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Abstract: Background: Aβ42 deposition plays a pivotal role in AD pathogenesis by inducing the acti-
vation of microglial cells and neuroinflammation. This process is antagonized by microglia-mediated
clearance of Aβ plaques. Activation of the NLRP3 inflammasome is involved in neuroinflammation
and in the impairments of Aβ-plaque clearance. On the other hand, stavudine (D4T) downregulates
the NLRP3 inflammasome and stimulates autophagy-mediated Aβ-clearing in a THP-1-derived
macrophages. Methods: We explored the effect of D4T on Aβ autophagy in PBMC from AD patients
that were primed with LPS and stimulated with Aβ oligomers in the absence/presence of D4T. We
analyzed the NLRP3 activity by measuring NLRP3-ASC complex formation by AMNIS FlowSight and
pro-inflammatory cytokine (IL-1β, IL-18 and Caspase-1) production by ELISA. The phosphorylation
status of p38, ERK, AKT, p70, and the protein expression of CREB, LAMP2A, beclin-1, Caspase-3
and Bcl2 were analyzed by Western blot. Results: Data showed that D4T: (1) downregulates NLRP3
inflammasome activation and the production of down-stream pro-inflammatory cytokines in PBMC;
(2) stimulates the phosphorylation of AKT, ERK and p70 as well as LAMP2A, beclin-1 and Bcl2
expression and reduces Caspase-3 expression, suggesting an effect of this compound on autophagy;
(3) increases phospho-CREB, which is a downstream target of p-ERK and p-AKT, inducing anti-
inflammatory cytokine production and resulting in a possible decrease of Aβ-mediated cytotoxicity;
and (4) reduces the phosphorylation of p38, a protein involved in the production of pro-inflammatory
cytokines and tau hyperphosphorylation. Conclusions: D4T reduces the activation of the NLRP3
inflammasome, and it might stimulate autophagy as well as the molecular mechanism that modulates
Aβ cytotoxicity, and D4T might reduce inflammation in the cells of AD patients. It could be very
interesting to check the possible beneficial effects of D4T in the clinical scenario.

Keywords: amyloid-β; NLRP3-inflammasome; neuroinflammation; ERK; p38; p70S6K and CREB
phosphorylation; caspase-3 and Bcl2
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1. Introduction

Alzheimer’s disease (AD), the most prevalent type of dementia, is characterized by the
deposition of amyloid-β (Aβ), the formation of neurofibrillary tangles and neuroinflamma-
tion [1]. In AD patients, Aβ accumulation induces the release of inflammatory mediators by
microglia; this facilitates Aβ deposition and neuroinflammation in a self-feeding pathogenic
loop [2]. On the other hand, microglia play an important role against AD that is mediated
by the generation of Aβ-specific antibodies, the clearance of amyloid plaques, and the
recruitment of peripheral immune cells that cross the blood–brain barrier (BBB) in an
attempt to remove Aβ aggregates [3–5]. The initiation of the inflammatory response by
microglia and peripheral immune cells involves cytosolic multiprotein platforms known as
inflammasomes. The NLRP3 inflammasome is the best characterized of such platforms and
its formation requires multiple steps. In a priming step, transcriptionally active signaling
receptors induce the NF-kB-dependent induction of NLRP3 itself, as well as that of the
Caspase-1 substrates pro-IL-1β and IL-18 [6]; a second signal leads to the assembly of
a multimolecular complex with ASC and Caspase-1. At this point: (i) procaspase-1 or
procaspase-8 is recruited [7]; (ii) ASC specks are formed [8]; (iii) caspases are activated; and
(iv) cytokines are produced. Activation of the NLRP3 inflammasome is a tightly regulated
process. In particular, autophagy, an adaptive response to stress, downregulates NLRP3
inflammasome activation by a complex four metabolic mechanism [9] that includes differ-
ent molecular pathways [10–14]. Notably, autophagy defects in myeloid cells result in the
aberrant activation of the inflammasome [15,16], leading to the development of inflamma-
tory disorders. Different compounds can modulate NLRP3 inflammasome activation. For
instance, stavudine (D4T), a nucleoside reverse transcriptase inhibitor (NRTI), was shown
to hamper NLRP3 inflammasome activation as well as Caspase-1 and IL-18 production both
in vivo [17,18] and in a THP-1-derived macrophage cell line [19]. Notably, in this model,
D4T did not have any effect on Aβ phagocytosis, but it stimulated autophagy-mediated
Aβ-clearing [19], as witnessed by its ability to modulate ERK1/2 and AKT phosphorylation
(p-ERK, p-AKT) and to upregulate LAMP-2A and phospho-p70-S6K, their downstream
targets. Given that: (1) autophagy is necessary for the degradation of Aβ in microglia,
(2) p-AKT [20] and p-ERK [21] associate with Aβ-accumulation and tau phosphorylation
in AD animal models [22,23], and (3) autophagy is modulated by D4T [19], we aimed
to explore in more detail the mechanisms responsible for the D4T-mediated autophagy
clearing of Aβ. For this aim, we tested D4T involvement in NLRP3 assembly and activation
and its possible effect on autophagy molecular signaling in peripheral blood mononuclear
cells from AD patients.

