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Sleep is a complex state characterized by important changes in the autonomic modulation of
the cardiovascular activity. Heart rate variability (HRV) greatly changes during different sleep
stages, showing a predominant parasympathetic drive to the heart during non-rapid eye
movement (NREM) sleep and an increased sympathetic activity during rapid eye movement
(REM) sleep. Respiration undergoes important modifications as well, becoming deeper and
more regular with deep sleep and shallower and more frequent during REM sleep.The aim
of the present study is to assess both autonomic cardiac regulation and cardiopulmonary
coupling variations during different sleep stages in healthy subjects, using spectral and
cross-spectral analysis of the HRV and respiration signals. Polysomnographic sleep record-
ings were performed in 11 healthy women and the HRV signal and the respiration signal
were obtained. The spectral and cross-spectral parameters of the HRV signal and of the
respiration signal were computed at low frequency and at breathing frequency (high fre-
quency, HF) during different sleep stages. Results attested a sympatho-vagal balance shift
toward parasympathetic modulation during NREM sleep and toward sympathetic modu-
lation during REM sleep. Spectral analysis of the HRV signal and of the respiration signal
indicated a higher respiration regularity during deep sleep, and a higher parasympathetic
drive was also confirmed by an increase in the coherence between the HRV and the respi-
ration signal in the HF band during NREM sleep. Our findings about sleep stage-dependent
variations in the HRV signal and in the respiratory activity are in line with previous evidences
and confirm spectral analysis of the HRV and the respiration signal to be a suitable tool for
investigating cardiac autonomic modulation and cardio-respiratory coupling during sleep.
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INTRODUCTION
Although cardiac automaticity is intrinsic to various pacemaker
tissues, it is well established that the heart rate variability (HRV),
i.e., the oscillation in the interval between consecutive heart beats
(RR intervals), is under the control of the autonomic nervous sys-
tem (ANS), the main regulation circuit of internal body functions
(Pagani et al., 1986; Vanderlei et al., 2009). Thus, the study of the
HRV represents one of the most reliable and widely used tools to
investigate the cardiac autonomic modulation (Task Force of the
European Society of Cardiology and the North American Soci-
ety of Pacing and Electrophysiology, 1996). HRV measurements,
thanks to their relatively easy derivation and non-invasivity, are
useful to provide additional valuable insight into physiological and
pathological conditions (Pumprla et al., 2002). By analyzing the
HRV in the time and in the frequency domains, information about
autonomous activity can be obtained; three main spectral compo-
nents can be identified on the HRV signal spectrum: very low
frequency (VLF: 0.01–0.04 Hz), low frequency (LF: 0.04–0.15 Hz),
and high frequency (HF: 0.15–0.4 Hz) components. The HF is con-
sidered as a quantitative marker of parasympathetic activity, while

in the LF frequency band, both sympathetic and parasympathetic
contributions have been recognized. However, as the power in
the LF band always increases with sympathetic stimulation, a rise
in the LF band is considered as a marker of a sympathetic drive
to the heart. The LF/HF ratio is therefore thought to reflect the
sympatho-vagal balance controlling the heart rate (HR; Rajendra
et al., 2006). Physiological interpretation of the VLF component
has not been completely elucidated yet (Task Force of the Euro-
pean Society of Cardiology and the North American Society of
Pacing and Electrophysiology, 1996), but it seems to be related to
slow regulation mechanisms that cannot be studied in the time
intervals typically considered for the spectral analysis of the HRV
signal.

The distribution of the power and the central frequency of the
HRV spectral components are not fixed, but vary in relation to
changes in autonomic modulation of the HR and depending on
the central nervous system state.

