-34b-3p, miR-34c*) in Cluster 1 which has high expression

in the adulthood stage, and miR-20 (miR-20a, miR-20b) in cluster

5 which has high expression in the early stages of lung

organogenesis. To computationally explore the potential function-

al relevance of dynamically regulated miRNAs during lung

development, we employed biological process and pathway

analysis. We found that miRNAs within the same family or same

genome localization cluster have similar biological functions and

appeared to be involved in similar pathways. For example, there

are 5 miRNA members in the miR-30 family that are involved in

TGF Beta signaling pathway through the gene ‘‘Tgfbr1’’ and 5

miRNAs (miR-17a, 18a, 20a, 20b, 92a) in miR-17-92 cluster that

are involved the same pathway through the gene Smad6. There

are 4 miRNAs (miR-30b, let-7b, 18a, and 19a) that are involved in

the Wnt signaling pathway through the genes Fzd2, Racgap1, Myc

and Prkce. A list of 30 miRNAs with their respective correspond-

ing top 10 GO biological process terms, pathways and pathway-

related target gene names is shown in Table S3.

Discussion

In this study, we explored the dynamic regulation of micro-

RNA, mRNA, and protein levels over the time course of lung

organogenesis using a systematic genome-wide approach. First, we

performed genome-wide mRNA and miRNA profiling across all

recognized stages of lung development beginning at early

embryonic stages and continuing to adulthood. Second, we

identified the subset of mRNAs and miRNAs for which expression

values changed significantly across the time course using statistical

analysis. Thirdly, we clustered the significant subsets to identify

their temporal expression patterns with GO functional enrichment

and pathway analysis. Fourthly, we performed both miRNA-

mRNA and miRNA-protein correlation analyses and integrated

these with computational target predictions to study potential

direct targets of miRNAs. Lastly, we explored the biological

function and pathway roles of miRNAs involved in lung

development through their mRNA or protein targets.

Lung MicroRNA Networks
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As part of the analysis, we combined temporal correlation

analysis and computational target mapping to study the potential

direct targets of miRNAs. As many miRNAs cause degradation of

their mRNA targets and a large number of mRNAs are regulated

in this manner, expression profiling patterns of miRNAs and their

target mRNAs should reveal an inverse relationship or correlation

[5,30]. We considered that a negative correlation between miRNA

and mRNA (or protein) expression levels would mimic such an

inverse relationship. In this study, we chose the cutoff value of

correlation coefficient as 20.9 for miRNA-mRNA correlations

and 20.8 for miRNA-protein correlations, both of which

represent a strong negative correlation. Combined with compu-

tational prediction, simultaneous profiling of miRNA and mRNA

expression levels may be a strategy for the validation and

identification of functional miRNA targets [31,32]. Time-course

studies provide further information that could readily be missed in

a cross-sectional study based on a single time point [33].

The first point of our analysis was to understand if gene

expression varied by time course, and in particular which genes

were changing. To answer this question, we adopted an empirical

model combining stringent descriptive statistics with FDR adjusted

p-values derived from ANOVA analysis. We furthered this with a

second analysis using the time-course specific EDGE methodol-

ogy, demonstrating minimal difference between the 2 approaches.

MicroRNA expression levels were analyzed in a similar manner.

From this, we conclude that the correlations observed between

mRNA, miRNA, and protein levels are valid from the standpoint

of 2 different statistical approaches to the data.

Computational miRNA target prediction algorithms have been

developed based on common features of known miRNAs and their

mRNA target interactions and these have greatly facilitated the

search for miRNA targets [34]. However, computational miRNA

target prediction does not account for physiological factors that

could influence the existence or outcome of the predicted miRNA-

mRNA interaction, including the stoichiometry of miRNAs and

targets, or the involvement of other regulatory proteins [35,36].

