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Abstract
A tragedy of the commons, in which rational behavior of individuals to maximize their own payoffs depletes common resources, is one of 
the most important research topics in game theory. To better understand the social dilemma problem, recent studies have developed a 
theoretical framework of feedback-evolving game where individual behavior affects an environmental (renewable) resource and the 
environmental resource changes individual payoffs. While previous studies assumed that the frequency of defectors increases 
(prisoner’s dilemma [PD] game) when the environmental resource is abundant to investigate an oscillating tragedy of the commons, it 
is also possible for other types of game to produce the social dilemma. In this paper, we extend the feedback-evolving game by 
considering not only PD game, but also the other three game structures when the environmental resource is replete for a reasonably 
complete classification. The three games are Chicken game where defectors and cooperators coexist through minority advantage, 
Stag-Hunt (SH) game with minority disadvantage, and Trivial game where the frequency of cooperators increases. In addition, we 
utilize a dilemma phase plane to visually track (transient) dynamics of game structure changes. We found that an emergent initial 
condition dependence (i.e. bistability) is pervasive in the feedback-evolving game when the three games are involved. We also showed 
that persistent oscillation dynamics arise even with Chicken or SH games in replete environments. Our generalized analysis will be an 
important step to further extend the theoretical framework of feedback-evolving game to various game situations with environmental 
feedback.

Keywords: dilemma phase plane, eco-evolutionary dynamics, public goods game, social dilemma, tragedy of the commons

Significance Statement

Game theory has been studied to understand mechanisms that promote (or prevent) cooperation in various societies. Recently, a new 
theoretical framework, ‘feedback-evolving game,’ has been proposed in which an individual’s behavior modifies both the social con
struct and the environmental context. This is useful for considering a tragedy of the commons, where individual rational behaviors 
deplete common resources. In this paper, we provide a complete classification of possible dynamics generated by the feedback- 
evolving game utilizing a dilemma phase plane where we can visually track dynamic changes of game structures. It will be fruitful 
to combine the feedback-evolving game and the dilemma phase plane to understand various game theoretical dynamics with envir
onmental feedback including natural resource management and voluntary vaccination in pandemics.
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Introduction
Evolutionary game theory has been used to understand how 
cooperation arises: specifically, researchers investigate how fre
quencies of two behavioral strategies (‘cooperation’ and ‘defection’) 
dynamically change when an individual reward (fitness) is 

determined by a combination of its own and opponent’s strategies 
(i.e. social makeup) (1–3). For example, in prisoner’s dilemma (PD) 
game, the defection strategy always obtains a higher reward than 
the cooperation strategy. Thus, the defection strategy increases 
its frequency and will eventually become dominant in a 
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population/society. The rewards of strategies (or the ‘game struc
ture’) can be expressed by a payoff matrix, and frequency dynamics 
is described by replicator dynamics (2, 3). This theoretical frame
work is important to understand the social dilemma in which im
mediate self-interest is in conflict with long-term collective 
interests and disturb the promotion of cooperative behavior. 
Since these social dilemma situations arise not only in human so
cieties but also in biological dynamics, evolutionary game theory 
has been extensively studied in diverse disciplines including eco
nomics, politics, psychology, epidemiology, public health, evolu
tionary biology, and ecology (1–8).

Recently, a new theoretical framework called ‘feedback-evolving 
game’ was proposed and developed to understand an individual 

action that modifies both the social makeup and an environmental 
variable (9, 10) (Fig. 1A). The framework considers two payoff matri
ces in ‘replete’ and ‘depleted’ environments and assumes that the 
environmental variable can affect the rewards by changing the rela
tive contributions of the two matrices. The environmental variable, 
on the other hand, is affected by the strategy frequency: the cooper
ation strategy increases the environmental resource, while the 
defection strategy decreases it (Fig. 1A). Such strategy-dependent 
feedback is common in various settings in biological populations/ 
communities as well as human societies (11) including microbial 
fixation of inorganic nutrients (12, 13), production of extracellular 
enzymes (e.g. siderophores: 14, enzymes that break down sugars: 
15, antibiotic compounds: 16), growth of cancer cells in the tumor 

A

B

Fig. 1. A) The basic concept of feedback-evolving game. (Left) The abundance of the environmental resource (n) is increased by cooperators and 
decreased by defectors (Eq. 6). (Right) The payoff of the two strategies change depending on the environmental resource, and the frequency of cooperator 
(x) may be decreased in replete environments and increased in depleted environments (Eq. 5). The updated frequency of cooperator in turn affects the 
environment. B) The four game structures and dilemma strengths of multiplayer game (modified from (7)). The combination of positive and negative 
values of the strengths of GID (D′g) and RAD (D′r) shows the four game structures in the dilemma phase plane. The first, second, third, and fourth quadrants 
represent the PD (red), Chicken (yellow), Trivial (blue), and SH (green) game structures, respectively.
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microenvironment (17), car driving in traffic flow (18), and voluntary 
vaccination during a pandemic (19). Weitz et al. (9) particularly em
phasized that the feedback-evolving game is useful to consider a 
‘tragedy of the commons’ where individual actions to increase their 
own rewards eventually deplete ‘public goods/common-pool re
sources’ such as natural resources in fisheries and forestry as well 
as clean air and water in polluted environments (20). They proposed 
that their framework can capture an oscillating tragedy of the com
mons: cooperation increases the environmental resource; this in 
turn increases the frequency of the defection strategy; the increased 
defection strategy decreases the environmental resource; this pro
motes cooperation, and so on (9, 10) (Fig. 1A). The theoretical frame
work is also useful for understanding complex eco-evolutionary 
dynamics where rapid evolution affects contemporary ecological 
processes and vice versa (21–23). Therefore, the evolutionary 
game theory with environmental feedback (or ‘coevolutionary 
game theory’ (9), ‘eco-evolutionary game theory’ (10)) is becoming 
an important tool for understanding complex dynamics with feed
backs between organismal behavior and the surrounding environ
ments in this era of global environmental changes (10).

