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Abstract
A small dataset commonly affects generalization, robustness, and overall performance of deep neural networks (DNNs) in 
medical imaging research. Since gathering large clinical databases is always difficult, we proposed an analytical method  
for producing a large realistic/diverse dataset. Clinical brain PET/CT/MR images including full-dose (FD), low-dose (LD) 
corresponding to only 5 % of events acquired in the FD scan, non-attenuated correction (NAC) and CT-based measured 
attenuation correction (MAC) PET images, CT images and T1 and T2 MR sequences of 35 patients were included. All 
images were registered to the Montreal Neurological Institute (MNI) template. Laplacian blending was used to make a 
natural presentation using information in the frequency domain of images from two separate patients, as well as the blending 
mask. This classical technique from the computer vision and image processing communities is still widely used and unlike 
modern DNNs, does not require the availability of training data. A modified ResNet DNN was implemented to evaluate 
four image-to-image translation tasks, including LD to FD, LD+MR to FD, NAC to MAC, and MRI to CT, with and with-
out using the synthesized images. Quantitative analysis using established metrics, including the peak signal-to-noise ratio 
(PSNR), structural similarity index metric (SSIM), and joint histogram analysis was performed for quantitative evaluation. 
The quantitative comparison between the registered small dataset containing 35 patients and the large dataset containing 350 
synthesized plus 35 real dataset demonstrated improvement of the RMSE and SSIM by 29% and 8% for LD to FD, 40% and 
7% for LD+MRI to FD, 16% and 8% for NAC to MAC, and 24% and 11% for MRI to CT mapping task, respectively. The 
qualitative/quantitative analysis demonstrated that the proposed model improved the performance of all four DNN models 
through producing images of higher quality and lower quantitative bias and variance compared to reference images.
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Introduction

The growth of deep neural network (DNN) applications 
in medical image analysis during the last decade, though 
remarkable, still faces a number of challenges, including the 
issue of small size datasets and the limited size of annotated 
samples (or reference data). These problems are crucial for 
supervised learning models and for tasks requiring paired 
images (e.g., prediction of full-dose (FD) from low-dose 
(LD) PET images [1–4, 42, 43], prediction of attenuation-
corrected (MAC) from non-attenuation-corrected (NAC) 
PET images [5–7], MRI to pseudo-CT mapping [8, 9], etc.), 
along with models requiring labeled data (e.g., segmenta-
tion, prognosis, etc.) [10–12]. Numerous constraints both 
ethical and logistical challenge gathering large clinical data-
bases and even in the absence of these issues, the process is 
complex and time-consuming.
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The size of the dataset used for training of a DNN model 
has a direct influence on the generalizability, robustness, 
and qualitative/quantitative performance of the model on 
the test data (unseen data). The generalizability of a DNN 
model dictates the magnitude of the difference observed in 
the performance of a model when evaluated on the training 
dataset versus unseen test dataset [13]. The model robustness 
refers to a property of how a DNN algorithm performs on 
a new independent (but similar) dataset. In other words, a 
robust algorithm exhibits similar errors on the training and 
test datasets [14, 15].

It is often claimed that larger datasets lead to a better 
DNN model [16]. To build a generalizable robust DNN 
model, it is necessary that the validation loss decreases with 
the training loss continuously. To deal with the small dataset 
problem, data augmentation (DA) is commonly used as an 
easy and practical strategy enabling to significantly increase 
the size of the dataset and avoid overfitting. The augmented 
data are simply different representations of existing data that 
can be produced by either data warping or oversampling. 
Data warping augmentation change/transform the existing 
data in such a way that their underlying information and 
the corresponding labels are preserved. Conversely, over-
sampling augmentation approaches synthesize completely 
new data from the existing training dataset. Merging/mix-
ing images [17, 18], feature space augmentations [19], and 
generative adversarial networks (GANs) [18, 20, 21] are 
well-known strategies.

Although most previous studies and proposed DA methods 
were limited to non-clinical data, few studies used the same 
approaches for medical applications. Han et al. proposed a 
two-step GAN DA model for synthesizing brain MR images 
with/without tumors separately [21]. Hao and Ogawara also 
used a conditional GAN-based DA method to generate syn-
thetic fundus images [22]. Other studies presented a deep 
convolutional GAN for disease classification (infiltration,  
atelectasis, and normal) from chest x-ray images [23].  
Frid-Adar et al. developed a GAN-based DA to improve  
the performance of the proposed CNN for liver lesion  
classification [20]. More recently, a technique, referred to 
as CovidGAN, that exploits an auxiliary classifier GAN and 
synthetic data augmentation of training dataset was proposed 
to enhance Covid-19 detection [24].

In all the abovementioned studies, the GAN network was 
used to synthesize artificial data, mostly for classification 
tasks. If the dataset is not large enough, the training of the 
GAN models might not produce realistic synthetic images. 
More importantly, the synthesized images from imperfectly 
trained deep learning model would result in high quantita-
tive bias.