In recent years, a growing interest has been manifested on the
cardiovascular control during sleep, also given the fact that many
sleep disorders, including insomnia and sleep apnea, have been

www.frontiersin.org March 2012 | Volume 3 | Article 45 | 1

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/about
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=41740&d=3&sname=RamonaCabiddu&name=Technology
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=38880&d=3&sname=Anna_M_Bianchi&name=Technology
mailto:sergio.cerutti@polimi.it
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive
http://www.frontiersin.org/Computational_Physiology_and_Medicine/10.3389/fphys.2012.00045/abstract


Cabiddu et al. Cardiopulmonary coupling during sleep

proved to be associated with cardiovascular disorders (Caples et al.,
2007). Sleep is a complex state characterized, in physiological con-
ditions, by important changes in the autonomic regulation of the
cardiovascular activity (Viola et al., 2011). HRV is largely affected
during sleep by sleep stage organization: specifically, evidence sug-
gests a predominant parasympathetic drive to the heart and a
reduced sympathetic efferent vasomotor tone during non-rapid
eye movement (NREM) sleep and an increased sympathetic mod-
ulation, with remarkable fluctuations between parasympathetic
and sympathetic influences, during rapid eye movement (REM)
sleep (Scholz et al., 1997; Lanfranchi et al., 2007).

Respiration undergoes important modifications during sleep
as well, becoming deeper and more regular with synchronization
of sleep (deep sleep) and shallower and more frequent during
REM sleep (Lanfranchi et al., 2007). The association between car-
diac and respiratory rhythms has been widely recognized (Kabir
et al., 2010). Respiratory sinus arrhythmia (RSA), which consists
in rhythmic HR modifications that oscillate around the respiratory
frequency, has been reported in healthy humans (Lotric and Ste-
fanovska, 2000), both during wakefulness and sleep (Cysarz et al.,
2004). It is one of the main contributors to HRV, whose spec-
tral analysis typically reveals a HF component centered around
the respiratory frequency (Penttilä et al., 2001). Although the
mechanisms underlying the cardio-respiratory interaction and its
physiological significance have not been elucidated yet, there is
clinical evidence that reduced RSA is a prognostic indicator for
cardiac mortality (Casolo et al., 1992). The aim of the present study
was to assess autonomic cardiac regulation, respiratory variations,
and cardio-respiratory coupling during different sleep stages and
along the whole night in healthy subjects, using spectral analysis
of HRV and respiration variability signals.

MATERIALS AND METHODS
SUBJECTS
Eleven healthy women, with age ranging between 18 and 45 years,
participated in the study. None of them suffered from any psychi-
atric disorders, neither did any of them have a history of, or family
history of psychiatric disorders. None of them was undergoing
chronic medication. All participants provided their informed and
written consent to participate in the study.

POLYSOMNOGRAPHIC ACQUISITION
The acquisition protocol was implemented within the PSYCHE
European project and performed at Forenap R&D sleep labora-
tory. For each subject several signals were recorded simultane-
ously through standard polysomnography during a night of sleep.
The electrocardiogram (ECG) and the respiratory activity were
recorded with a sampling rate of 256 Hz. The electroencephalo-
gram (EEG), the electrooculogram (EOG), and the electromyo-
gram (EMG) were also recorded. The study was approved by the
local independent Ethical Committee.

SIGNAL PROCESSING
For each subject the hypnogram was obtained by visual scoring
performed on the EEG, EOG, and EMG signals by an expert physi-
cian according to the standardized procedure presented in the
American Academy of Sleep Medicine (AASM) Manual for the

Scoring of Sleep and Associated Events (Iber et al., 2007). Con-
cerning sleep stages visual scoring, these new rules are intended to
replace those introduced in 1968 by Rechtschaffen and Kales and
worldwide accepted. According to the AASM classification, sleep
stages S1 to S4 are referred to as N1, N2, and N3, with N3 com-
prising slow-wave sleep stages S3 and S4. REM and wakefulness
states are referred to as stage R and stage W, respectively. Following
the AASM indications, wakefulness and sleep stages were scored
by 30-s epochs.

The RR-interval signal was extracted from the ECG signal.
Peaks were detected from the ECG through the Pan–Tompkins
algorithm (Pan and Tompkins, 1985), which reliably recognizes
QRS complexes based upon the analyses of the signal slope, ampli-
tude, and width. As the original ECG signal might contain outliers
due to movement, noise, ectopic beats, or arrhythmias, in order
to identify and eliminate them, the following procedure was per-
formed: the ECG derived RR sequence was analyzed and samples
were considered as outliers when the following condition was met:

∣∣RRi − Average100
∣∣ > 5 ∗ Std 100

where RRi is the ith sample in the tachogram and Average100 and
Std100 are the mean and the SD values, respectively, of the previ-
ous 100 samples without outliers. A filtered signal was obtained
by applying a moving average filter with a 1000 sample window to
the original RR sequence and identified outliers were replaced with
the value of the corresponding sample in the filtered RR sequence
(Kemper et al., 2007).