In this manuscript, we extend the evolutionary game theory with 
environmental feedback by utilizing a dilemma phase plane to 
understand how environmental feedback changes the game struc
ture and how feedbacks with environments produce novel game dy
namics (24) (Fig. 1B). The dilemma phase plane is a useful tool to 
visualize the game structure by using two indicators of a payoff ma
trix that represent players’ incentives to exploit their opponents 
(gamble-intending dilemma [GID], the vertical axis of Fig. 1B) and 
not to be exploited by their opponents (risk-averting dilemma 
RAD the horizontal axis of Fig.1,B: 25, 26). By using the dilemma 
phase plane, we can classify game structures to four types: (i) PD 
game where the defection strategy dominates (when GID and RAD 
are positive in Fig. 1B), (ii) Chicken (also known as snowdrift or 
hawk-dove) game where the two strategies coexist via negative fre
quency dependence (when GID is positive and RAD is negative in 
Fig. 1B), (iii) Stag-Hunt (SH) game where the initial condition deter
mines the dominant strategy via positive frequency dependence 
(i.e. bistability: when GID is negative and RAD is positive in 
Fig. 1B), and (iv) Trivial game with no social dilemma where the co
operation strategy dominates (when GID and RAD are negative in 
Fig. 1B). The original model of Weitz et al. (9) considered a situation 
where the defection strategy is favored (i.e. PD game) in replete en
vironments and the cooperation strategy is favored (i.e. Trivial 
game) in depleted environments (Fig. 1A) to understand a tragedy 
of the commons (Figs. 2–4 of Weitz et al. (9); A1 is PD and A0 is 
Trivial in Fig. 2). To explore conditions in which a tragedy of the com
mons is averted, they also analyzed situations where PD, Chicken, 
and SH games appear in depleted environments (Fig. 5 of Weitz 
et al. (9); column where A1 is PD in Fig. 2). To further develop the the
oretical framework and understand the basic characteristics of dy
namics in feedback-evolving game, it is natural and essential to 
extend the analyses to include situations where non-PD games ap
pear in replete environments (columns where A1 is Chicken, SH, and 
Trivial in Fig. 2). Indeed, it is possible to consider a situation where 
the cooperators and defectors (i.e. ‘free riders’) coexist in replete en
vironments (27–30). When the environmental resource is not com
pletely ‘public’ (i.e. accessible by anyone in a society) due to, for 
example, spatial heterogeneity in bacteria populations where coop
erators produce extracellular enzymes, the cooperators may obtain 
higher benefits when rare and stable coexistence arises (i.e. Chicken 
game) even in ‘replete’ (in this case, enzyme-rich) environments 
(31). Similarly, some people would not exploit fish populations vor
aciously even when the number of fish individuals is very large, 

which results in coexistence of cooperators and defectors in ‘re
plete’ environments. For understanding a complete picture of 
game dynamics with environmental feedback, we consider situa
tions where the game structure in replete environments is 
Chicken, SH, or Trivial games instead of PD game (Fig. 2). We re
vealed that assuming Chicken game (or SH/Trivial game) instead 
of PD game in replete environments drastically changes dynamics 
of feedback-evolving game: it produces rich dynamics of bistability, 
which was not found in the previous studies on evolutionary games 
with environmental feedback, suggesting that a tragedy of the com
mons may be averted depending on the initial condition (Fig. 2). We 
also found persistent oscillation dynamics with Chicken or SH 
games in replete environments (Fig. 2). We further clarified how 
combining two games through environmental feedback can 
produce another game by using the dilemma phase plane: for 
example, combining PD and Trivial games in replete and depleted 
environments, respectively, can result in Chicken game (Fig. 3). 
Our analyses will be an important step for developing a game theor
etical framework of environmentally mediated social dilemma (11) 
and eco-evolutionary dynamics (14, 22).

Materials and methods
The game structure, or rewards determined by a pairwise combin
ation of an individual’s own strategy and an opponent’s strategy, 
is represented by 2 × 2 payoff matrix (1–3, 32). Here, we consider 
the payoff matrix of pairwise games in an infinite population: 
we model a situation where two players are selected from an infin
ite population at random and they play the game. Players receive a 
reward depending on the selected strategies, C (cooperation) or D 
(defection) according to the following payoff matrix:

A ≡ [aij] =
C D

C
D

R S
T P

􏼒 􏼓

.
(1) 

If both players cooperate, they receive the ‘reward’ R; if both de
fect, they get ‘punishment’ P; if one chooses cooperation while 
the other defects, the defector gets the ‘temptation’ T, whereas 
the cooperator gets the payoff of ‘sucker’ S (1–3, 32). The game 
structure and the social dilemma strengths of the game depend 
on the relative magnitudes of the payoff matrix elements P, R, S, 
and T (26, 33–36). Particularly, the signs of T−R and P−S determine 
the structure of the game (26, 33–36).

Thus, we use two indicators based on a payoff matrix that re
present players’ incentives to exploit their opponents (GID) and 
not to be exploited by their opponents (RAD) for visualization in 
the dilemma phase plane (Fig. 1B). The strengths of GID and 
RAD, D′g and D′r, respectively, can be calculated from the elements 
of the payoff matrix (Eq. 1) as follows (26):

D
′

g =
T − R
R − P

, (2) 

and

D
′

r =
P − S
R − P

(3) 

Because their denominators (R−P) are always positive by defin
ition, the numerators determine the signs. The strength of GID 
is proportional to the difference of rewards between a defector 
and a cooperator when their opponents have the cooperative 
strategy (i.e. T−R: players’ incentives to exploit their opponents). 
In the same way, the strength of RAD is determined by the differ
ence of rewards between a defector and a cooperator when their 
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opponents have the defective strategy (i.e. P−S: players’ incentives 
not to be exploited by their opponents).