To address these concerns, we proposed a novel tech-
nique, which relies on simple analytical methods that can 
produce realistic/diverse synthetic images from a limited 

dataset without using DNN models. A single study in the 
field of medical imaging has addressed this issue for bone 
segmentation from whole-body CT images [17]. The authors 
proposed an analytical DA technique to synthesize new 
images from four randomly selected images of a randomly 
cropped and patched dataset. However, the produced images 
are not realistic since different irrelevant parts of the body 
would be concatenated together.

In the current study, we focused on improving the out-
come of four important image analysis applications in multi-
modality brain imaging by increasing the size of the training 
dataset. Our proposed technique, referred to as Robust-Deep, 
increases the number of brain imaging datasets for the differ-
ent imaging modalities investigated in this work. The model 
combines registered images of two different patients and  
uses the Laplacian blending (LB) technique and an empirical sam- 
pling mask to produce realistic images from original images 
for all modalities. Robust-Deep improves the robustness of 
deep learning models by decreasing the bias while enhanc-
ing the qualitative and quantitative accuracy of the model.  
To the best of our knowledge, this is the first study reporting 
on a data augmentation technique designed for multimodal- 
ity brain imaging addressing four different tasks, including 
LD-PET to FD-PET, LD-PET + MRI to FD-PET, NAC-PET 
to MAC-PET, and MR to CT image translations.

Materials and Methods

The performance of the proposed DA technique for four 
deep learning-guided image analysis tasks, including LD-
PET to FD-PET, LD-PET + MRI (T1 and T2-weighted) to 
FD-PET, NAC-PET to MAC-PET, and MR to CT image 
conversions.

PET/CT and MRI Data Acquisition

The patient population consisted of 45 patients (19 males 
and 26 females, 63 ± 9 years and 71 ± 13 years, respec-
tively) presenting with cognitive symptoms of possible 
neurodegenerative disease who underwent brain 18F-FDG 
PET/CT and MRI examinations collected between April 
2017 and September 2019 at Geneva University Hospital. 
The detailed demographic information of the patients is 
summarized in Table 1. The study protocol was approved 
by the institution’s ethics committee and all patients gave 
written informed content. PET/CT acquisitions were per-
formed on a Biograph mCT scanner (Siemens Healthcare, 
Erlangen, Germany) about 35 min post-injection. A low-
dose CT scan (120 kVp, 20 mAs) was performed for PET 
attenuation correction. The patients underwent a 20-min 
static brain PET scan after injection of 205 ± 10 MBq of 
18F-FDG. PET data were acquired in list-mode format and 
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reconstructed using the e7 tool (an offline reconstruction 
toolkit provided by Siemens Healthcare) to produce FD 
PET images. Subsequently, a subset of PET data contain-
ing 5% of the total events was extracted randomly from 
the list-mode data to produce the LD images using a vali-
dated code [25]. Both FD and LD PET images were recon-
structed into a 200 × 200 × 109 image matrix (2.03 × 2.03 
× 2.2  mm3 voxel size) using an ordinary Poisson ordered 
subsets-expectation maximization (OP-OSEM) algorithm 
(5 iterations, 21 subsets) with point spread function (PSF) 
modelling. PET images underwent post-reconstruction 
Gaussian filtering with 2 mm FWHM similar to the clini-
cal protocol. MRI data acquisition was carried out on a 
3T MAGNETOM Skyra (Siemens Healthcare, Erlangen, 
Germany) with a 64-channel head coil. The MRI scans 
included a 3D T1-weighted magnetization prepared rapid 
gradient-echo, MP-RAGE (TE/TR/TI, 2.3 ms/1930 ms/ 
970 ms, flip angle 8°; NEX = 1, voxel size 0.8 × 0.8 × 1 
 mm3) and a 3D T2-weighted (TE/TR, 386 ms/5000 ms, 
NEX = 1; voxel size 0.5 × 0.5 × 1  mm3).

Data Preparation

To preserve the quantitative information in the images, 
the reconstructed images were first converted to the cor-
responding unit (standardized uptake value (SUV) for PET 
images and Hounsfield units (HUs) for CT images) and 
were then divided by constant values to map the intensi-
ties within the range [0 – 1]. Subsequently, the images 
were cropped, and all FD PET images registered to a brain 
18F-FDG template defined into standard Montreal Neu-
rological Institute (MNI) stereotactic space [26] using 
the 3D Slicer software. A rigid registration method with 
6 degrees of freedom was employed. Since PET-CTAC 
images are registered to a common template, the same 
transformation matrices were applied to LD, CT, MAC, 
and NAC images. In the next step, we registered MR to 
CT images to produce a dataset of 45 patients with well 
aligned FD, LD, CT, MAC, NAC, T1, and T2 images reg-
istered to the template.

Image Synthesis with Laplacian Blending

Consider two images �1 and �2 , that we blend using a binary 
mask � , i.e., our aim is to construct a blended image � 
containing the contents of �1 at locations where � = 1 , and 
otherwise containing the contents of �2 where � = 0.

