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Abstract: Seven mono- and dihydroxycholesterols were prepared by direct C–H oxidation of the
cholestane skeleton with a recently developed Ru(Bpga) catalyst (Ru(Bpga) = [RuCl (bpga) (PPh3)]
Cl; bpga = 2-(bis(pyridin-2-ylmethyl)amino)-N-(2,6-dimethylphenyl)acetamide)). Due to the high
selectivity of the Ru(Bpga) complex for tertiary C–H, the reaction afforded a mixture of 25-, 20-,
17-, and 14-oxygenated cholesterols that could be easily separated by high-performance liquid
chromatography. These results suggest that late-stage C–H oxidation could be a viable strategy for
preparing candidate metabolites of biologically important molecules.

Keywords: cholesterol; oxysterol; C–H oxidation; Ru (bpga); 25-hydroxycholesterol; dihydroxycholesterol

1. Introduction

Oxysterols are characterized by the presence of one or more hydroxyl groups or a
keto group in the ring and/or in the side chain of cholesterol and have multiple func-
tions in cells [1] including regulation of the biosynthesis of steroidal hormones such as
25-hydroxycholesterol, 25-HC, and 27-hydroxycholesterol, 27-HC) [2,3] as well as the
biosynthesis of cholesterol (25-HC or others) [4]. They also serve as bile acid precursors
(7α-hydroxycholesterol, 7α-HC and 27-HC) [5,6] and as ligands of nuclear receptors such as
estrogen receptor (ER) and liver X receptor (LXR) [7,8]. Although oxysterols are associated
with the development of several diseases, analysis of oxysterols is still difficult due to the
presence of multiple molecular species in biological fluids and organs because oxysterols are
ingested from the diet as well as being biosynthesized by cholesterol oxidation in vivo. In
these circumstances, lipidomic analysis is important for clarifying the relationship between
oxysterols and disease [9].

Organic synthesis of cholesterol derivatives is important for lipidomic analysis of
oxysterols in order to provide authentic standard materials. The majority of the target
oxysterols are 7- or 12-hydroxycholesterol derivatives, which are intermediates in bile acid
synthesis. Analysis of oxysterols such as 20α-hydroxycholesterol, 24S-hydroxycholesterol,
24S,25-epoxycholesterol, 25-HC, 27-HC, and so on, has recently been reviewed [9]. These
oxysterols are well known as metabolites; for example, 24S-HC is endogenously synthe-
sized by cholesterol 24-hydroxylase (CYP46A1) in the brain and contributes to cholesterol
homeostasis [10]. However, the lack of standard materials has hampered the analysis of
other minor oxysterols, which might also have significant biological functions.

There have already been many reports on the chemical synthesis of oxysterols from
commercially available (but sometimes expensive) steroidal molecules. From the viewpoint
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of the preparation of a wide variety of oxysterols, however, catalyst-driven C–H oxidation
of cholesterol or its derivatives is an attractive strategy [11]. For example, Barton and
co-workers showed in 1985 that direct oxidation of 3β,5α,6β-triacetoxycholestane by use of
the Gif system (iron cluster-metallic zinc-pyridine-acetic acid-oxygen) provided a variety
of oxidized cholestanes, most of which were ketone derivatives generated by oxidation of
the methylene group in the cholestane skeleton [12]. On the other hand, two of the present
authors (Doiuchi and Uchida) recently developed an Ru (bpga)-catalyzed C–H oxidation
reaction with high tertiary C–H bond selectivity and an excellent catalyst turnover number
(TON = 26,000 in oxidation of adamantane) [13,14]. We envisioned that Ru (bpga)-catalyzed
C–H oxidation of protected cholesterol would afford a variety of hydroxycholesterols via
the oxidation of tertiary C–H (C25, C20, C17, and C14); these are not formed by oxidation
using the Gif system (Figure 1). Here, we report the synthesis and separation/purification
of a series of oxysterols obtained in this way, together with their NMR spectra (500 MHz)
and the results of crystallographic analysis.
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Figure 1. C–H oxidation strategy for the preparation of hydroxycholesterols.