There are four possible combinations depending on the signs of 
D′g and D′r: PD game (D′g > 0 and D′r > 0); Chicken game (D′g > 0 and 
D′r < 0); SH game (D′g < 0 and D′r > 0); and Trivial game (D′g < 0 and 
D′r < 0) (Fig. 1B) (7, 26, 33–36). When both of them are positive 
(negative), defectors (cooperators) always obtain higher rewards 
than their opponents because T > R and P > S (T < R and P < S), 
and this results in PD (Trivial) game. When D′g is positive and D′r 
is negative, the game between different strategies (i.e. the game 
between defectors and cooperators) results in higher rewards 
than the game between the same strategies because T > R and P  
< S and it promotes stable coexistence (i.e. Chicken game). 
When D′g is negative and D′r is positive, on the other hand, the 
game between the same strategies results in higher rewards 
because T < R and P > S and it leads to bistability (i.e. SH game). 

Based on the strengths of GID and RAD, we can draw a dilemma 
phase plane and place any payoff matrix on the phase plane for 
understanding the game structure (24) (Fig. 1B). By utilizing the di
lemma phase plane, we will be able to better understand how 
game structure is changing through feedback-evolving game.

The theoretical framework of feedback-evolving game (Fig. 1A) 

considers two payoff matrices A0 = R0 S0

T0 P0

􏼔 􏼕

and A1 = R1 S1

T1 P1

􏼔 􏼕

for the depleted and replete environments, respectively (9). The 
relative importance of the two payoff matrices varies according 
to the abundance of the environmental resource (n):

A(n) =
A11(n) A12(n)

A21(n) A22(n)

􏼔 􏼕

= (1 − n)A0 + nA1

= (1 − n)
R0 S0

T0 P0

􏼔 􏼕

+ n
R1 S1

T1 P1

􏼔 􏼕 (4) 

Fig. 2. Overview of the feedback-evolving game dynamics generated by the combination of game structures A0 (in depleted environments) and A1 (in 
replete environments). ‘TOC’ stands for a tragedy of the commons and indicates dynamics toward n = 0. ‘O-TOC’ refers to an oscillating tragedy of the 
commons as described by Weitz et al. (9) and indicates heteroclinic cycles. ‘PO’ denotes a persistent oscillation, indicating neutrally stable oscillations. 
‘Bistability’ indicates the presence of two alternative stable states and the final outcome depends on initial conditions. ‘Averted’ signifies dynamics that 
avoid the tragedy of the commons, resulting in n ≠ 0. See Supplementing Material and Tables S1–S4 for more detailed conditions. Combinations of game 
structures presented in Weitz et al. (9) are marked in blue text, whereas we verified all game structures, which are displayed in diagrams with pink text.
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The frequency dynamics of cooperators x (0 ≤ x ≤ 1) is described 
by a replicator equation as follows (1–3):

dx
dt

= x(1 − x)[r1(x, n) − r2(x, n)] (5) 

where r1(x, n) = xA11(n) + (1 − x)A12(n) and r2(x, n) = xA21(n) + 
(1 − x)A22(n) denote the frequency- and environment-dependent 
fitness of cooperative player 1 and of defective player 2, respective
ly. The frequency of the cooperation strategy increases when the 
fitness of cooperators is larger than that of defectors, and the speed 
of dynamics becomes slower when the frequency is close to 0 or 1.

The resource is assumed to be increased by cooperators and 
decreased by defectors as θx − (1 − x), where θ (>0) is the ratio of 
the enhancement rates to degradation rates of cooperators and 
defectors, respectively. Then, the dynamics of the environmental 
resource n (0 ≤ n ≤ 1) is represented by:

dn
dt

= ϵn(1 − n)[(1 + θ)x − 1] (6) 

The rate of environmental dynamics is partly set by the dimen
sionless quantity, ϵ. The speed of dynamics becomes slower 

B1

B3

B4

B2

C1

C4

C3

C2

A1

A3

A4

A2

Fig. 3. Persistent oscillations (left: A), SH-mediated heteroclinic cycles (center: B), and Chicken-type mixed strategy (right: C) in the Trivial–PD 
combination. The parameters are sets as ϵ = 0.1, θ = 2. A) Under the payoff setting shown as Eq. (9), the state dynamics and dilemma strength show 
persistent oscillations with a neutral interior fixed point (x∗, n∗) = 1

3 , 1
2

( 􏼁
. B) Under the payoff setting shown as Eq. (10), the state dynamics and dilemma 

strength show a heteroclinic cycles (i.e. an oscillating tragedy of the commons) with an unstable interior fixed point (x∗, n∗) = 1
3 , 2

3

( 􏼁
. C) Under the payoff 

setting shown as Eq. (11), the state dynamics and dilemma strength converge to Chicken game with a stable fixed point (x∗, n∗) = 1
3 , 17

42

( 􏼁
. A1), B1), C1) The 

state dynamics of the frequency of cooperator (x, blue) and the abundance of the environmental resource (n, orange). A2), B2), C2) The x–n phase plane 
shows the dynamics with each initial conditions. The red line corresponds to the dynamics indicated in (A1), (A3), and (A4), (B1), (B3), and (B4), and (C1), 
(C3), and (C4). A3), B3), C3) The state dynamics of dilemma strengths of GID (D′g, red) and RAD (D′r, black) with game structure transition. A4), B4), C4) The 
dilemma phase planes in the feedback-evolving games. The shaded background colors indicate the regions of PD (red), Chicken (yellow), Trivial (blue), 
and SH (green) games. A4) The black line connecting A0 and A1 passes through the origin. A∗ denotes the dilemma strength coordinate of A(n∗) that 
satisfies the condition of r1 = r2. B4) The coordinate of A∗ is located in the SH region. C4) The coordinate of A∗ is located in the Chicken region.
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when the resource abundance is close to 0 or 1, or when the par
ameter ϵ is small.