The respirogram was extracted from the respiration signal by
sampling it in correspondence of each R peak identified in the
ECG (Baselli et al., 1988).

ANALYSIS
Stationary and free of artifacts signal portions were manually
selected within different sleep stages on both the tachogram and
the respirogram; autoregressive (AR) analysis was performed on
each portion of the signals in order to obtain an AR model, whose
general expression is as follows:

y(t ) =
p∑

k=1

ak y(t − k) + ε(t )

where y(t ) is the series under investigation, ak are the autoregres-
sive coefficients and ε(t ) is the residual term, whose whiteness was
always verified.

The model order was chosen using the AKAIKE information
criterion (AIC) and the model coefficients were obtained using the
least squares method based upon the Yule–Walker equations (Kay
and Marple, 1981).

The AR model was used to calculate the power spectral density
(PSD) of each signal portion, which can be expressed as follows:

PSD(ω) = |H (ω)|2σ2 = σ2Δt
∣∣∣∣∣1 +

N∑
k=1

ak e−jωk

∣∣∣∣∣

2 = C(z)2σ2Δt
∣∣∏ (z − pk)

∣∣2
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where H (ω) is the model transfer function, z is defined as
exp(2πifT ), C(z) is the function bearing the zeros of the system,
Δt is the sampling period and pk are the poles of the process.
The poles were identified in order to decompose the PSD into
single spectral components, according to the method described in
Baselli et al. (1997). The frequency and power values associated
to each rhythmic component were calculated. The values of the
normalized power of the LF and the HF components [LF n. u.
and HF n. u., obtained as LF power/(total power–VLF power) and
as HF power/(total power–VLF power)], along with the LF/HF
ratio, were calculated for each analyzed signal portion of the
tachogram, while for the respirogram only the main peak, cor-
responding to the HF component (respirogram HF%, obtained as
HF power/respirogram total power), was taken into account.

For each stationary portion of the tachogram and of the
respirogram a bivariate analysis was also performed, in order to
obtain the cross-spectrum between the two variability signals.

According to the method described in Bianchi et al. (1990) a
bivariate AR model was estimated, whose general expression is as
follows:

Y(t ) =
p∑

k=1

A(k)Y(t − k) + W(k)

where Y(t ) is the vector of the series under investigation y(t ) and
x(t ), A is the autoregression coefficient matrix and W(t ) is the
vector of the residual terms ε(t ) and η(t ).

The AR bivariate model was used to calculate the cross-
spectrum of each signal portion, which can be expressed as
follows:

PSDxy (ω) = PSDyx (ω) = X(ω)Y ∗ (ω)

where X(ω) and Y (ω) are the autospectra of the signals.
The quadratic coherence between the signals in the LF and in

the HF bands was calculated as:

K 2
xy (f ) =

∣∣PSDxy (f )
∣∣2

∣∣PSDx (f )
∣∣ ∣∣PSDy(f )

∣∣

where the cross-spectrum between the signals is normalized with
regard to the signals’ PSDs. The percentages of coherent and
not-coherent power between the signals were calculated for each
analyzed signal portion. An example of signals, spectra, and cross-
spectrum is illustrated in Figure 1. The parameters of interest (LF
n. u., HF n. u., LF/HF ratio, HF band coherence, % of tachogram
power coherent, and not-coherent with respiration) were studied
within each sleep cycle and their average value was calculated on all
subjects, for the whole night. For each subject the variation of the
LF/HF ratio for the tachogram and the tachogram–respirogram
coherence in the HF band were studied during the whole night
in relation with the subject’s hypnogram; average values over the
whole night were also calculated on all subjects. Analysis of Vari-
ance (ANOVA) was performed on the data in order to identify
statistically significant differences in the tachogram LF n. u., HF

FIGURE 1 | Exemplification of the procedure followed to obtain (E) the cross-spectrum of (A) the tachogram and (B) the respirogram of a subject

using (C) the tachogram spectrum and (D) the respirogram spectrum.
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n. u. and LF/HF ratio values, in the respirogram HF% power and
in the tachogram–respirogram coherence in the HF band values
during deep NREM sleep (stage N3) and REM sleep stages, during
the whole night.