2. Materials and Methods
2.1. Patients

Thirteen AD patients who fulfilled inclusion criteria for a clinical diagnosis of AD
were randomly selected within a large database of patients consecutively admitted between
January 2017 and September 2019 by the Fondazione IRCCS Ca' Granda Ospedale Maggiore
Policlinico in Milano, Italy. All patients were enrolled in a cognitive rehabilitation experi-
mental program and underwent complete medical and neurological evaluation, laboratory
analysis, CT scan or MRI, and other investigations (e.g., EEG, SPET scan, CSF examination,
etc.) to exclude reversible causes of dementia. The clinical diagnosis of AD was performed
according to the NINCDS-ADRDA work group criteria [24] and the DMS IV-R (American
Psychiatric Association) [25]. Neuropsychological evaluation and psychometric assessment
were performed with a Neuropsychological Battery that included Mini Mental State Ex-
amination (MMSE) [26], Digit Span Forward and Backward, Logical Memory and Paired
Associated Words Tests, Token Test, supra Span Corsi Block Tapping Test, Verbal Fluency
Tasks, Raven Colored Matrices, Rey Complex Figure, and Clinical Dementia Rating Scale
(CDR) [27]. The study conformed to the ethical principles of the Helsinki Declaration.

All patients underwent lumbar puncture (LP) for quantification of Aβ, total tau (T-τ),
and tau phosphorylated at position 181 (P-τ) in the CSF. Normality cut-off thresholds were:
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Aβ ≥ 600 pg/mL; τ ≤ 500 pg/mL for individuals older than 70 and ≤450 pg/mL for
individuals aged between 50 and 70 years; P-τ ≤ 61 pg/mL. The Institutional Review
Board of the Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico (Milan, Italy)
approved this study. All patients (or their caregivers) gave their written informed consent
for this research before entering the study.

2.2. APO ε4 Genotyping

Apoε genotype was determined by allelic discrimination, as previously described [28].
APOE genotyping was available for all subjects and was dichotomized as being a carrier of
at least one ε4 allele or carrying no ε4 alleles.

2.3. CSF Collection and Aβ and Tau Determination

CSF was collected between 8 and 10 a.m. after one-night fasting by LP in the L3/L4
or L4/L5 interspace according to standardized local procedures. CSF samples were cen-
trifuged at 2000× g for 10 min at 4 ◦C. The supernatants were aliquoted in polypropylene
tubes and stored at −80 ◦C. CSF cells, glucose, and proteins were determined. CSF Aβ,
tau, and P tau were measured using commercially available sandwich enzyme-linked
immunosorbent assay (ELISA) kits (Fujirebio, Ghent, Belgium).

2.4. Blood Sample Collection and Processing

Whole blood was collected in vacutainer tubes containing ethylenediaminetetraacetic
acid (EDTA) (Becton Dickinson & Co., Rutherford, NJ, USA). Peripheral blood mononuclear
cells (PBMC) were separated on lympholyte separation medium (Cedarlane, Hornby, ON,
Canada) and washed twice in PBS at 2000× g for 10 min; viable leukocytes were determined
using a TC20 Automated Cell Counter (Biorad Hercules, CA, USA).