By combining the game theoretical dynamics (Eq. 5) and envir
onmental resource dynamics (Eq. 6), we can calculate an internal 
equilibrium of the feedback-evolving game by assuming r1 = r2:

(x∗, n∗)

=
1

1 + θ

􏼒

,
θ(P0 − S0) + (T0 − R0)

θ(P0 − S0) + (T0 − R0) + θ(S1 − P1) + (R1 − T1)

􏼓

, (7) 

where x∗ and n∗ denote the equilibrium of x and n, respectively. 
The position of the internal equilibrium is important for classify
ing and understanding dynamics of feedback-evolving game in 
the following sections. Here, we define A∗ as the payoff matrix 
when the amount of environmental resource is n∗ as follows:

A∗ = A(n∗) = (1 − n∗)
R0 S0

T0 P0

􏼔 􏼕

+ n∗
R1 S1

T1 P1

􏼔 􏼕

(8) 

We analyzed the model dynamics by using analytical techniques 
including local stability analyses (see Supplementing Material) as 
well as numerical simulations of the ordinary differential equa
tions (Eqs. 5 and 6). For understanding the effects of parameter 
values on feedback-evolving game dynamics in the analyses, we 
carefully classified Ri, Si, Ti, and Pi (i = 0, 1) according to the four 
game types (Fig. 1B) and how they are combined. In addition, we 
checked how the θ value affects the internal equilibrium, 
(x∗, n∗), and change game dynamics. We also examined how 
changing the ϵ value affects game dynamics numerically.

Results
Trivial–PD combinations
In this section, we replicate the results of the feedback-evolving 
game of Weitz et al. (9) by setting A0 to Trivial and A1 to PD and 

visually demonstrate dynamical changes in game structures by 
utilizing the dilemma phase plane (Fig. 3). As Trivial game (A0) 
prefers cooperation in depleted environments whereas PD (A1) 
promotes defection in replete environments, there is an oscillat
ing tragedy of the commons (Fig.1,A: 9). In the following three ex
amples, we show that (i) dynamical changes of game structures 
can be easily understood by using the dilemma phase plane, 
and (ii) (transient) dynamics with the combination of two games 
can produce a third game, which can affect dynamics. Note that 
the payoff matrices presented here are examples used in the pre
vious study (9) and we used them for ease of comparison. See 
Supplementing Material for more general results. We also exam
ined the effects of the parameter value ϵ on dynamics (Fig. S1) and 
found that the qualitative results do not depend on the speed of 
the feedback, ϵ, as shown by Weitz et al. (9).

Persistent oscillations in the Trivial–PD case
First, we consider parameter values that show persistent oscilla
tions (neutral cycles) of the frequency of cooperators (x) and the 
abundance of environmental resource (n) (Fig. 3A1–2):

A(n) = (1 − n)
R0 S0

T0 P0

􏼔 􏼕

+ n
R1 S1

T1 P1

􏼔 􏼕

= (1 − n)
5 1

3 0

􏼔 􏼕

+ n
3 0

5 1

􏼔 􏼕 (9) 

The persistent oscillation by the feedback mechanism occurs as fol
lows: (i) When the resource is abundant, the matrix A1 (PD) becomes 
dominant, and thus the defectors increase (x approaches 0). (ii) The 
increased defectors exploit and deplete the resource (n approaches 
0). (iii) The reduced resource makes the matrix A0 (Trivial) dominant 
and the frequency of cooperators increases (x approaches 1). (iv) 
The cooperators increase the resource (n approaches 1), and then 

D2

D1

C2

C1

B2

B1

A2

A1

Fig. 4. The four patterns of dynamics in the SH–Chicken feedback-evolving game. The game structures of A0 and A1 are SH and Chicken, respectively. 
(Top: A1–D1) The x–n phase plane shows the dynamics with each initial condition where x is the frequency of cooperators and n is the amount of 
environmental resource. Arrows indicate the direction of state dynamics. Black dots indicate stable fixed points, white dots are unstable interior fixed 
points, and a gray dot is a neutral fixed point (x∗, n∗). The white triangle on the base line (when n = 0) connected to the dotted line indicates an unstable 
equilibrium point xm, 0 (in SH game in depleted environments). The black triangle on the upper base line (when n = 1) connected to the dashed line 
indicates a stable equilibrium point xm, 1 (in Chicken game in replete environments). (Bottom: A2–D2) The dilemma phase planes in the SH–Chicken 
feedback-evolving game show the combinations of game structures (A0 and A1) where X-axis is the strength of RAD and Y-axis is the strength of GID. The 
red, yellow, blue, and green regions indicate PD, Chicken, Trivial, and SH games, respectively. The parameters are follows: A) (R0, S0, T0, P0) = (8, 1, 7, 4), 
(R1, S1, T1, P1) = (5, 4, 6, 1), ϵ = 1, θ = 2; B) (R0, S0, T0, P0) = (10, 1, 7, 4), (R1, S1, T1, P1) = (5, 4, 6, 1), ϵ = 1, θ = 0.2; C) (R0, S0, T0, P0) = (8, 1, 7, 4), 
(R1, S1, T1, P1) = (5, 4, 6, 1), ϵ = 1, θ = 0.2; and D) (R0, S0, T0, P0) = (8, 1, 7, 4), (R1, S1, T1, P1) = (5, 4, 10, 1), ϵ = 1, θ = 0.2.
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the state goes back to the process (i) (Figs. 1A and 3A). In such a per
sistent oscillation, various periodic orbits are obtained on the x–n 
phase plane depending on initial conditions by numerical simula
tions (black and red circles in Fig. 3A2). Along the cycles, the 
strengths of GID (D′g) and RAD (D′r) also show synchronized persist

ent oscillations (Fig. 3A3). This results in alternations of the game 
structure between PD and Trivial (Fig. 3A3). Mathematically, when 
the eigenvalues of the Jacobian matrix around the internal 
equilibrium are purely imaginary (i.e. the trace is 0 and the deter
minant is positive in the Jacobian matrix), the equilibrium point is 
a center and persistent oscillations around the center arise (see 
Supplementing Material for details). As the determinant is always 
positive in the Trivial–PD case, the condition for persistent oscilla

tions is (S0−P0)
(R0−T0) = (S1−P1)

(R1−T1). In the dilemma phase plane, the black line 

connecting A0 and A1 dilemma coordinates passes through the ori
gin because the parameter setting in Eq. (9) satisfies a condition 

(R0 = T1, S0 = P1, T0 = R1, and P0 = S1, and thus (S0−P0)
(R0−T0) = (S1−P1)

(R1−T1)), which 

makes the dilemma strengths (Eqs. 2 and 3) at the internal equilib
rium (Eq. 7) the origin (Fig. 3A4).