A naïve solution to this problem is to directly blend 
the pixel values of these images using the mask, i.e., 
Y = M⊙ X1 + (1 −M)⊙ X2 where ⊙ denotes element-wise 
multiplication.

This pixel-domain approach, however, provides poor 
visual quality, since the transition between the contents of 
the two images may be very sharp at the borders of the mask.

A better alternative is LB, which attempts to make the 
transitions more natural using information from the fre-
quency domain of the different images, and the blending 
mask. In this work, we used only two different patients’ 
images, but it is possible to increase the number of patients. 
This classical technique within the computer vision and 
image processing communities is still widely used and, 
unlike modern deep learning techniques, does not require 
the availability of training data [27].

LB is based on Gaussian and Laplacian pyramids, which 
are series of images with increasingly smaller sizes derived 
from an input image at the base level, hence forming a 
pyramidal shape.

Concretely, consider the down-sampling operator h↓2(⋅) , 
where we form an output image with half the height and 
width of the input image (hence with 4 times fewer pixels) 
by taking every other pixel of the input image and neglecting 
the in-between pixels. The direct application of this operator 
to an image, however, mixes the different frequency contents 
of the image and as such, the output may be significantly 
different from the input. To avoid this phenomenon, known 
as aliasing in signal processing, before applying h↓2(⋅) , the 
image is passed through a low-pass filter hf (⋅) to cut the 
high-frequency content of the image, hence avoiding the 
aliasing effect. A practical choice for this filter is the Gauss-
ian function, and hence repeatedly applying the filtering fol-
lowed by down-sampling, i.e., h↓2(gf (⋅)) produces a Gauss-
ian pyramid. Hence, in a multi-level Gaussian pyramid, the 
image at level i is formed from the image at level i − 1 as 
�

[i] = h↓2(gf (�
[i−1])) , where superscript i indicates the level, 

and �[0] = � , i.e., the base of the pyramid is the original 
image itself. Eq. 1 demonstrates an L-level Gaussian pyra-
mid from the input image �:

(1)

�
[0] = �,

�
[1] = h↓2(gf (�

[0])),

⋮

�
[L] = h↓2(gf (�

[L−1])),

Table 1  Demographics of patients included in this study protocol

Training Test

Number of datasets 35 10
Male/female 15/20 4/6
Age (mean ± SD) 63±9 71 ± 13
Weight (mean ± SD) 72 ± 15 66 ± 14
Indication/diagnosis Cognitive symptoms of possible neurode-

generative etiology
Available modality PET, CT, MRI
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Parallel to the downsampling operation, the upsampling 
operation h↑2(⋅) produces an output image with twice the 
width and height of the input image by putting a zero-valued 
pixel between every two neighboring pixels (both horizon-
tally and vertically). Again to avoid aliasing, a Gaussian low-
pass filter should be applied to the image, but this time after 
the upsampling, i.e., gf (h↑2(⋅)).

The Laplacian pyramid at level i , 
∼

�

[i]

 is built through 
upsampling the i + 1th level of the Gaussian pyramid and sub-
tracting it from its ith level, i.e., 

∼

�

[i]

= �
[i] − gf (h↑2(�

[i+1])) . 
While the Gaussian pyramid contains the low-frequency 
content of the image, the Laplacian pyramid contains its 
high-frequency content, like edges and corners. Eq. 2 dem-
onstrates an L-level Laplacian pyramid for the input image 
�:

LB is based on the above discussed Gaussian and Lapla-
cian pyramids. Consider again the input images �1 and 
�2 and the blending mask � . We construct the Gaussian 
and Laplacian pyramids for the input images, as well as a 
Gaussian pyramid for the mask [28]. The process of LB then 
consists of constructing a blended pyramid from these two 
Laplacian pyramids using weights derived from the Gauss-
ian pyramid of the mask. Equation 3 shows the procedure 
followed to construct the Laplacian blending:

(2)

∼

�

[L]

= �
[L],

∼

�

[L−1]

= �
[L−1] − gf (h↑2(�

[L])),

⋮

∼

�

[1]

= �
[1] − gf (h↑2(�

[2])),
∼

�

[0]

= �
[0] − gf (h↑2(�

[1])).

where the final blended image is the base of this pyramid, 
i.e. 

∼

�

[0]

.
In this work, we tried five different masks (Fig. 1b) but 

report only the results associated with masks 1 and 2 in 
Fig. 1. The masks’ pattern can be completely arbitrary. The 
reason behind choosing these two masks as a sample was 
to show a simple (mask #1) and a complex mask (mask #2) 
approach for synthesizing data. It is worth emphasizing that 
the process of designing the mask could be adopted accord-
ing to the task and the endpoints of the study to create syn-
thetic datasets bearing/sharing specific structures/features/
anatomies with the original data.