2.5. Cell Cultures

PBMC from AD patients were resuspended in RPMI 1640 (PAN-Biotech GmbH, Am
Gewerbepark, Germany) supplemented with 10% human serum, L-glutamine (2 mM), and
1% penicillin (Invitrogen, Ltd., Paisley, UK) in 6-well plates and incubated at 37 ◦C in a
humidified 5% CO2 atmosphere. Cells (7 × 106/well) were primed with Lipopolysaccharide
(LPS) (1 µg/mL) (Sigma-Aldrich, St. Louis, MO, USA) for 2 h and stimulated with Aβ42
(10 µg/mL Sigma-Aldrich, St. Louis, MO, USA) for 22 h in the absence (untreated)/presence
of D4T (50 µM) (Sigma-Aldrich) [29].

2.6. MTT Stavudine (D4T)

The MTT assay showed that, in accordance with previous studies [30], PBMC vitality
was 90 ± 3.5% using D4T at a 50 µM concentration.

2.7. Enzyme-Linked Immunosorbent Assay (ELISA)

IL-1β, IL-18, and activated Caspase-1 production was analyzed in supernatants of
PBMC that were resuspended in medium alone or were stimulated (see above) by sandwich
immunoassays according to the manufacturer’s instructions (Quantikine Immunoassay;
R&D Systems, Minneapolis, MN, USA).

2.8. Image Stream Analysis by FlowSight AMNIS

PBMC (2 × 106), stimulated as described above, were fixed with 100 µL of PFA (1%)
(BDH, UK), permeabilized with 100 µL of Saponine (0.1%) (Life Science VWR, Lutterworth,
Leicestershire, UK), and stained with FITC-anti human NLRP3 (Clone #768319, isotype Rat
IgG2a, R&D Systems, Minneapolis, MN, USA) and PE-anti human ASC (clone HASC-71,
isotype mouse IgG1, Biolegend, San Diego, CA, USA) for 1 h at room temperature; cells
were then washed with PBS, centrifuged at 1500 rpm for 10 min, resuspended in 50 µL of
PBS, and examined using the AMNIS FlowSight. Results were analyzed by IDEAS analysis
software (Amnis Corporation, Seattle, WA, USA). The analysis of NLRP3 expression was
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performed by internalization feature, utilizing a mask that represents the whole cell defined
by the brightfield (BF) image and an internal mask defined by eroding the whole cell
mask. Apoptosis-associated speck-like-protein containing CARD speck formation was
analyzed using the same mask of internalization feature, differentiating diffuse or spot
(speck) fluorescence inside of cells. Threshold mask was used to separate all ASC positive
cells population in ASC-speck spot cells or ASC-diffuse cells by the different diameter
of the spot area: in ASC-speck, the spot shows a small area and high max pixel, and the
opposite occurs in cells with ASC-diffuse.

2.9. Protein Extraction

Cytosol protein extraction was performed in cultured PBMC by Cell Extraction Buffer
(BioSource, Thermo Fisher Scientific, Waltham, MA, USA) containing 1 mM PMSF, and
protease and phosphatase inhibitor cocktail (Sigma-Aldrich, St. Louis, Missouri, USA)
(1:200 and 1:100). After incubation for 30 min on ice, lysates were centrifuged at 12,000× g
for 10 min at 4 ◦C and the pellets were discarded. Protein concentration was determined by
Bradford assay at 595 nm.