SH-mediated heteroclinic cycle in the Trivial–PD case
Second, we examine dynamics with the following parameter val
ues in the Trivial–PD combination:

A(n) = (1 − n)
3.5 1
2 0.75

􏼔 􏼕

+ n
4 1
7 2

􏼔 􏼕

(10) 

In this case, dynamics of x, n, D′g, and D′r show heteroclinic cycles 

(i.e. an oscillating tragedy of the commons) where cycle periods 
and amplitudes gradually increase (Fig. 3B1 and B2). Here, three 
types of game structures (i.e. PD, Trivial, and SH) emerge 
(Fig. 3B3) and the order in which the three game structures appear 
(i.e. SH→PD→SH→Trivial→SH→PD→SH→…) (Fig. 3B3) may seem 
strange, but this can be easily understood by the dilemma phase 
plane. In this parameter setting, the black line connecting di
lemma coordinates of A0 and A1 passes through the SH (green) re
gion (Fig. 3B4). The SH region in which the coordinate of A∗ is 
located shows bistable dynamics where x = 0 and x = 1 are locally 
stable equilibria and the outcome depends on the initial propor
tion of cooperators. This example shows that a third game (SH) 
emerges by combining two games (PD and Trivial), and the third 

J

H

K

I

E

D

F

A

B

C

G

L

Fig. 5. The nine patterns of bistability in the feedback-evolving game. A), B), D)–F), H)–K) Bistabilities are classified based on dynamics with each initial 
condition in the x–n phase plane where x is the frequency of cooperators and n is the amount of environmental resource. Arrows indicate the direction of 
state dynamics. Black dots indicate stable fixed points, white dots are unstable interior fixed points (x∗, n∗), and gray dots are neutral fixed points (x∗, n∗). 
C), G), L) Dilemma phase planes indicate the combinations of game structures (A0 and A1) in which each bistability occurs. Here, X-axis is the strength of 
RAD and Y-axis is the strength of GID. The red, yellow, blue, and green regions indicate PD, Chicken, Trivial, and SH games, respectively. A) An unstable 
internal equilibrium point and bistable equilibrium points at (x, n) = (0, 0) and (1, 1). B) Bistable equilibrium points at (0, 0) and (1, 1). D) Bistable 
equilibrium points at (x∗, n∗) and (1, 1). E) Bistability of neutral cycles (i.e. persistent oscillations) and a stable equilibrium point at (1, 1). F) Bistable 
equilibrium points at (xm,0, 0) and (1, 1). H) Bistable equilibrium points at (0, 0) and (x∗, n∗). I) Bistability of a stable equilibrium point at (0, 0) and neutral 
cycles (i.e. persistent oscillations). J) Bistable equilibrium points at (0, 0) and (xm,1, 1). K) Bistable equilibrium points at (xm,0, 0) and (xm,1, 1). A)–C) The 
SH-like bistability of (x, n) = (0, 0) and (1, 1). D)–G) Bistability with a stable point of (x, n) = (1, 1) (i.e. a cooperative society). A), B), F), H–L) Bistability with 
a stable point of n = 0 (i.e. a tragedy of the commons).
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game can affect dynamics of the feedback-evolving game. In this 
case, the bistable dynamics of SH game can produce heteroclinic 
cycles of the feedback-evolving game.

Chicken-type stable mixed strategy in the Trivial–PD case
Finally, we examine the following parameters in the Trivial–PD 
combination:

A(n) = (1 − n)
3.5 1
2 0.05

􏼔 􏼕

+ n
4 1
7 2

􏼔 􏼕

(11) 

Here, the dynamics converges to a stable fixed point (Fig. 3C1 and 
C2) where the game structure is Chicken. In transient dynamics, 
the order in which the three game structures appear (i.e. 
PD→Chicken→Trivial→Chicken→PD→Chicken→Trivial→Chicken) 
(Fig. 3C3) may seem strange again, but this can be understood in 
the dilemma phase plane. The black line passes through the 
Chicken (yellow) region and the game dynamics eventually con
verges to the Chicken region where the two strategies stably coex
ist (Fig. 3C4). This example shows that a third game (Chicken) 
emerges by combining two games (PD and Trivial), and the third 
game affects dynamics of the feedback-evolving game by produ
cing a stable equilibrium.

SH–Chicken combinations
Hereafter, we expand the analysis of the previous study (9) and 
analyze situations where the game structure in replete environ
ments is Chicken, SH, or Trivial instead of PD. Previous studies 
have assumed that defectors increase their frequency (i.e. PD 
game) in replete environments for considering an oscillating tra
gedy of the commons (9), but it is possible for cooperators and de
fectors (i.e. free riders) coexist in replete environments (27–30). 
We demonstrate that bistability is pervasive by relaxing the as
sumption (i.e. PD game in replete environments). We also show 
that the persistent oscillation dynamics occur even when the 
game structure in replete environments is Chicken or SH.

Our analyses in the previous section showed that there are di
verse feedback-evolving game dynamics when two games (A0 and 
A1) are in diagonal positions on the dilemma phase plane (i.e. the 
Trivial–PD combination: Fig. 3) depending on the position of the 
line connecting them (either crossing the origin [Fig. 3A], the SH 
region [Fig. 3B], or the Chicken region [Fig. 3C]). Thus, here we fo
cus on the SH–Chicken combination where the game structures 
are SH and Chicken in depleted and replete environments, re
spectively (see Supporting Information for detailed analyses and 
dynamics of other game combinations: Figs. S2–S5). We show 
how this combination produces diverse dynamics depending on 
the line connecting them (i.e. crossing the origin, the PD region, 
or the Trivial region) (Fig. 4).