Deep Learning Model

The ResNet model [29] employed in this work contains 20 
convolutional layers wherein various levels of feature extrac-
tion are applied to the input images or feature maps using 
the kernel dilation concept. For low-level features extraction 
(the first seven layers), a convolution kernel with a size of 3 
× 3 × 1 voxels and zero dilatation was selected. For medium-
level features extraction (the next seven layers), a dilation 
of two was used whereas a dilation factor of four was con-
sidered for high-level feature extraction (the last six-layer). 
In this network, the rectified linear unit (ReLU) was used 
for activation function and every two convolutional layers 
were connected by a residual link. The input image/images 

(3)

∼

�

[L]

= �
[L]

⊙

∼

�

[L]

1
+ (1 −�

[L])⊙
∼

�

[L]

2
,

∼

�

[L−1]

= �
[L−1]

⊙

∼

�

[L−1]

1
+ (1 −�

[L−1])⊙
∼

�

[L−1]

2
− gf (h↑2(�

[L])),

⋮

∼

�

[0]

= �
[0]

⊙

∼

�

[0]

1
+ (1 −�

[0])⊙
∼

�

[0]

2
− gf (h↑2(�

[1])),

Fig. 1  a Schematic view of the 
proposed model for synthesiz-
ing realistic images through LB, 
and b the masks created to take 
samples from the input images. 
After a preliminary evaluation, 
masks #1 and #2 were selected 
for further investigation

Mask 1  Mask 2  Mask 3 Mask 4  Mask5

a)

b)

Patient 1                          Registered patient 1                        Patient 1 × Mask

Patient 2                          Registered patient 2                        Patient 2 × Mask-1

MNI template                               Mask                                   Summed image    Synthesized image

LB
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(namely LD, LD+MRI, NAC, MRI) were fed to the ResNet 
network to predict target images (FD, FD, MAC, CT) in an 
end-to-end image translation fashion.

Our ResNet network consists of an encoder-decoder ena-
bling image-to-image translation via dilated convolutional 
layers to map the inputs to the target images. The model 
involves three main sections consisting of a 3-level dilated 
convolution layers with the residual connection. The criti-
cal aspect of our modified ResNet, plus dilated convolution 
kernels, is the residual connections that bypass the param-
eterized layers. The ResNet model benefits from 9 residual 
blocks, which results in a large number of receptive fields 
that improved the feature extraction process.

The training for all image analysis tasks was performed 
using 35 patients with 5 fold cross-validation scheme, with 
each patient including LD, FD, NAC, MAC, CT, and MR 
(T1 and T2-weighted) images as input/output, respectively. 
The training of the ResNet model was performed using a 
2D spatial window equal to 112 × 96 pixels and a batch size 
of 5. The following setting was used for the training of the 
two models with and without applying data augmentation: 
learning rate = 0.001, sample per volume = 1, optimizer = 
Adam, loss function = L2norm, and decay = 0.0001.

To generate synthetic CT images from T1- and 
T2-weighted MR sequences, a dual-channel ResNet model 
was developed to take the two MR images as input to pre-
dict the corresponding CT images. For consistency, the net-
work’s hyperparameters were kept similar to other networks. 
This enables to assess the effect of sample size indepen-
dently from the network.

The model was implemented on NVIDIA 2080Ti GPU 
with 11 GB memory running under Windows 10 operat-
ing system. The training of the model for the four tasks 
was carried in 20 epochs. The training and hyperparameter 

fine-tuning of the model were performed on 35 patients 
(3’220 2D slices) and 5 fold cross-validation scheme. A 
separate unseen dataset consisting of 10 patients served as a 
test dataset (920 2D slices).

Quantitative Evaluation Strategy

The performance of our models was evaluated through 
estimation of the accuracy of the predicted images using 
three well-established quantitative metrics, including the 
root mean squared error (RMSE), peak signal-to-noise ratio 
(PSNR), and structural similarity index metrics (SSIM) 
(Eqs. 3, 4 and 5, respectively).

In Eq. (3), L is the total number of voxels in the head 
region, R is the reference image (either FD, MAC, or CT), 
and P is the predicted image (either synthesized FD, MAC, 
or CT). In Eq. (4),Max(P) indicates the maximum intensity 
value of R or P , whereas MSE is the mean squared error. 
mR and mP in Eq. (5) denote the mean value of images 
R and P , respectively. �RP indicates the covariance of �R 
and �P , which in turn represent the variances of R and P 
images, respectively. The constant parameters c1 and c2 
( c1 = 0.01andc2 = 0.02) were used to avoid a division by 

(4)RMSE(R,P) =

�

∑L

j=1
(R − P)2

L

(5)PSNR(R,P) = 20 × log
(

Max(P)
√

MSE(R,P)
)

10

(6)SSIM(R,P) =

(

2mRmP + c1
)

(2�RP + c2)

(m2

R
+ m2

P
+ c1)(�

2

R
+ �

2

P
+ c2)

+10%

-10%

3 SUV

0 SUV

a b  c d e  f

ig h j  k

Fig. 2  The upper and lower panels show the reference and predicted 
FD PET images and the corresponding bias maps between the pre-
dicted images and the reference FD image, respectively. a Reference 
FD PET image, b LD PET image, and predicted images using limited 

(35 cases) c PU, and d PR. The predicted images belong to models 
fed by a large dataset (350 synthesized cases)  e PM1 and f  PM2. 
The bias maps for LD and PU, PR, PM1, and PM2 are shown in g–k 
images, respectively
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very small numbers. For LD to FD translation task, these 
metrics were also calculated for LD images to provide an 
insight into the noise levels and significant signals in the 
LD images.