RESULTS
The tachogram and respirogram were studied for each subject.
A typical example of the signals for one subject, along with the
hypnogram, is shown in Figure 2. PSDs for both the tachogram
and the respirogram were calculated and the cross-spectrum
between the two signals was computed for different sleep stages,
according to the clinical classification summarized in the hypno-
gram. Figure 3 shows the results obtained for a single subject,
during wakefulness and different sleep stages, during the first
NREM–REM cycle. The tachogram PSD shows that the LF com-
ponent, larger during wakefulness, decreases during NREM sleep
periods, and increases during the REM period; the HF compo-
nent, after an initial decrease during sleep stage 1, increases during
deep sleep stages, with the characteristic peak becoming narrower
and more pronounced, and decreases during REM sleep, when
the peak is only slightly visible. The VLF component, very large
during wakefulness, decreases during NREM sleep, and greatly
increases during REM sleep. A similar trend is followed by the
respirogram PSDs, which show an increase in the HF compo-
nent during NREM sleep, with the characteristic peak progres-
sively becoming more pronounced as sleep deepness increases,
and decreases during REM sleep, when a less pronounced and
more widely distributed peak can be observed. The cross-spectra

FIGURE 2 |Typical examples of (A) tachogram, (B) respirogram, and (C)

hypnogram for a subject.

between the tachogram and the respirogram show an increase in
the synchronization between the two signals during NREM peri-
ods, which reaches its highest value during sleep stage N3, and a
decrease during the REM period, when synchronization is hardly
visible. For the tachogram, the average values of the VLF power,
LF n. u. and HF n. u. power, and of the LF/HF ratio were cal-
culated for wakefulness and for each sleep stage, over the whole
night, for each subject. The average values of the respirogram HF%
power, of the maximum of the coherence between the tachogram
and the respirogram in the HF band and of the coherent and
not-coherent power percentages between the two signals were also
calculated. The results for a typical subject, along with correspond-
ing SD values, are plotted in Figure 4. The average values of the
same parameters calculated for all subjects during wakefulness and
different sleep stages, during the whole night, along with corre-
sponding SD values, are plotted in Figure 5. The results obtained
from the tachogram indicate that the LF n. u. and the HF n. u.
show an opposite behavior, with the LF n. u. power increasing
during sleep stage N1, progressively decreasing with synchroniza-
tion of sleep and increasing during REM sleep and with the HF
n. u. component decreasing during sleep stage N1, progressively
increasing during deeper sleep stages and finally decreasing during
REM sleep.

The LF/HF ratio, an index of sympathetic activation, after an
initial increase during sleep stage N1, decreases with synchroniza-
tion of sleep (deep sleep), and increases during REM sleep. The
results obtained from the elaboration of the respirogram show that
the HF% power increases during deep sleep and decreases during
REM sleep.

The bivariate analysis results show that the coherence between
the tachogram and the respirogram in the HF band progressively
increases with synchronization of sleep and decreases during REM
sleep.

The behavior of the LF/HF ratio and that of the coherence
between the tachogram and the respirogram in the HF band
were studied during the whole night to investigate the changes
among the different sleep cycles. Results obtained on two dif-
ferent subjects are presented in Figures 6 and 7. For the first
subject the tachogram LF/HF ratio increases during the REM
phase of every sleep cycle and the increase becomes slightly more
pronounced during the last part of the night, with the LF/HF
ratio reaching its highest value during the last sleep cycle REM
phase. An opposite behavior was observed for the second subject,
with the LF/HF ratio increase during the REM stage becoming
less pronounced as the night progresses. Table 1 summarizes the
average values of the tachogram normalized power in the LF
and HF bands, of the LF/HF ratio, of the respirogram power
in the HF band and of the tachogram–respirogram coherence
in the HF band observed on all subjects during each stage of
each sleep cycle. The results obtained from the ANOVA analy-
sis between the values observed during deep NREM sleep periods
(stage N3) and during REM sleep periods are also reported in
Table 1.