We start the analysis by considering the situation where the en
vironmental resource is 0 or 1 in the SH–Chicken combination. 
When n = 0, SH game (A0) has an unstable internal fixed point 
x∗m,0 = (S0−P0)

[(S0−P0)+(T0−R0)], and there is positive frequency dependence 
(i.e. minority disadvantage: Fig. 1B). On the other hand, when 
n = 1, Chicken game (A1) has a stable internal fixed point 
x∗m,1 = (S1−P1)

[(S1−P1)+(T1−R1)], and dynamics converges to the equilibrium 
(i.e. minority advantage: Fig. 1B). Depending on the positions of 
xm,0, xm,1, and x∗ as well as whether S0−P0

R0−T0 
is larger or smaller 

than S1−P1
R1−T1 

(i.e. whether the line connecting the two games crosses 
the origin, the PD region, or the Trivial region), there are four pos
sible situations (Fig. 4). Here, nine parameters (the eight elements 
of the payoff matrices, A0 and A1, and the value of θ) determine 
dynamics of the feedback-evolving game. See Discussion for the 
effects of the parameter ϵ.

Simple bistability in the SH–Chicken combination
If the internal equilibrium of Chicken game in replete environ
ments is larger than the internal equilibrium with environmental 
feedback (xm,1 > x∗), there is bistable dynamics and the initial val
ues of x and n determine whether the feedback-evolving game 
converges to a depleted equilibrium with no cooperators (i.e. a tra
gedy of the commons: n = 0) or a replete equilibrium where coop
erators and defectors coexist ((x, n) = (x∗m,1, 1)) (Fig. 4A). Unlike the 
Trivial–PD combination (Fig. 3), even when A∗ is at the origin in the 
dilemma phase plane (Fig. 4A2), the internal fixed point (x∗, n∗) is 
unstable and there are no persistent oscillations (Fig. 4A: but see 
Bistability with a persistent oscillation section).

Bistability with an internal equilibrium in the SH–Chicken 
combination
If the internal equilibria in depleted and replete environments are 
smaller than the internal equilibrium with environmental feed
back (xm,0, xm,1 < x∗) and S0−P0

R0−T0
> S1−P1

R1−T1
, the feedback-evolving 

game shows bistability with an internal equilibrium. Depending 
on the initial values of x and n, the feedback-evolving game 
reaches a depleted equilibrium with no cooperators (i.e. a tragedy 
of the commons: n = 0) or an internal equilibrium where coopera
tors and defectors coexist ((x, n) = (x∗, n∗)) (Fig. 4B). The line con
necting A0 and A1 passes through the Trivial region and A∗ is at 
the Chicken region (Fig. 4B2). This is phenomenologically similar 
to the results of the laboratory experiments of Sanchez and 
Gore (15) where a cooperative yeast strain produces an extracellu
lar enzyme that breaks down sugars while a defective strain ex
ploits the sugar without extracting the enzyme. They observed 
bistable eco-evolutionary dynamics to population extinction due 
to the dominance of the defective strain or coexistence of the co
operative and defective strains as our theoretical dynamics 
(Fig. 4B1). Notably, there was transient spiral dynamics to the co
existence equilibrium in the experiments, which agrees with our 
simulations (Fig. 4B1).

Bistability with a persistent oscillation
If the internal equilibria in depleted and replete environments are 
smaller than the internal equilibrium with environmental feed
back (xm,0, xm,1 < x∗) and S0−P0

R0−T0
= S1−P1

R1−T1
, again, there is bistable 

dynamics. But in this case, one equilibrium is at the origin, 
(x, n) = (0, 0), and the other one is persistent oscillations with a 
center at (x, n) = (x∗, n∗) (Fig. 4C). This clearly shows that a per
sistent oscillation arises even with Chicken (instead of PD) in re
plete environments. The cyclic dynamics occurs when the initial 
proportion of cooperator is high (Fig. 4C1). The mechanism behind 
the oscillations is as follows: when values of x and n are large, 
Chicken game decreases the proportion of cooperators to the in
ternal equilibrium without environmental feedback, xm,1, but it 
decreases the environmental resource as well. Importantly, the 
equilibrium proportion of cooperators (xm,1) is larger than the un
stable equilibrium of SH game without environmental feedback 
(xm,0), and thus, SH game increases the proportion of cooperators 
in depleted environments and it results in the increased environ
mental resource. As a result, SH and Chicken games occur alter
nately by crossing the origin in the dilemma phase plane (Fig. 4C).

A tragedy of the commons in the SH–Chicken combination
Finally, if xm,0, xm,1 < x∗ and S0−P0

R0−T0
< S1−P1

R1−T1
, A∗ locates in the SH re

gion in the dilemma phase plane, and (x∗, n∗) is an unstable inter
ior fixed point (Fig. 4D). The line connecting A0 and A1 passes 
through the PD region and the feedback-evolving game shows 
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the dominance of defectors in deplete environments (i.e. a tragedy 
of the commons: n = 0, Fig. 4D2). Although we combined SH and 
Chicken here, it results in dynamics that is similar to PD where 
defectors dominate irrespective of the initial conditions (Fig. 4D1).

Bistability and a persistent oscillation
As shown in the previous section, combining various game struc
tures can produce diverse dynamics (see Supplementing Material
for a detailed analyses and dynamics of other game combinations) 
and bistable dynamics may be common (Fig. 4A–C). In this section, 
we introduce all game structure combinations that lead to bi
stable dynamics that were not observed in the previous studies 
(9, 10). Here, we show game combinations with bistability on the 
dilemma phase planes (Fig. 5C, G, and L) and the actual bistable 
dynamics in the x–n planes (Fig. 5A–B, D–F, and H–K). Note that 
we already showed bistable dynamics of Fig. 5H–J in Fig. 4A–C.

The simplest dynamics with bistability would be the one with 
two locally stable points at the depleted point without coopera
tors, (x, n) = (0, 0), and the replete point without defectors, 
(x, n) = (1, 1), as like SH game (Fig. 5A–C). The difference between 
Fig. 5A and B is the presence of an unstable internal equilibrium 
point. This bistability occurs in the PD–Trivial, PD–SH, and SH– 
Trivial combinations (Fig. 5C). It is interesting to see that the 
SH-like dynamics emerges by combining PD and Trivial even 
when the line connecting the two games does not cross the SH 
region.

Diverse bistable dynamics arise when A0 or A1 is Chicken game 
(Fig. 4D–F and H–K). Bistability where one of the locally stable 
points has no defectors in replete environments, (x, n) = (1, 1), 
appears in the Chicken–SH and Chicken–Trivial combinations 
where A0 is Chicken (Fig. 5D–G). Among them, a neutral cycle 
with the center at (x, n) = (x∗, n∗) can occur when S0−P0

R0−T0
= S1−P1

R1−T1 
in 

the Chicken–SH combination, and this also indicates that a per
sistent oscillation does not need PD in replete environments 
(Fig. 5E).