Current computational prediction tools are diverse, both in

approach and performance. It is difficult to decide which predicted

miRNA-target interactions are more likely to be accurate and

which tool provides the best performance [32,34]. When

considering current predictions that are available for mouse, we

evaluated those from miRBase Targets [37], EIMMo[38], PicTar

[39]and TargetScan [40,41], all of which use site conservation as a

prediction criterion. Comparisons with TargetScan and EIMMo

Figure 4. Visualization of chromosome localization of mouse miRNAs. Chromosome localization of (A) total 521 mouse miRNAs (Sanger
version 10.1) and (B) 117 significant miRNAs in different clusters (marked in different colors) involved in lung development. The scale is given to make
those miRNAs having the same or very close chromosome location displayed in a vertical line. (C) Numbers of direct mRNA targets for each miRNA
detected by miRNA/mRNA correlation. 30 miRNAs with multiple direct targets are annotated. MiRNAs within clusters are boxed. (D) Numbers of direct
protein targets detected for each miRNA by miRNA/protein correlation. The top 30 miRNAs are annotated.
doi:10.1371/journal.pone.0010854.g004
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require stringent seed pairing, while miRBase requires moderately

stringent seed pairing. Although evaluation of proteomic changes

after miRNA addition or deletion provides evidence that tools

stringently requiring seed pairing perform better than those tools

with more moderately stringent cutoffs [42,43], perfect base pair

matching does not guarantee interaction between specific miRNAs

and target genes [35]. Wobble base pairs are often tolerated in

target sites [44,45]. For the current study, both miRBase and

TargetScan were used to predict direct miRNA targets by

comparing negatively correlated mRNA expression with compu-

tational predictions. 3,067 unique miRNA-mRNA pairs (involving

37 unique miRNAs) were identified using miRBase whereas 330

pairs (7 unique miRNAs) were identified using the TargetScan

database. We considered it appropriate to use the miRBase target

prediction database given the relatively higher prediction sensitiv-

ity, although it is not clear how much specificity is lost with this

approach.

Initially, we examined miRNA-mRNA correlations to predict

the direct targets of 117 dynamically regulated miRNAs.

Surprisingly, 68.4% (80) of miRNAs in this group did not have

any direct targets identified based on a correlation coefficient

cutoff value of 20.9. To examine this further, we relaxed the

cutoff values and found that 51.3% (60) of miRNAs with a cutoff

value of correlation coefficient 20.8, and 33.3% (39) of miRNAs

for a cutoff of 20.7, do not have direct targets identified (Table

S1). The results imply that a large number of miRNAs

dynamically regulated during lung organogenesis may not directly

cause degradation of mRNA targets. As miRNAs have the

potential to modulate protein translation independent of degrad-

ing the mRNA for a specific target, we analyzed our data in the

context of a previously published protein database for lung

development [26]. Looking for negative correlations between

miRNA level and protein expression based on spectral counts, we

found that a higher number of miRNAs, 114 (97.4%) had a direct

target protein identified (Table S2). Importantly, 54.9% of

mRNAs for which a corresponding direct target protein was

identified do not belong to the subset of significantly varying

mRNAs during lung development, implying that a number of

miRNAs may effect decreased protein expression even though

they do not cause detectable changes in mRNA level. In other

words, a large number of protein level changes may occur that

would not be apparent from the study of mRNA data alone.

The underlying mechanisms explaining these observations

remain to be investigated. Selbach et al pointed out that whether

the mRNA is cleaved or whether productive translation is

inhibited depends on the complementarity of the miRNA to the

mRNA. If the complementarity is not enough for cleavage but still

involves some degree of binding, then translation will be repressed

[42]. However, it has been demonstrated that although some

targets are repressed without detectable changes in mRNA levels,

those translationally repressed by more than a third also displayed

detectable mRNA decreases, and, for the more highly repressed

targets, mRNA degradation usually comprised the major compo-

nent of repression. The impact of miRNAs on the proteome

indicated that for most interactions miRNAs act as rheostats to

make fine-scale adjustment to protein output [43]. Our data

suggest there are at least two major functional patterns of miRNA

regulation of gene and protein levels in mouse lung development:

1) directly downregulating mRNA levels; 2) directly repressing

translation of genes without detectable changes in mRNA levels.