DISCUSSION
During the past decades a number of studies demonstrated that
fluctuations in the autonomic modulation on the HR are reflected
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FIGURE 3 | Power spectral density (PSD) computed from the tachogram

of a subject during wakefulness, sleep stages N1, N2, and N3 and REM

sleep, during the first sleep cycle (A); PSD computed from the

respirogram of the same subject during wakefulness, sleep stages N1,

N2, and N3 and REM sleep, during the first sleep cycle (B);

cross-spectrum between the tachogram and the respirogram of the

same subject during wakefulness, sleep stages N1, N2, and N3 and REM

sleep, during the first sleep cycle (C).

in changes in the spectral distribution of the HRV signal (Pagani
et al., 1986; Task Force of the European Society of Cardiology
and the North American Society of Pacing and Electrophysiol-
ogy, 1996; Pumprla et al., 2002). This was confirmed to be an

accurate indicator of the ANS activity, with the LF and the HF
components being considered as representative of the sympathetic
and parasympathetic activity, respectively, and the LF/HF ratio
providing information about the sympatho-vagal balance (Task
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FIGURE 4 | Power of (A) VLF, (B) LF n. u. and (C) HF n. u. power, and

(D) LF/HF ratio calculated from the tachogram of one subject, for

wakefulness and the different sleep stages, for the whole night; (E)

HF % power calculated from the respirogram of the same subject, for

wakefulness and the different sleep stages, for the whole night; (F)

coherence between the tachogram and the respirogram in the HF

band, tachogram power % (G) coherent and (H) not-coherent with the

respirogram, calculated on the same subject for wakefulness and the

different sleep stages, for the whole night. SD values are indicated in
blue.

Force of the European Society of Cardiology and the North Amer-
ican Society of Pacing and Electrophysiology, 1996; Rajendra et al.,
2006).

In the present study the HRV signal and the respiration sig-
nal recorded from 11 healthy subjects during sleep were studied
to investigate the effects of the autonomic nervous modulation
during different sleep stages. Stage-dependent changes in the
autonomic modulation of cardiac activity were observed.

The LF n. u. power decrease during deep sleep and increase
during REM sleep suggested a diminished sympathetic modula-
tion during deep sleep as compared to the wakefulness state and an
augmented sympathetic tone toward the end of each sleep cycle.
The HF n. u. behavior was indicative of an increased vagal drive
to the heart during sleep, which decreased during REM sleep.

The sympatho-vagal balance drift toward the sympathetic com-
ponent during deep sleep and toward the parasympathetic com-
ponent during REM sleep was confirmed by the LF/HF ratio
behavior. The LF/HF ratio decreased during sleep, reaching its
minimum in correspondence of sleep stage N3 and increasing in
correspondence of the REM phase. Altogether, the observed behav-
ior is in accordance with previous studies (Scholz et al., 1997; Viola
et al., 2011). The changes in the sympatho-vagal balance could be
driven by oscillations in the metabolic demand during sleep, which

markedly decreases during deep sleep (Wilde-Frenz and Schulz,
1983), and increases during REM sleep.

A bivariate analysis was conducted in order to take into account
also the cardio-respiratory coupling during the different sleep
stages. The correlation between cardiac and respiratory rhythms
has been widely acknowledged (Kabir et al., 2010). The HF range of
the HRV signal coincides with the respiratory rhythm; thus, the HF
component is able to provide information about respiration fre-
quency and its modulation (Kobayashi, 2009). The cross-spectrum
between the tachogram and the respirogram presents a more pro-
nounced peak centered in the HF band during sleep stages N1,
N2, and N3 as compared to that of the wake state, whereas the
peak practically disappears during REM sleep. The peak becom-
ing more pronounced and more narrowly distributed during deep
sleep stages is indicative of a more regular respiratory rhythm, syn-
chronized with heart activity; the presence of a less pronounced
peak during REM sleep indicates that a less regular respiratory
rhythm and a less marked synchronization between respiration
and heart rhythm characterize this sleep stage, in line with the
results obtained from previous studies (Kabir et al., 2010). The
coherence value between the tachogram and the respirogram in the
HF band increases during deep sleep and decreases during REM
sleep. This confirms that a more pronounced synchronization
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FIGURE 5 | Average power of (A) VLF, (B) LF n. u. and (C) HF n. u.