When A1 is Chicken game, on the other hand, bistability where 
one of the locally stable points has no cooperators in depleted 
environments, (x, n) = (0, 0), appears in the PD–Chicken and 
SH–Chicken combinations (Fig. 5H–J). Please note that we can 
see flipped dynamics of Fig. 5D, E, and F in Fig. 5H, I, and J, respect
ively. Bistability can also occur in the Chicken–Chicken combin
ation (Fig. 5K) because each Chicken game has an equilibrium 
point of mixed strategies when n = 0 and 1.

A complete classification of Chicken-base 
feedback-evolving game
For a complete classification of feedback-evolving game, we show 
an example where the payoff matrix of A1 is fixed to Chicken game 
structure (Fig. 6) and we call it ‘Chicken-base feedback-evolving 
game.’ The PD-based feedback-evolving game was already ana
lyzed in Fig. 5 of Weitz et al. (9), and see Supporting Information
for details of SH-based and Trivial-based dynamics. Depending 
on the choice of A0, there are four possibilities (Fig. 6). We showed 
the results of the SH–Chicken combination in the previous section 
(Figs. 5 and 6, lower right), and thus, we focus on the other three 
combinations: PD–Chicken, Chicken–Chicken, and Trivial– 
Chicken.

In the PD–Chicken combination, the stability of the fixed point 
of Chicken game A1 (xm,1, 1) depends on the relative position to 
the internal equilibrium, x∗ (Fig. 6, upper right). When xm,1 < x∗, 
the feedback-evolving game results in a tragedy of the commons 
with the PD game structure. On the other hand, the condition 

xm,1 > x∗ can avoid a tragedy of the commons depending on the ini
tial conditions.

Second, in the Chicken–Chicken combination, the game out
come depends on the relative positions of xm,0, xm,1, and x∗

(Fig. 6, upper left). When xm,0 < x∗, the state where the cooperative 
and defective strategies coexist in depleted environments, 
(xm,0, 0), becomes (locally) stable. When xm,1 > x∗, on the other 
hand, the state where the two strategies coexist in replete envi
ronments, (xm,1, 1), becomes stable. If both conditions are satis
fied, the bistable dynamics emerges (Fig. 5K), and if they are not 
satisfied (i.e. xm,0 > x∗ > xm,1), the interior equilibrium becomes 
stable.

Finally, in the Trivial–Chicken combination, the game outcome 
depends on the relative positions xm,1 and x∗ (Fig. 6, lower left). 
When xm,1 > x∗, the feedback-evolving game converges to the co
existence equilibrium in replete environments, (xm,1, 1), and 
otherwise to the internal equilibrium with environmental 
feedback.

Discussion
In this manuscript, we conducted a reasonably complete classifi
cation of evolutionary games with environmental feedback by (i) 
utilizing the dilemma phase plane that can visually track the tran
sition of game structures and (ii) extending the previous analysis 
(9) through considering Chicken, SH, and Trivial (instead of PD) 
games in replete environments. While previous studies tended 
to focus on a situation where the defection strategy is favored 
(i.e. PD game) in replete environments (9), coexistence of cooper
ators and defectors should be possible as well (i.e. Chicken 
game, (31)). In the same way, bistable game situation that depends 
on initial conditions may occur in various situations in a society, 
such as social contract, collective behavior, and opinion dynamics 
(37–39). Our analyses revealed various types of bistable dynamics 
(Figs. 2 and 4–6), which was not observed in previous studies on 
feedback-evolving game (9, 10). This suggests that a tragedy of 
the commons may be averted depending on the initial condition. 
Furthermore, we demonstrated that persistent oscillation dynam
ics do not need PD in replete environments: it can arise with 
Chicken or SH (Figs. 4 and 5). We further show that the Trivial– 
PD combination can generate Chicken game (Fig. 3C). Thus, envir
onmental feedback can work as a generating function of a differ
ent game structure from inputs of two games. This change of 
game structures can be revealed by measuring the strengths of 
the two social dilemmas.

The nine types of bistable dynamics we found (Fig. 5) occur 
when the game structure in replete environments is Chicken, 
Trivial, or SH (Figs. S2–S4), and this is why the previous studies 
that assumed PD game in replete environments did not find bi
stable dynamics (9). Our analyses revealed that bistability does 
not need SH game, which is inherently bistable with positive fre
quency dependence. Note that the PD–Trivial combination in 
Fig. 5A has the same characteristics of dynamics in SH game 
with stable depleted and replete environments without coopera
tors and defectors, respectively. In other words, it is possible to 
generate SH-like dynamics by combining PD and Trivial games 
even without crossing the SH region in the dilemma phase plane 
(Fig. 5C), but this may not be captured as Chicken game produced 
by the Trivial–PD combination (Fig. 3C). We also found bistable dy
namics with neutral cycles (i.e. persistent oscillations: Figs. 4C 
and 5E and I). The neutral cycles can occur when S0−P0

R0−T0
= S1−P1

R1−T1 
in 

the SH–Chicken and Chicken–SH combinations (see detailed con
ditions in Tables S2 and S3). Therefore, the persistent oscillations 
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do not need PD in replete environments, and the game 
combinations that pass through the origin on the dilemma phase 
plane may produce a neutral cycle. Note that, however, the neu
tral cycles do not occur in the PD–Trivial combination as it produ
ces the SH-like dynamics.

The assumption that Chicken game arises (instead of PD game) 
in replete environments is important as suggested by Taylor (29). 
He claimed that the public goods provision problem can be better 
represented by Chicken game (29). For example, ecological sys
tems such as lakes, rivers, atmosphere, and oceans for fisheries 
are continuously used and exploited by humans. The problem of 
free riders coexisting with cooperators is unavoidable, and this ap
plies to other issues in economics, politics, psychology, epidemi
ology, public health, and evolutionary biology. This is why we 
need to better understand Chicken-based feedback-evolving 
game by using theoretical models.