2. Results
2.1. C–H Oxidation of 2-Ac with Ru(Bpga)

In order to avoid oxidation of the allylic position of cholesterol, which would yield
side-chain or D-ring oxidation products, we chose 5,6-dibromocholestane as a substrate
for C–H oxidation. Bromination of cholesterol acetate 1-Ac or the benzoate 1-Bz provided
5α,6β-dibromocholestane 2-Ac or 2-Bz as the major isomer (Scheme 1) [15]. Separation of
the corresponding 5β,6α-isomer 3-Ac or 3-Bz readily afforded pure 2-Ac or 2-Bz.
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Scheme 1. Preparation of substrates 2-Ac and 2-Bz.

Next, we examined C–H oxidation of the acetate 2-Ac with Ru(Bpga) (PPh3) Cl2
complex, and obtained a mixture of oxidized products. The formation of isomers through
dyotropic rearrangement reaction [16,17] further complicated the analysis. Nevertheless,
the 25-HC derivative 4-Ac and its dyotropic isomer 5-Ac were clearly separated by thin
layer chromatography (TLC) from other isomers and the major products in this C–H
oxidation. Thus, we optimized the reaction conditions based on the formation of 4-Ac and
5-Ac and low recovery of the starting material (calculated by combining 2-Ac and 3-Ac,
because 2-Ac was also isomerized to 3-Ac under the reaction conditions).

First, the reaction was conducted with 2 moL% of the Ru catalyst, iodosobenzene
(PhIO) as an oxidant, and trifluoroacetic acid (TFA) as an additive (Table 1, entries 1–4) [13].
Increasing the amount of TFA decreased the conversion rate (entries 1–4), and 0.1–0.2
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equivalent of TFA gave a 26–28% yield of 25-OHC derivatives 4-Ac and 5-Ac, along with
19–22% recovery of the starting material. Increasing the concentration from 0.2 equivalent
to 0.4 equivalent resulted in increased recovery of the starting materials, probably due to
the low solubility of PhIO (entry 5). Use of mCPBA as the oxidant was not effective for this
substrate (entry 6). In contrast, we found that reaction with iodobenzene diacetate (PIDA)
in the presence of 2.8 equivalent of water gave 25-HC derivatives 4-Ac and 5-Ac in 34%
yield (46% based on the recovered starting materials) together with 2-Ac and 3-Ac in 26%
yield. We chose this condition for further studies. It should be noted that this is one of the
best synthetic procedures so far reported for the direct formation of 25-HC from cholestanes
or cholesterols [15,18–21]. As little as 2 moL% Ru(Bpga) catalyst gave the 25-HC derivatives
in 46% yield, indicating the robustness of the catalyst under oxidative conditions.

Table 1. Oxidation of 2-Ac with the [RuCl (bpga) (PPh3)] Cl catalyst and yields of 25-HC derivatives.
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Entry Oxidant
Additive

(Equivalent) Time (h)
Yields

4-Ac 5-Ac Recovery

1 1 PhIO 2 TFA (0.1) 70 9 17 19
2 1 PhIO 2 TFA (0.2) 43.5 13 15 22
3 1 PhIO 2 TFA (0.4) 43.5 10 15 28
4 1 PhIO 2 TFA (1.0) 21.5 7 9 47
5 3 PhIO 2 TFA (0.1) 94.5 8 14 37
6 3 mCPBA None 92 4 9 58
7 3 PIDA H2O (2.8) 92 10 24 26

1 Substrate concentration 0.2 M; 2 PhIO (1 equivalent) was added twice (total 2 equivalent); 3 Substrate concentra-
tion 0.4 M.

2.2. Oxidation of 2-Bz with Ru(Bpga) and Analysis of Products

For the structural identification of minor isomers, we decided to use 2-Bz as a substrate
and we treated the products with Zn/AcOH after C–H oxidation reaction to transform all
dibromo derivatives to 5, 6-olefin derivatives. Use of the Bz group instead of Ac group
facilitates detection of the products during separation by chromatography (or HPLC).

Similar to the reaction of 2-Ac, C–H oxidation of 2-Bz produced several oxidized
products (Figure 2), and 25-HC derivatives were also observed in TLC. We roughly sepa-
rated the resulting mixture into three parts, starting materials 2-Bz and 3-Bz (28%), 25-HC
derivatives and less polar materials (mixture A), and more polar materials (mixture B).
Mixture A and mixture B were each treated with Zn/AcOH to give the corresponding
mixture of compounds with a 5,6-olefin functionality. Mass spectrometric analysis indicated
that the products in mixture A were mainly mono-oxidized products (hydroxy and keto
derivatives), and those in mixture B were di-oxidized derivatives.
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Figure 2. C–H oxidation of 2-Bz with Ru(Bpga) and identification of mono-oxidized products.