power, and (D) LF/HF ratio calculated from the tachogram, on all

subjects, for wakefulness and the different sleep stages, for the whole

night; (E) average HF % power calculated from the respirogram, on all

subjects, for wakefulness and the different sleep stages, for the whole

night; (F) coherence between the tachogram and the respirogram in

the HF band, tachogram power % (G) coherent and (H) not-coherent

with the respirogram, calculated on all subjects for wakefulness and

the different sleep stages, for the whole night. SD values are indicated
in blue.

between respiration and heart beat is acquired with progression
of sleep, with them becoming less synchronized during the REM
phase, in accordance with a previous study (Unbehaun et al., 1996).
Cardiac and respiratory rhythms have been long known to inter-
act with each other and the investigation of their synchronization
can provide useful indications about the way they interact. Syn-
chronization was demonstrated to change during specific states,
such as during mechanical ventilation (Mangin et al., 2009), anes-
thesia (Galletly and Larsen, 2001), physical exercise (Kenwright
et al., 2008), and sleep (Kabir et al., 2010). Cardio-respiratory
coordination during sleep changes in pathological conditions, as
demonstrated in patients affected by Obstructive Sleep Apnea
(Kabir et al., 2010) or Sleep Disordered Breathing (Guo et al.,
2011). Furthermore, it changes depending on the general health
status of a subject, resulting, e.g., more pronounced in athletes
than in non-athletes (Kenwright et al., 2008). Thus, although
the functional role and physiological origin of such interaction
remain uncertain, synchronization analysis could be used as a
tool to obtain information about the health status of an indi-
vidual. To summarize, strong evidence was found of a drift of the
sympatho-vagal balance toward the parasympathetic activity dur-
ing deep sleep and toward the sympathetic activity during REM
sleep, in line with previous experimental evidence (Scholz et al.,

1997; Lanfranchi et al., 2007). Regularization of respiration was
found to go along with synchronization of sleep, with respiration
becoming more irregular during REM sleep.

A statistically significant difference (p-value ≤ 0.05) was found
between the values of the tachogram normalized power in the
LF and HF bands, of the tachogram LF/HF ratio values, of the
respirogram % power in the HF band and of the tachogram–
respirogram coherence in the HF band values recorded during
deep sleep NREM periods and REM sleep periods, during the
whole night, as the ANOVA results show. The global results pre-
sented in Table 1 show that, with progression of sleep, sleep stage
N1 tends to disappear, suggesting a better quality of sleep is pro-
gressively reached along the night. Anyway, a clear trend in the
sympatho-vagal balance during the night could not be identified
for the whole group: a shift toward the sympathetic component
during REM sleep was more evident during the final sleep cycles for
some subjects and during the initial ones for others. Disagreement
exists about whether the sympathetic drive to the heart during
REM sleep becomes more or less intense along the night (Cajochen
et al., 1994; Marciani et al., 2003; Lanfranchi et al., 2007). Discor-
dant results might be due to differences in experimental protocols
and analysis methodologies and the sympatho-vagal behavior with
progression of the night needs to be further investigated.
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FIGURE 6 | Hypnogram of one subject with indication in black of (A) the trend of the tachogram LF/HF ratio for the whole night and of (B) the trend

of the coherence between the tachogram and the respirogram in the HF band.

FIGURE 7 | Hypnogram of one subject with indication in black of (A) the trend of the tachogram LF/HF ratio for the whole night and of (B) the trend

of the coherence between the tachogram and the respirogram in the HF band.
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Table 1 | Average values of the tachogram normalized power in the LF and HF bands, of the LF/HF ratio values, of the respirogram % power in

the HF band and of the tachogram–respirogram coherence in the HF band values observed on all subjects during each stage of each sleep cycle.

Sleep

cycle

Sleep

Stage

Tachogram LF n. u.