Joint histogram analysis was also carried out to depict the 
voxel-wise correlation of the activity concentration between 
predicted and reference images. The statistical analysis was 
performed by calculating the pairwise Student’s t-test for 
RMSE, SSIM, and PSNR between the different scenarios 
(predictions using mask #1 (PM1) vs. predictions using 
mask #2 (PM2) and predicted unregistered (PU) vs. pre-
dicted registered (PR)) using the MedCalc software [30].
The significance level was set at p value < 0.05 for all com-
parisons. PM1 and PM2 represent the predicted images by 
networks trained with two datasets including 35 real images 
plus 350 synthetic images (based on LB) using masks #1 
and #2, respectively (Fig. 1). PU and PR are the predicted 
images using models trained with a limited dataset consist-
ing of only the actual 35 images.

Results

Low‑Dose to Full‑Dose PET Image Translation

The synthesized images FD from LD images exhibited 
notable enhancement in image quality compared to LD 
images, providing almost similar appearance with respect 
to the reference FD PET images (Fig.  2). The visual 
inspection revealed that the predicted images derived from 
training with unregistered images (PU) are slightly blurred 
compared to those derived from the model fed by images 
registered to the MNI template (PR), although they still 
show great improvement compared to LD PET images. 
Though the two predicted images (PM1 and PM2) showed 
approximately similar image quality, PM2 images bear less 
quantitative bias compared to the other predicted images.

Figure 3 illustrates linear regression plots depicting 
the correlation between tracer uptake for LD, PU, PR, 
PM1, and PM2 with respect to FD. The scatter and linear 
regression plots showed higher correlation between PR 
and FD (R2 = 0.97, slope = 0.95) compared to PU (R2 = 
0.95, slope = 0.92). Among the predicted images, PM2 
achieved overall the best performance (R2 = 0.98, slope 
= 0.98) while a poor correlation (R2 = 0.93, slope=0.91) 
was observed for LD PET images.

Table 2 summarizes the RMSE, SSIM and PSNR cal-
culated on the test dataset for LD, PU, PR, PM1, and PM2 
PET images. Overall, the PR showed improved image 
quality and better noise properties with statistically signifi-
cant differences compared PU.

Low‑Dose PET + MRI to Full‑Dose PET Image 
Translation

The use of MRI beside LD images enables to predict FD 
PET images with higher quality and more realistic anatomi-
cal information compared to the model relying only on LD 

FD (SUV) FD (SUV)  FD (SUV)  FD (SUV) FD (SUV)

y = 0.91x + 0.08 y = 0.92x + 0.1 y = 0.95x + 0.02 y = 0.97x + 0.05 y = 0.98x + 0.01
R2 = 0.93 R2 = 0.95 R2 = 0.97 R2 =0.98 R2 = 0.98

1     2   3   4

4

3

2

1

1     2   3    4
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2

1
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U
V))V
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Fig. 3  Joint histogram analysis between reference FD and from left to right LD image and predicted FD images generated using PU, PR, PM1, 
and PM2 techniques, respectively

Table 2  Comparison of results obtained from the analysis of image 
quality in LD PET images and predicted FD PET images (PU, PR, 
PM1, PM2) from only LD PET images for the test dataset. SSIM: 
structural similarity index metrics, PSNR: peak signal to noise ratio, 
RMSE: root mean squared error

LD to FD RMSE SSIM PSNR

LD 0.42 ± 3.24 0.62 ± 0.18 14.11 ± 4.32
Unregistered predictions 

(PU)
0.35 ± 0.12 0.82 ± 0.07 19.13 ± 1.32

Registered predictions (PR) 0.28 ± 0.08 0.86 ± 0.04 28.57 ± 1.55
Registered mask#1 (PM1) 0.23 ± 0.06 0.90 ± 0.02 34.07 ± 0.98
Registered mask#2 (PM2) 0.20 ± 0.05 0.93 ± 0.03 37.14 ± 0.10
P value (PM2 vs. PM1) < 0.01 < 0.02 < 0.01
P value (PU vs. PR) < 0.02 < 0.02 < 0.02
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images (Fig. 2). Figure 4 displays representative transverse 
views of FD, LD, and predicted PET images along with 
the T1- and T2-weighted MR images. The visual inspec-
tion revealed that the images synthesized from the training 
data set produced by Robust-Deep (PM1 and PM2) better 
reflected the underlying FDG uptake patterns and anatomy 
than those obtained from small data set (PU and PR). The 
bias maps show that an increased dataset using the proposed 
method reduced quantitative bias.