2.10. Western Blot

Proteins (15µg) were separated by electrophoresis into 4–12% NuPAGE® Bis-Tris gels
(Life Technologies-Invitrogen, Carlsbad, CA, USA) and blotted on nitrocellulose filter
(GE Healthcare-Life Sci, Milan, Italy). Blots were blocked 1 h at room temperature on a
shaker in 5% fat-free dried milk in TBS-T buffer (50 mM Tris-HCl pH 7.6, 200 mM NaCl,
0.1% Tween 20). Blots were incubated overnight on a shaker at 4 ◦C with the following
rabbit antibody (Ab): anti-p-p38 (T180/Y182 1:350, Cell Signaling, Danvers, MA, USA),
anti-p-ERK1/2 (T202/Y204 1:300, Cell-Signaling, Danvers, MA, USA), anti-p-AKT (S473
1:500, Cell Signaling Danvers, MA, USA), anti-p-p70S6K (1:500 Cell Signaling, Danvers,
MA, USA), anti-p-CREB (1:800, Biosource, Thermo Fisher Scientific, Waltham, MA, USA),
anti-beclin1 (1:300, Cell Signaling, Danvers, MA, USA), anti-LAMP2A (1:400, Abcam,
Cambridge, UK), anti-Caspase-3 (1:1000, Sigma-Aldrich, St. Louis, MO, USA), and anti-
Bcl2 (1:1000, Sigma-Aldrich, St. Louis, MO, USA). Abs were diluted in 5% fat-free dried
milk in TBS-T buffer. A mouse anti-actin Ab (1:20,000, Sigma-Aldrich, St. Louis, MO, USA)
was used as standard to normalize the signals of each target protein. Similar data were
obtained using specific Abs corresponding to each kinase total protein. A peroxidase-linked
anti-rabbit/mouse (1:5000; Sigma-Aldrich, St. Louis, MO, USA) IgG secondary Ab was
incubated for 1 h at room temperature on an orbital shaker in TBS-T buffer containing
3% fat-free dried milk. Ten protein samples were run for the different targets. Signals
were detected by chemiluminescent reagents (ECL Plus Kit; Amersham, Little Chalfont,
Amersham, UK), visualized with a CCD camera using ImageQuant 800 system (ECL Plus
Kit; Amersham, Little Chalfont, Amersham, UK), which was quantified using Image-J
software, and expressed as the ratio between the target and the actin signals.

2.11. Statistical Analysis

Quantitative data were not normally distributed (Shapiro–Wilk test) and are thus
summarized as median and interquartile range. Comparisons between the different culture
conditions were made using: (1) a 2-tailed Mann–Whitney U test performed for indepen-
dent samples for NLRP3 complex, cytokine, and caspase production quantified by ELISA;
(2) paired Student’s t test for protein extracts evaluated by WB analysis. Data analysis was
performed using the MedCalc statistical package (MedCalc Software bvba, Mariakerke,
Belgium) and the values are expressed as percentage means ± SD; p values less than 0.05
were considered statistically significant.
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3. Results
3.1. Patient Characteristics

The epidemiological, clinical, and genetic characteristics of the AD patients enrolled
in the study are presented in Table 1. CSF biomarker analysis was analyzed in all patients
and included the concentration of Aβ42, t-tau, and p-tau (i.e., phosphorylated at threonine
181). Each CSF biomarker was dichotomously classified as positive or negative according
to validated cut-off values. Cut-off thresholds of normality were: Aβ ≥ 600 pg/mL;
tau ≤ 500 pg/mL for individuals older than 70; and p-tau ≤ 61 pg/mL [31]. Results are
shown in Table 1.

Table 1. Demographic, clinical, and genetic characteristics of the individuals enrolled in the study.

Alzheimer’s Disease Patients (AD)

N 13

Gender (M:F) 5:8

Age (years) 77.20 ± 6.34

MMSE 17.07 ± 4.51

Aβ (pg/mL) 530 ± 70.50

Total-τ (pg/mL) 647.31 ± 300

Phospo-τ (pg/mL) 88.62 ± 21.89

Apo ε4 30%
Data are expressed as mean ± standard deviation. MMSE: Mini-Mental State Examination.

3.2. D4T Downregulates NLRP3-Complex Activation and Inflammasome-Derived Cytokines

Results obtained by AMNIS FlowSight, when NLRP3 and apoptosis-associated speck-
like-protein containing CARD (ASC)-speck formation was investigated showed that in the
PBMC of AD patients, D4T prevented the generation of ASC-specks impeding the assembly
of NLRP3-inflammasome complexes (Figure 1a,b). Data are shown as a percentage of
cells that co-localize ASC and NLRP3-positive cells in which fully functional NLRP3
inflammasome complex formation was significantly reduced (p = 0.04) in LPS + Aβ42-
stimulated cells in the presence of D4T (Figure 1c). These results were confirmed when
activated Caspase-1, IL-18, and IL-1β production was analyzed by ELISA in supernatants
collected by cultured PBMC of AD patients. Thus, the production of all these proteins
was reduced by D4T (Figure 2a–c); the differences reached statistical significance for IL-
18 (p = 0.004), activated Caspase-1 (p = 0.001), and IL-1β (p = 0.05), which are shown in
Figure 2a–c.