The mono-oxidized derivatives were roughly divided into four parts by SiO2 col-
umn chromatography (Figure 2). The most polar fraction on TLC (Fr 21–23) afforded
Bz-protected 25-HC (6, 25-HC-Bz) as a single product (26%, 36% brsm). HPLC analysis
of Fr 10–13 showed multiple peaks (see Supplementary Materials) due to a mixture of
products, among which we identified the 24-oxo derivative (7, 24-oxoC-Bz). Fr 14–15
contained four compounds, which were separated by HPLC (see Supplementary Mate-
rials) and characterized as 20S-HC-Bz (9), 17α-HC-Bz (10), 14α-HC-Bz (11), and a small
amount of 25-oxo-27-norC-Bz (12). The stereochemistry of 9–11 was confirmed by X-ray
crystallographic analysis, showing that the C–H oxidation reaction was stereo-retentive
(Figure 3). Compounds 9, 10, and 12 were also isolated from Fr 16–20, indicating high
tertiary C–H selectivity of the Ru(Bpga) catalyst. HPLC analysis of the mono-oxidized
derivatives showed a product ratio of 7:8:9:10:11:12 = 4:2:34:24:9:9 (Figure 4).
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Similar separation procedures were applied to the di-oxidized derivatives (Figure 5).
Although no material was isolated from Fr 14–15, Fr 16–18 contained 14α,25-diHC-Bz (13)
and a trace amount of 15-oxo-25-HC-Bz (14), together with unidentified compounds. Fr
20–23 and Fr 26–30 contained almost pure 17α,25-diHC-Bz (15) and 20S,25-diHC-Bz (16),
respectively. The stereochemistry of 13, 15, and 16 was confirmed by X-ray crystallographic
analysis (Figure 6). The results suggested that a second C–H oxidation of the major product
25-HC-Bz (6) occurred in a highly tertiary C–H selective and stereo-retentive manner.
Random oxidation is presumably suppressed to some extent by the high selectivity of
the Ru(Bpga) catalyst, and this enabled the isolation of 10 D-ring or side-chain-oxidized
cholesterol derivatives at once from only 400 mg of 5α,6β-dibromocholestane 2-Bz. HPLC
analysis of the di-oxidized derivatives confirmed successful isolation of the major products
in a ratio of 13:14:15:16 = 17:2:31:39 (Figure 7).
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2.3. Oxidation of 2-Bz with Fe (S,S-PDP) and Analysis of Products

We also examined the C–H oxidation of 2-Bz with Fe (S,S-PDP) (White’s catalyst;
Fe (S,S-PDP) = [Fe (S,S-PDP) (MeCN)2][SbF6]2; S,S-PDP = (2S,2′S)-1,1′-bis (pyridin-2-
ylmethyl)-2,2′-bipyrrolidine) [22], which is one of the best tertiary-selective C–H oxidation
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catalysts available for late-stage functionalization (Figure 8) [23]. Reaction of 2-Bz under the
reported optimum conditions with a slight modification (use of CCl4 as a co-solvent because
of the low solubility of 2-Bz in CH3CN) resulted in low conversion of C–H oxidation. We
added the Fe (S,S-PDP) catalyst, H2O2, and acetic acid four times in order to consume
as much starting material as possible, but almost half of the 2-Bz was recovered (44%).
25-HC-Bz derivative 4-Bz (see Table 1) was formed as a major product (total 5.0%), as seen
with the Ru(Bpga) catalyst. After reduction with Zn/AcOH, identification of minor isomers
revealed, in addition to 15-oxoC-Bz (8, 0.23%), 20S-HC-Bz (9, 0.46%), and 17α-HC-Bz (10,
0.57%), that 16-oxoC-Bz (17) was formed in 0.20% yield (calculated yields). Recovered
1-Bz (11%) might be derived from 3-Bz generated in the C–H oxidation reaction and/or
incomplete separation of 2-Bz prior to Zn-mediated reduction. Many minor and major
products of this reaction could be isolated by HPLC, and 8:9:10:17 were obtained in a ratio
of 4:6:7:3 (Figure 9). These results indicate that changing the catalyst has the potential to
provide different oxidized cholesterols in a different ratio, although oxidation of cholesterol
derivatives by Fe (S,S-PDP) was not efficient under the reported conditions.
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2.4. Preparation of Hydroxycholesterols and Dihydroxycholesterols