For this task, the linear regression analysis performed 
over the test dataset (Fig. 5) demonstrated a high correla-
tion for PM2 (R2 = 0.99, slope = 0.99). A lower correla-
tion and underestimation of tracer uptake was obtained (R2 
= 0.97, slope = 0.96) when utilizing unregistered datasets 
(PU) without using the proposed augmentation technique. 
Moreover, the SSIM, PSNR, and RMSE metrics calculated 
between LD and predicted images versus FD images are 
reported in Table 3. The quantitative evaluation metrics 
demonstrated the superior performance of the proposed data 
augmentation technique which supplied the deep learning 
model with realistic synthetic images in addition to the origi-
nal training dataset.

Non‑attenuation‑Corrected 
to Attenuation‑Corrected PET Image Conversion

Figure 6 presents reference MAC, NAC, and predicted MAC 
PET images produced from NAC using small unregistered 
and registered dataset and large dataset using mask number 

+10%

-10%

3 SUV

0 SUV

h

i

a b c  d e f g

k  l mii j  

Fig. 4  The upper and lower panels show the reference and pre-
dicted FD PET images and the corresponding bias maps between 
the predicted images and the reference FD image, respectively. a 
T1-weighted MRI, b T2-weighted MRI, c reference FD PET image,  
d LD PET image, and predicted images using limited  dataset (35 

cases) e PU, and f PR. The predicted images belong to models fed by 
a large dataset (350 synthesized cases) g PM1 and h PM2. The bias 
maps for LD and PU, PR, PM1, and PM2 are shown in i–m images, 
respectively
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Fig. 5  Joint histogram analysis between reference FD and from left to right LD image and predicted FD images supported by MRI generated 
using PU, PR, PM1, and PM2 techniques, respectively

Table 3  Comparison of results obtained from the analysis of image 
quality in LD PET images and predicted FD PET images (PU, PR, 
PM1, PM2) from LD PET + MR images for the test dataset. SSIM: 
structural similarity index metrics, PSNR: peak signal to noise ratio, 
RMSE: root mean squared error

LD+MRI to FD RMSE SSIM PSNR

LD 0.42 ± 3.24 0.62 ± 0.18 14.11 ± 4.32
Unregistered predictions 

(PU)
0.29 ± 0.08 0.85 ± 0.04 22.74 ± 2.98

Registered predictions (PR) 0.24 ± 0.06 0.90 ± 0.03 32.96 ± 2.31
Registered mask#1 (PM1) 0.15 ± 0.06 0.94 ± 0.03 38.83 ± 1.82
Registered mask#2 (PM2) 0.14 ± 0.03 0.97 ± 0.01 39.46 ± 0.68
P value (PM2 vs. PM1) < 0.05 < 0.05 < 0.05
P value (PU vs. PR) < 0.01 < 0.01 < 0.01
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one and two. The bottom panel shows bias maps of predicted 
images to the reference MAC. As can be seen from Fig. 6, 
PM2 images show the lowest bias compared to CT-based AC 
reference MAC image. Figure 7 depicts the joint histogram 
analysis between predicted AC PET images versus MAC 
PET images for PU, PR, PM1, and PM2. The lowest and 
highest correlations were achieved by PU (R2 = 0.96, slope 
= 0.94) and PM2 (R2 = 0.99, slope = 0.98), respectively. 
The quantitative analysis results are summarised in Table 4. 
One can see that PM1 and PM2 resulted in significantly low-
est values of RMSE and highest values of PSNR and SSIM 
compared to PU and PR (P value < 0.05).

MRI to CT Image Conversion

Representative samples of the resulting CT images using 
the different data augmentation techniques are depicted in 
Fig. 8 wherein T1, T2 MR sequences, and reference CT 
image along with the corresponding bias maps are also 
presented. Substantially lower CT value bias was observed 
in synthetic CT images generated by Robust-Deep model. 
The results of the joint histogram analysis between the 

resulting synthetic and original CT images are presented 
in Fig. 9. Dramatic improvement was observed between 
PU (R2 = 0.91, slope = 0.78) and the PM2 (R2 = 0.99, 
slope = 0.94) models, demonstrating the effectiveness of 
the proposed data augmentation technique. In agreement 
with the joint histogram analysis, the quantitative metrics 
calculated on the resulting synthetic CT images in Table 5 
demonstrated the superior performance of the Robust-
Deep model, which achieved a mean RMSE of 0.22 ± 0.08 
compared to 0.34 ± 0.09 obtained using the PU model.