Figure 1. Inflammasome production and ASC-speck formation. Representative images of Nod-
like receptor protein 3 (NLRP3) expression and apoptosis-associated speck-like-protein containing
CARD (ASC)-speck formation. ASC-speck (a) and ASC-diffuse (b) images were obtained by AMNIS
FlowSight-merged (Ch02/03) NLRP3-FITC (Ch02) and ASC-PE (Ch03) fluorescences; analysis of
ASC-speck and its co-localization with NLRP3 was performed by IDEAS software, which provides
tools to evaluate image regions (masks) and perform calculations (features). The percentage of
ASC-speck-positive cells is shown in panel (c). Statistical significance is shown.
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Figure 2. Caspase-1 and inflammasome effector cytokine production. Interleukin (IL)-1β (A), Caspase-
1 (B) and IL-18 (C) production by LPS + Aβ-stimulated cells in the presence/absence of D4T were
quantified by ELISA. Data are expressed as median cytokine and Caspase-1 concentrations (pg/mL)
of stimulated cells with medium subtracted. Statistical significance is shown.

3.3. D4T Modulates MEK-(ERK and p38) and PI3/AKT-Pathways

The NLRP3 inflammasome can also regulate autophagy by modulating the expression
of phosphatases and kinases. By WB, the ERK, p38, and AKT phosphorylation was analyzed
in LPS-primed and Aβ42-stimulated-PBMC of AD patients. Our results showed that
the D4T treatment to cultured PBMC significantly downmodulated p-p38 (p = 0.0001)
(Figure 3a), whereas it upregulated p-ERK1,2 (p = 0.0054) (Figure 3b) and p-AKT (p = 0.04)
(Figure 3c).

CREB is also a downstream target in the ERK- and AKT-mediated pathways. Its
phosphorylation (p-CREB) status was also investigated, and it was increased following the
D4T treatment (p = 0.04) (Figure 3d). Additionally, p-CREB also promotes anti-inflammatory
cytokines production.
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Figure 3. ERK1/2, p38, AKT, and CREB phosphorylation. The phosphorylation status of p38 (38 KDa)
(a), ERK1/2 (42–44 KDa) (b), AKT (60 KDa) (c), kinases and CREB (43 KDa) (d) were investigated
by Western blot analysis (WB) and each result was expressed as the percentage of ratio between
phosphorylated-kinase and actin expression versus D4T-untreated cells (100%). Statistical significance
is shown as (*** p < 0.0001, ** p < 0.001, * p < 0.05). Representative blots from independent experiments
are shown in the upper part of panels (a–d).

3.4. Effect of D4T on Autophagy Signaling

Interaction of NLRP domains with autophagy proteins seems to provide a mechanism
for direct NLRP regulation of autophagy. In particular, in this study, inflammasome-
forming NLRP subunits were found to interact with the mTOR/Beclin-1 pathway that is
modulated by ERK- and AKT-phosphorylation status. For this reason, we tested the D4T
effect on phospho-p70S6K, a downstream target of ERK and AKT pathways that is also
involved in autophagy signaling, and its phosphorylation and activity are required for
LC3-II formation, too. By WB, Beclin-1 expression, phospho-p70S6K status, and LAMP2A
expression were examined. Beclin-1 was slightly increased by D4T (p = 0.042, Figure 4a);
on the other hand, the phosphorylation of p70S6Kinase was significantly increased by D4T
(p = 0.03, Figure 4b). Notably, both phospho-p70S6K isoforms, the 70 KDa cytosolic form
and the 85 KDa nuclear one, were significantly upregulated by D4T (p = 0.04) (Figure 4b) as
well as LAMP2A (p = 0.0023) (Figure 4c). This is a protein in the AKT-mediated pathway
and it is also the receptor for chaperon-mediated autophagy (CMA).
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Figure 4. Beclin-1- and CMA-mediated autophagy proteins. Western blot analyses of Beclin-1
((a), 52 KDa) and its downstream targets phospho-p70S6K and phospho-p85S6K ((b) 70 and 85 KDa)
and Lamp2A ((c) 100 KDa), the receptor for CMA, are shown. Each result is expressed as a percentage
of the ratio between the protein expression or phosphorylated-kinase and actin expression versus
D4T-untreated cells. Statistical significance is shown as (** p < 0.001, * p < 0.05). Representative blots
from independent experiments are shown in the upper part of panels (a–c).