Recent studies have demonstrated that evolution is rapid 
enough to affect contemporary ecological dynamics and pro
mote eco-evolutionary dynamics (23). Although previous stud
ies tended to focus on adaptive evolution of exploiters 
(predators, parasites, parasitoids, or herbivores) or victims 
(prey, hosts, or plants) (23), recent studies examined how rapid 
evolution of cooperation (or mutualistic interactions) affects 
ecological dynamics and vice versa (15, 21, 22, 40–43). Thus, it 
will be interesting to utilize the theoretical framework of 
feedback-evolving game for understanding rapid evolution 

and eco-evolutionary dynamics with mutualistic and exploit
ative interactions in the wild as well as human societies. 
Indeed, we found indirect evidence of Chicken game in replete 
environments in microbial experiments. We showed that bi
stable dynamics (Fig. 4B) that is phenomenologically similar 
to results of Sanchez and Gore (15) where laboratory yeast ex
periments show bistable eco-evolutionary dynamics that leads 
to population extinction due to the dominance of the defective 
strain or coexistence of the cooperative and defective strains. 
Although they constructed specific theoretical models to ex
plain the experimental dynamics, our results suggest that the 
game structures in depleted and replete environments might 
be SH and Chicken, and the feedback-evolving game can be a 
useful tool for explaining and understanding microbial experi
ments (15).

Feedback-evolving game is an elegant framework of game the
ory that generates diverse dynamics by combining just two payoff 
matrices and resource dynamics. However, all models have 
underlying assumptions and their potential limitations. In the 
case of feedback-evolving game, we assumed coupling of simple 
game dynamics between two players and simple ecological dy
namics where cooperators increase the resource by using deter
ministic differential equations. This simple eco-evolutionary 
game dynamics may not be able to represent more complex situa
tions in nature and human societies with, for example, demo
graphic stochasticity, spatial structure, and individual 

Fig. 6. A complete classification of Chicken-base feedback-evolving game. The game structure of A1 (the game structure in replete environments) is fixed 
to Chicken game. The x–n phase planes show dynamics with each initial condition in feedback-evolving game where x is the frequency of cooperators and 
n is the amount of environmental resource. Arrows indicate the direction of state dynamics. Black dots indicate stable fixed points, white dots are 
unstable interior fixed points (x∗, n∗), and a gray dot is a neutral fixed point (x∗, n∗). The white triangle on the base line (when n = 0) connected to the 
dotted line indicates an unstable equilibrium point xm, 0 (in SH game in depleted environments). The black triangle on the upper base line (when n = 1) 
connected to the dashed line indicates a stable equilibrium point xm, 1 (in Chicken game in replete environments). The dilemma phase planes show 
dilemma coordinates of A0 and A1 where X-axis is the strength of RAD and Y-axis is the strength of GID. The red, yellow, blue, and green regions indicate 
PD, Chicken, Trivial, and SH games, respectively. Games of A0 and A1 are connected by black lines on which the game structure moves along the line by 
environmental feedback. The first, second, third, and fourth quadrants, area-divided from the black arrow axis, represent when A0 is PD, Chicken, Trivial, 
and SH game structures, respectively.
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heterogeneity. Therefore, it will be possible to develop the frame
work further to various directions by modifying the assumptions. 
One important topic is an integration of feedback-evolving game 
with ‘reciprocity rules’ for understanding the evolution of cooper
ation with environmental feedback (44). Ito and Tanimoto (24) 
showed that the famous five reciprocity rules (i.e. direct and indir
ect reciprocity group selection kin selection and network reci
procity: 44) change the dilemma strengths of game structures 
on the dilemma phase plane (24). Therefore, introducing the reci
procity rules to feedback-evolving game will not only change the 
coordinates of A0 and A1, but also may change the hidden game 
structure that occurs during the environmental feedback.

It will also be possible to make dynamics of the environmental 
resource more complex as suggested by Tilman et al. (10). While 
the previous study considered general equations where coopera
tors increase the resource (Eq. 6), it will be interesting to consider 
more specific models for common resources. For example, we will 
be able to analyze how voluntary vaccination or social distancing 
(19, 45, 46) as a cooperative behavior can affect epidemiological 
dynamics by using the SIR model (47). In this case, the common 
environmental resource (n) will be inversely proportional to the 
number of infected individuals, and thus, the parameter that de
termines the timescale of ecological dynamics, ϵ, will be crucial 
for feedback-evolving game unlike the simple dynamics (Eq. 6, 
(10)). Here, replete environments indicate the (near) absence of in
fected individuals, but even in that situation, there will be some 
people who are willing to have voluntary vaccination or social dis
tancing. This further underlines the potential importance of con
sidering Chicken game (i.e. coexistence of cooperators and 
defectors) in addition to PD game in replete environments. 
However, it should be noted that there is significant heterogeneity 
among individuals in the costs associated with infection and vac
cination. Therefore, using only two payoff matrices may not be 
able to capture the complexity in human populations. In this 
case, a more complex individual-based model may be more ap
propriate to represent feedbacks between infection and behavior 
dynamics in heterogeneous populations. It will also be possible 
to make the evolutionary component more complex by consider
ing demographic stochasticity (48), nonlinear coupling of two pay
off matrices, A0 and A1, as well as coupling of three or more payoff 
matrices for producing more complex game theoretical dynamics 
in future studies by using, for example, individual-based simula
tions estimating parameters from empirical data. In addition, as 
our generalized analyses revealed the potential importance of al
ternative stable states in feedback-evolving game, it will be fruit
ful to integrate theoretical techniques developed in the context of 
catastrophic regime shift and tipping points such as early warning 
signals (49, 50). As the current framework considers game dynam
ics between two players, it will also be important to integrate it 
and an N-player game or a population game (51) to understand 
multiple aspects of a tragedy of the commons and common-pool 
resource problems. Either way, our dilemma phase plane analysis 
will be a useful approach to visualize dynamical changes of game 
structures and applicable not only to a tragedy of the commons 
but also to various game situations with environmental feedback 
in diverse research disciplines.
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