Overall Performance and Robustness

The qualitative metrics, including SSIM, PSNR, and 
RMSE calculated for PM2 and PR models after each epoch 
separately for LD to FD PET conversion task are shown 
in Fig. 10. The quantitative metrics were only calculated 
for epochs residing in the plateau of the training loss. The 
results indicated that the PM2 model when the network 
is trained with a large dataset (350 synthesized + 35 real 
patients), is noticeably more robust/accurate with less fluc-
tuations compared to PR trained only with 35 real patients.

Fig. 6  The upper panel shows 
the reference and predicted 
images as well as bias maps. a 
Reference MAC PET, b NAC 
PET, and predicted AC PET 
images using c PU, d PR, e 
PM1, and f PM2. The bias maps 
for PU, PR, PM1, and PM2 are 
illustrated in g–j, respectively +13%
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Fig. 7  Joint histogram analysis between reference MAC PET and from left to right predicted AC PET images generated using PU, PR, PM1, and 
PM2 techniques, respectively
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Discussion

A novel technique for increasing the size of the training 
dataset for various deep learning-based image analysis tasks 
requiring a large dataset to improve the model generalization 
and robustness was proposed. Our model is able to predict 
realistic multimodality (PET and CT) images based on a 
limited real dataset.

In contrast to previous studies, which used GANs for pro-
ducing synthetic images, we aimed to use a small dataset 
containing N real patients and an analytical method called 
LB to produce a large synthetic dataset (2N+(N-1)) con-
taining real and synthetic dataset. In our study, we had 35 
real patients and created a total of 1225 images (35 real + 
1190 synthetic). Contrary to machine learning approaches 
for generating data, the proposed technique does not need 
training, optimization, and training dataset.

Furthermore, another limitation of these approaches 
based on generative models was addressed by the proposed 
technique. GANs face challenges to learn all the underly-
ing patterns/structures existing in certain types of imaging 
modalities or anatomical regions when the training dataset 
is limited and does not cover sufficiently large anatomical/
functional variabilities. In this regard, the predicted images 
would only reflect or repeat the existing patterns/structures 

and anatomical/functional variabilities already exist in the 
original/training dataset. Another downside of GAN models 
is that the synthesized images do not have a reference for 
calculating the bias and discriminate between realistic syn-
thesized images from noisy or skewed ones. The extended 
datasets available in the synthesized images through the 
proposed method helped the convolutional network to bet-
ter decode the underlying features, thus resulting in supe-
rior performance. The convolutional network trained based 
on GAN generator applied simplistic noise reduction, thus 
leading to blurred, highly smoothed and slightly biased FD 
images

Robust-Deep could potentially be employed for any data-
set wherein a template can be created/used to map the exist-
ing dataset to a common spatial coordinate. In this regard, 
the merging/sampling masks should be designed according 
to the imaging modalities, anatomical regions, and the end-
point of the study. Different mask designs can lead to differ-
ent model performance, and it definitely helps to make the 
network more sensitive to the brain region of interest. For 
instance, when we plan to train a model for Alzheimer or 
Parkinson disease classification task, the mask can be more 
focused on the entorhinal cortex and hippocampus or cau-
date and putamen, respectively. Likewise, for a study focus-
ing on the brain’s gyrus, we can design a mask that selects 
different samples from the gyrus of different patients.

We involved both normal and abnormal patients to offer a 
heterogeneous representative dataset. Neurologic abnormali-
ties present in our dataset included patients presenting with 
cognitive symptoms of possible neurodegenerative disease. 
Since the dataset for the training contained both normal and 
abnormal patients, it aided our method to produce various 
synthesized images which helped the network to avoid over-
fitting and guarantee robust and effective training. In this 
work, since all patients’ images were registered to a single 
template, using data augmentation was not necessary and 
could not considerably change the results.

The generated diagnostic quality of 18F-FDG brain PET 
images predicted from LD and LD+MR images correspond-
ing to only 5% of the FD scan to evaluate the performance 

Table 4  Comparison of results obtained from the analysis of image 
quality in predicted AC PET images (PU, PR, PM1, PM2) from non-
attenuation corrected PET images for the test dataset. SSIM: struc-
tural similarity index metrics, PSNR: peak signal to noise ratio, 
RMSE: root mean squared error

NAC to MAC RMSE SSIM PSNR

Unregistered (PU) 0.38 ± 0.13 0.82 ± 0.08 24.15 ± 3.82
Registered (PR) 0.32 ± 0.1 0.88 ± 0.08 26.57 ± 2.45
Registered mask#1 (PM1) 0.26 ± 0.08 0.94 ± 0.05 30.46 ± 3.01
Registered mask#2 (PM2) 0.26 ± 0.07 0.95 ± 0.06 31.08 ± 2.81
P value (PM2 vs. PM1) < 0.05 < 0.05 < 0.02
P value (PU vs. PR) < 0.01 < 0.02 < 0.01

Fig. 8  The upper panel shows 
the reference and predicted 
images as well as bias maps. 
a T1-weighted MRI, b 
T2-weighted MRI, c reference 
CT, and predicted synthetic CT 
images generated using d PU, 
e PR, f PM1, and g PM2. The 
bias maps between original 
CT and predicted synthetic CT 
images generated using PU, PR, 
PM1, and PM2 are illustrated in 
h–k, respectively

+8%

-8%

80 HU

0 HU

a b c d e f g

ih j k

477Journal of Digital Imaging (2022) 35:469–481



1 3

of both approaches (LD and LD+MRI) for estimation of FD 
PET images. It was shown that the synthesized FD images 
predicted from LD+MRI had a superior image quality and 
lower bias and variance compared to FD images predicted 
from only LD images. This highlights the value of employ-
ing anatomical MR images besides the LD images.