3.5. Beclin-1 Regulating Proteins by D4T

Since Beclin-1 is a pivotal protein that regulates macroautophagy and also apoptosis,
we investigated the ability of D4T to modulate beclin-related pathways. Many proteins,
including Bcl-2 (an anti-autophagy protein), and proteases, such as Caspase-3, can interact
with Beclin-1 to regulate its autophagy function; Beclin 1 is a dual regulator for both
autophagy and apoptosis. When Caspase-3 is activated (cleaved Caspase-3, 15 kDa), it
destroys the binding between Beclin-1 and Bcl-2, and it switches Beclin-1 from a pro-
autophagic to a pro-apoptotic protein. By WB, D4T interestingly induces: (1) an increase in
Bcl2 (p = 0.04, Figure 5a) and (2) a significant reduction of Caspase-3 (p = 0.006) and a more
significant downregulation of cleaved Caspase-3 (p = 0.0001) (Figure 5b).
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Figure 5. Caspase-3/cleaved-Caspase3 and Bcl2 production. Western blot analysis of Bcl2 ((a) 26 KDa)
and Caspase-3 ((b) 31 KDa) and cleaved Caspase-3 ((b) 15 KDa) were evaluated. Each result is
expressed as a percentage of the ratio between each target and actin expression versus D4T-untreated
cells. Statistical significance is shown as (*** p < 0.0001, ** p < 0.001, * p < 0.05). Representative blots
from independent experiments are shown in the panels (a,b).

4. Discussion

Microglia-driven neuroinflammation has been identified as a key player in the patho-
genesis of AD; the formation of oligomer Aβ42, in particular, is an early event in the
disease that induces microglia activation and inflammation. It has been shown that this
process is highly dependent on the activation of the NLRP3/ASC-inflammasome both
in microglial cells [32,33] and in circulating peripheral monocytes [34]. Thus, systemic
inflammation triggers a neuroinflammatory response that results in microglial activation
with deleterious consequences for learning and memory in rodent models [35–37] and
in humans [38–44]. According to the literature, neuroinflammation leads to autophagy
downregulation [45,46], and we recently reported that NLRP3/ASC-inflammasome acti-
vation hampers the microglial clearance of Aβ in an in vitro experimental model of the
THP-1-derived macrophage cell line [19]. Notably, in that experimental setting, stavudine
(D4T), a common drug used as therapy in HIV-infection, prevented active Caspase-1 release,
but it did not restore microglial Aβ phagocytosis. Given this background, we investigated
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Aβ-stimulated inflammation and autophagy cell signaling and the effects of D4T on these
molecular mechanisms in the peripheral blood immune cells of AD patients.

Results herein show that D4T is capable of significantly reducing NLRP3 inflamma-
some activation and the downstream production of IL-18 and Caspase-1 even in the PBMC
of AD patients, but it has only a marginal effect on IL-1β. Recent results also indicate
that gasdermin D, a caspase substrate that mediates the activation of NLRP3-independent
pyroptosis, induces the formation of pores in the plasma membrane. Because pores can
serve as a gate for the release of mature IL-1β from cells [47], this could explain the different
behavior of IL-18, Caspase-1, and IL-1β.

Autophagy is an intracellular degradation process responsible for the delivery of
damaged organelles and proteins from the cytoplasm and it is involved in programmed
cell death and neurodegeneration; furthermore, autophagy also represents an alterna-
tive pathway of cellular defense by removing intracellular pathogens [48–50]. The three
main forms of autophagy are: macroautophagy (mTOR-beclin-1-dependent) and microau-
tophagy (endosomal-mediated and CMA), with the latter being associated with lysosomal
degradation; it is mediated by a cytoplasmic complex of chaperone proteins that interacts
with LAMP2A. All these three forms of autophagy crosstalk with each other to eliminate
aberrant proteins and modulate cell apoptosis, too [51–53].