Removal of the benzoyl groups of 6, 9, 10, 11, 13, 15, and 16 was conducted with
diisobutylaluminum hydride (DIBAL-H) to give 25-HC (18), 20S-HC (19), 17α-HC (20),
17α,25-diHC (23), and 20S,25-diHC (24) in reasonable yields (Scheme 2).
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3. Discussion

Several hydroxycholesterols and dihydroxycholesterols such as 20S-HC (19) [24–27]
and 20S,25-diHC (24) [28,29] have previously been synthesized in a target-oriented manner
by means of semi-synthetic approaches from available steroidal molecules. As far as we
know, however, no chemical synthesis of 17α-HC (20), 14α-HC (21), 14α,25-diHC (22),
and 17α,25-diHC (23) has yet been reported, though 20 was shown to be produced from
cholesterol by P450l7α (CYP17A1) [30]. These D-ring-modified cholesterols are not easy
to access directly by semi-synthesis from abundant steroidal molecules, highlighting the
usefulness of the C–H oxidation strategy.

The Ru (bpga)-catalyzed oxysterol synthesis by C–H oxidation offers two advantages.
First, the catalyst loading can be suppressed to 2 moL%, although approximately 30% of
the starting material was recovered. In addition, high tertiary C–H selectivity suppressed
the formation of oxo-cholesterol derivatives. These features enabled facile separation of
the obtained mixtures as well as selective formation of the targeted hydroxycholesterols.
We did not investigate in detail the isolation of dihydroxycholesterols in the case of the
Fe (S,S-PDP) catalytic system with a high catalyst loading, because of contamination with
decomposition products probably derived from the Fe-complex. However, Fe-catalyzed C–
H oxidation afforded 16-oxo cholesterol derivatives that was not formed in the Ru-catalyzed
reaction, suggesting that other C–H oxidation catalysts might also produce different sets
of oxysterols.

4. Materials and Methods
Oxidation of 2-Bz

To a 10 mL screw-cap vial was added 2-Bz (400 mg, 615 µmol, 1.0 equiv.), iodoben-
zene diacetate (PIDA, 198 mg, 615 µmol, 1.0 equiv.), H2O (30 µL), (CHCl2)2 (1.5 mL),
and a magnetic stir bar. The vial was placed on an aluminum block at 30 ◦C, added
[RuCl(bpga)(PPh3)]Cl (9.6 mg, 12 µmol, 2 mol%), and sealed with a screw cap. After
stirring for 24 h, the suspended brown mixture was turned to be clear brown solution. Then
PIDA (198 mg, 1.0 equiv.) was added to the mixture. After stirring for 41 h, the mixture was
filtered through a pad of Celite® and concentrated. The residue was purified by silica gel
column chromatography (eluent: hexane/EtOAc 50/1 to 1/2). to give less polar mixture A
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(263 mg), polar mixture B (95.3 mg), and a mixture of recovered 2-Bz and 3-Bz (111.4 mg,
28%, 2-Bz:3-Bz = 1:3).

5. Conclusions

Our C–H oxidation strategy using Ru(Bpga) catalyst afforded a set of four hydroxyc-
holesterols and three dihydroxycholesterols that were readily separable. These oxysterols
are expected to be useful as standard materials for lipidomics analysis as well as in bioac-
tivity assay systems [31].

Supplementary Materials: The following supporting information can be downloaded online. Exper-
imental procedure; Figure S1: Purification of oxidized cholesterols (part 1); Figure S2: Purification of
oxidized cholesterols (part 2); Figure S3: Characteristic HMBC correlation for structural determina-
tion of 7; Figure S4: Characteristic HMBC and COSY correlations for structural determination of 8;
Figure S5: Characteristic HMBC correlation for structural determination of 9; Figure S6: Characteristic
HMBC correlations for structural determination of 10; Figure S7: Characteristic HMBC correlations
for structural determination of 11; Figure S8: Characteristic HMBC correlations for structural deter-
mination of 12; Figure S9: Purification of oxidized cholesterols (part 3); Figure S10: Characteristic
HMBC correlations for structural determination 13; Figure S11: Characteristic HMBC and COSY
correlations for structural determination of 14; Figure S12: Characteristic HMBC correlations for
structural determination of 15; Figure S13: Characteristic HMBC correlations for structural determi-
nation of 16; Figure S14: Characteristic HMBC and COSY correlations for structural determination of
17; NMR spectra.
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