The results shown in Tables 2 and 3 indicate that if we 
train the DNN with only LD images plus synthesized images 
generated using the proposed DA method (PM2) improved 
the RMSE, SSIM, and PSNR metrics (0.20 ± 0.05, 0.93 ± 
0.03, 37.14 ± 0.10, respectively) compared to the model 
trained using LD+MR images without using the synthesized 
dataset (PR) (0.24 ± 0.06, 0.90 ± 0.03, 32.96 ± 2.31, respec-
tively), thus reflecting the effectiveness of the proposed DA 
technique when MR images are not available.

The direct generation of attenuation and scatter cor-
rected PET images using deep learning approaches was 
previously investigated in the context of brain imaging [5, 
7, 31]. In a study performed by Shiri et al. [5] for direct 
attenuation/scatter corrected brain images, 90 patients 
were used for training and reported SSIM and PSNR of 

0.98 ± 0.006 and 39.2 ± 3.65, respectively. Robust and 
generalizable deep learning algorithms require large data-
sets in the training phase, which is impractical in real life 
or clinical setting. In the current study, we achieved SSIM 
0.95 ± 0.06 and PSNR 31.08 ± 2.81 through employing 
image registration and data augmentation using only 35 
patients, which resulted in comparable outcomes to previ-
ous studies. It is worth emphasizing that we cannot com-
pare our results with previous studies because the images, 
data preparation, and DNN architecture are completely 
different. However, the proposed DA technique would 
potentially enhance the overall performance of similar 
deep learning models.

A major limitation of the proposed data augmentation 
technique is the requirement of image registration to a com-
mon spatial coordinate. In this regard, this technique is only 
applicable to imaging data corresponding to a specific ana-
tomical region or organ. Nevertheless, a large number of 
applications in the field of medical image analysis focus on 
a specific organ or anatomical region, such as MRI-guided 
generation of synthetic CT for the pelvis [32, 33], head [9], 
and whole-body [34], standard/high dose CT or PET pre-
diction [35], deep learning-based dosimetry [36, 37], PET 
attenuation and scatter correction in image space [7], metal 
artifact reduction [38, 39], various image-to-image transfor-
mation techniques [40], and dynamic imaging [41]. Though 
there might not be a standard template for some regions of 
the body or organs, the proposed data augmentation concept 
would work using images mapped to any reasonable com-
mon spatial coordinate. Another limitation is that the pro-
posed data augmentation technique could not be employed 
for specific classification and survival rate estimation tasks 
in a straightforward manner. For such applications, the input 
and the annotated images (labels) should be processed/inter-
polated differently to create meaningful/realistic synthetic 
data.
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Fig. 9  Joint histogram analysis between reference CT and from left to right predicted synthetic CT images generated using PU, PR, PM1, and 
PM2 techniques, respectively

Table 5  Comparison of results obtained from the analysis of image 
quality in predicted synthesized CT images (PU, PR, PM1, PM2) 
from MR images for the test dataset. SSIM: structural similarity 
index metrics, PSNR: peak signal to noise ratio, RMSE: root mean 
squared error

MRI to CT RMSE SSIM PSNR

Unregistered predictions 
(PU)

0.34 ± 0.09 0.75 ± 0.06 17.78 ± 4.45

Registered predictions (PR) 0.29 ± 0.07 0.85 ± 0.07 21.78 ± 2.56
Registered mask#1 (PM1) 0.23 ± 0.07 0.92 ± 0.05 28.13 ± 2.01
Registered mask#2 (PM2) 0.22 ± 0.08 0.95 ± 0.02 30.55 ± 1.98
P value (PM2 vs. PM1) < 0.05 < 0.02 < 0.05
P value (PU vs. PR) < 0.02 < 0.05 < 0.05
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Conclusion

We have demonstrated that the DNN models’ performance 
improved noticeably in four popular image-to-image transla-
tion tasks, including LD-PET to FD-PET, LD-PET + MRI to 
FD-PET, NAC-PET to MAC-PET, and MR to CT image con-
versions when exploiting the synthesized data created by our 
novel DA technique. The proposed DA model merges images 
of two different patients based on LB processing to gener-
ate a new realistic image. The qualitative and quantitative 
analysis proved that our model leads to superior performance, 

resulting in higher image quality and lower bias and variance 
compared to model training without using DA.
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