In this work, the autophagy cell signaling was analyzed, and the results show that
the phosphorylation status of AKT, ERK, and cytosolic and nuclear p70S6 kinases as
well as the expression of LAMP2A and Beclin-1 increase in the D4T-stimulated PBMC of
AD patients, indicating that D4T upregulates the pro-autophagic downstream AKT- and
MAP-kinase pathways.

Macroautophagy is the best studied form of autophagy, and since the Bcl-2/Beclin-1
interaction seems to function as a key regulatory mechanism in autophagy [54], ability
of D4T to regulate this binding. Beclin-1 can be cleaved by Caspase-3 (15 kDa), and this
cleavage results in an inactivation of autophagy [55,56]. In this work, D4T induced a
significant downregulation of Caspase-3 expression and a complete reduction in its cleaved
isoform; further, it exhibited a trend to upregulate Beclin-1 and Bcl-2 In normal condi-
tions, Bcl-2, an anti-apoptotic protein, binds Beclin-1, thus resulting in an inactivation of
autophagy; while under stress, Beclin-1 dissociates from Bcl-2 allowing the activation and
subsequent stimulation of autophagy [54]. Since it has been shown [55] that the cleavage
of Beclin 1 by Caspase-3 may contribute to inactivating autophagy, leading towards aug-
mented apoptosis, our results suggest DT4 decreases Caspase-3 activation, counteracting
the autophagy inhibition.

CREB is another downstream mediator in ERK- and AKT-mediated pathways, and
it also regulates anti-inflammatory IL-10 production, modulating its phosphorylation
status. The D4T-mediated upregulation of p-CREB could stimulate IL-10 production to
counteract Aβ toxicity. Moreover, the D4T-induced modulation of CREB is also particularly
important as this protein has a well-documented role in neuronal plasticity and long-term
memory formation [56,57]; in fact, p-CREB expression is reduced in the PBMC of AD
subjects [58–60]. In a clinical scenario, D4T might also be beneficial for CNS cells, not only
for blood peripheral cells. Notably, behavioral symptoms and progression of AD in a
murine model were shown to be alleviated by the activation of the PI3K/AKT signaling
pathway [61], which is an upstream pathway of CREB.

The effect of D4T on p38 signaling is potentially relevant, too. Thus, p38 is activated
in macrophages, neutrophils, and T cells by extracellular mediators of inflammation includ-
ing cytokines, chemokines, and LPS [62,63], and phospho-p38 induces the Th1 immune
response and the production of pro-inflammatory cytokines [64]. Furthermore, p38 is also
involved in tau hyperphosphorylation, and the D4T downregulation of p38 phosphory-
lation might be also useful to prevent tau phosphorylation and tangle production. The
observed D4T downregulation of this protein thus could be beneficial in reducing Aβ
oxidative stress and cytotoxicity. Oxidative stress plays a pivotal role in the initiation and
progression of neurodegenerative diseases; indeed, recently it was reported that the dual
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activation of the MAPK/ERK and PI3K/AKT pathways was found to be synergistic to
mitigate the cytotoxicity induced by aggressive oxidative stress. Currently, a wide range
of small molecule inhibitors have been proposed for the simultaneous targeting of the
MAPK/ERK and PI3K/AKT signaling pathways, which may be effective in a treatment to
prevent oxidative-stress-related diseases [65].

5. Conclusions

Efficient autophagic activity prevents the activation of inflammasomes [66] and the
stimulation of autophagy was shown to reduce soluble Tau as well as Aβ and amyloid
plaques in 3xgAD mice [67]. On the other hand, it is known that Beclin 1-dependent
autophagy is downregulated in AD [68] and the NLRP3 inflammasome is activated in
the brain and PBMC of AD patients [34,69]. In this manuscript, we show the results
obtained in the peripheral immune cells of AD patients that indicate the D4T involvement
in reducing NLRP3 inflammasome activation, upregulating autophagy as well as inhibiting
anti-inflammatory signaling. Although a limitation of the present work is the sample
size, taken together, these findings support the hypothesis that the NLRP3 inflammasome
may be a potential therapeutic target for and suggest that D4T is a possible rehabilitation
treatment for this disease, thus warranting future investigations into the use of D4T in the
clinical scenario.
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