(mean ± SD)

Tachogram HF n. u.

(mean ± SD)

Tachogram LF/HF ratio

(mean ± SD)

Respirogram HF% power

(mean ± SD)

Coherence in HF band

(mean ± SD)

1 W 0.371 ± 0.04 0.645 ± 0.04 0.905 ± 0.84 0.784 ± 0.07 0.767 ± 0.30

N1 0.565 ± 0.14 0.579 ± 0.08 4.183 ± 6.35 0.890 ± 0.02 0.751 ± 0.16

N2 0.936 ± 4.09 0.076 ± 4.11 0.882 ± 1.99 0.904 ± 0.02 0.814 ± 0.14

N3 0.270 ± 0.02 0.741 ± 0.02 0.439 ± 0.40 0.963 ± 0.00 0.949 ± 0.06

R 0.592 ± 0.03 0.408 ± 0.03 2.156 ± 1.53 0.904 ± 0.02 0.816 ± 0.12

2 W 0.586 ± 0.08 0.414 ± 0.03 1.538 ± 0.77 0.306 ± 0.05 0.381 ± 0.34

N1 0 0 0 0 0

N2 0.480 ± 0.15 0.528 ± 0.15 2.013 ± 3.04 0.895 ± 0.01 0.867 ± 0.15

N3 0.392 ± 0.02 0.706 ± 0.05 0.620 ± 0.62 0.938 ± 0.01 0.962 ± 0.04

R 0.484 ± 0.03 0.587 ± 0.06 1.361 ± 1.35 0.899 ± 0.00 0.686 ± 0.14

3 W 0 0 0 0 0

N1 0 0 0 0 0

N2 0.367 ± 0.05 0.656 ± 0.05 1.546 ± 3.36 0.915 ± 0.01 0.875 ± 0.12

N3 0.400 ± 0.10 0.766 ± 0.02 1.290 ± 1.92 0.932 ± 0.02 0.914 ± 0.07

R 0.550 ± 0.05 0.450 ± 0.07 2.903 ± 5.82 0.904 ± 0.00 0.689 ± 0.16

4 W 0 0 0 0 0

N1 0 0 0 0 0

N2 0.379 ± 0.02 0.621 ± 0.02 0.855 ± 0.81 0.921 ± 0.01 0.885 ± 0.21

N3 0.329 ± 0.10 0.671 ± 0.10 0.666 ± 0.57 0.938 ± 0.01 0.965 ± 0.03

R 0.474 ± 0.02 0.549 ± 0.02 1.084 ± 0.68 0.787 ± 0.03 0.747 ± 0.16

5 (Present

in only 10

subjects)

W 0 0 0 0 0
N1 0 0 0 0 0

N2 0.316 ± 0.01 0.719 ± 0.02 0.527 ± 0.27 0.917 ± 0.00 0.867 ± 0.11

N3 0.217 ± 0.00 0.783 ± 0.00 0.273 ± 0.02 0.996 ± 0.00 0.966 ± 0.07

R 0.414 ± 0.02 0.603 ± 0.02 0.799 ± 0.45 0.777 ± 0.09 0.689 ± 0.14

Stage N3-REM ANOVA p-Value = 0.0048 p-Value = 0.0012 p-Value = 0.0445 p-Value = 0.0143 p-Value = 3.339e-005

Parameters were assigned value “0” when the corresponding sleep stage was not identified within a sleep cycle (values equal to “0” were not considered in the

subsequent ANOVA analysis). The p-values obtained from the ANOVA analysis between the values observed during deep NREM sleep periods (stage N3) and during

REM sleep periods are reported.

In the present work sophisticated biosignal processing methods
were applied to assess autonomic cardiac and respiratory regula-
tion during different sleep stages. Spectral analysis has long been
applied to the HRV signal; the authors presented the results of the
application of spectral analysis methods to the respiration signal,
aimed to investigate the cardiopulmonary coupling during sleep.

Our findings affirm spectral analysis of HRV and res-
piration signals to be a useful tool to non-invasively and

accurately investigate the autonomous modulation of not only
the cardiac activity, but also of the respiratory activity and
to assess the cardio-respiratory coupling variations during
sleep.
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