Individual miRNAs may target hundreds of mRNAs and

individual genes may be regulated by a number of miRNAs or

multiple members of same miRNA family. Individual miRNAs

have predicted propensity to target genes with related functions

which can provide insight into the biological roles of individual

miRNAs [34,38]. The function of the target genes for Cluster 1

miRNAs are highly related with cell proliferation as they are

enriched for GO biological processes ‘‘cell cycle’’, ‘‘mitosis’’,

‘‘DNA replication’’ ‘‘DNA repair’’, and ‘‘RNA splicing’’. Specif-

ically, we identified a number of genes such as E2F1, P53, c-Myc,

CDK2, and others that regulate progenitor cell fate and play

important roles in lung development and lung cancer [9,10]. In

addition, a number of studies have reported that c-Myc expression

is repressed by let-7, that p53 interacts with miR-34, and that

growth arrest can be induced by miR-34 through modulation of

the E2F pathway in human colon cancer cells [46,47,48]. In

Cluster 5, we noticed that cluster miR-17-92 and cluster miR-106a

had high expression in early embryonic development of the lung

then steady declines through the remainder of development and

into adulthood. A number of studies have demonstrated the

miRNAs in these two clusters play critical roles in lung

development and lung cancer [16,19,49,50]. The potential

mechanisms involved may include activation of targets such as

RbI2, E2F1-3, and PTEN that are all known cell cycle regulators

[19,51,52]. However, Carraro et al reports that function of the

miR-17-92 cluster may be to maintain the structural homeostasis

of developing lung epithelium through the targets Mapk14 and

stat3, as systematic inhibition of miR-17 did not produce an arrest

of proliferation [53]. In this study, the direct mRNA targets of

miRNA-17-92 appeared to be a group of genes that have lowest

expression in early embryonic development and highest expression

in adulthood. The expression pattern indicates that the cluster

most likely plays a role in the later stages of lung development after

lung branching morphogenesis is complete. GO biological process

analysis shows that the function of these genes focus on ‘‘protein

phosphorylation’’, ‘‘metabolic process’’, ‘‘signal transduction’’,

‘‘intercellular signaling cascade’’, ‘‘cell adhesion’’ and ‘‘angiogen-

esis’’. Pathway analyses demonstrate that the miRNA-17-92

cluster is involved in G-protein signaling, the Wnt pathway

through Prkce as well as TGF-beta pathway signaling through

Smad6 (which is already confirmed by [54]).

Our results provide important insights into the global dynamics

of miRNA networks and their mediation of mRNA translation

into protein products. A number of limitations to the current study

should be noted. One is the fact that the discovery and

characterization of new miRNAs is an ongoing process. A further

limitation is the fact that analyses of RNA and protein in this study

were derived from bulk whole lung, and do not provide

representation of the myriad of cell types and their organization

present in the developing or adult lung. An important extension to

the current study will be to localize the dynamically regulated

miRNAs identified to specific regional niches within the

developing lung.

In this study, we analyzed the expression patterns of

dynamically regulated miRNA, mRNA and proteins during lung

development. Furthermore, we developed a novel approach to

systematically predict potential direct targets of miRNAs from the

data through both miRNA-mRNA and miRNA-protein correla-

tion analysis and computational target mapping. Systematic

analysis of microRNA, mRNA, and protein levels over the time

course of lung organogenesis demonstrates dynamic regulation

and reveals 2 distinct patterns of miRNA-mRNA interaction: 1)

increased levels of specific miRNAs directly correlating with

downregulation of predicted mRNA targets; and 2) increased

levels of specific miRNAs directly correlating with downregulation

of translated target proteins without detectable changes in mRNA

levels. The data also suggests that the translation of target proteins

affected by miRNAs independent of changes in mRNA level

Lung MicroRNA Networks
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appears to be a prominent mechanism of developmental

regulation in lung organogenesis.

Supporting Information

Table S1 Correlation analysis and direct target prediction

results of 117 significant miRNAs by miRNA/mRNA correlations

in mouse lung development.

Found at: doi:10.1371/journal.pone.0010854.s001 (0.18 MB

PDF)

Table S2 Correlation analysis and direct target predication

results of 117 significant miRNA by miRNA/protein correlations

in mouse lung development.

Found at: doi:10.1371/journal.pone.0010854.s002 (0.12 MB

PDF)

Table S3 A list of 30 miRNAs having direct targets identified by

miRNA/mRNA correlation, with their respective corresponding

top 10 GO biological process terms, all pathways and pathway-

related target gene names.

Found at: doi:10.1371/journal.pone.0010854.s003 (0.04 MB

PDF)
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