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Subarachnoid hemorrhage (SAH) is a common cerebrovascular disease with high
mortality and disability rates. Despite progressive advances in drugs and surgical
techniques, neurological dysfunction in surviving SAH patients have not improved
significantly. Traditionally, vasospasm has been considered the main cause of death
and disability following SAH, but anti-vasospasm therapy has not benefited clinical
prognosis. Many studies have proposed that early brain injury (EBI) may be the primary
factor influencing the prognosis of SAH. Melatonin is an indole hormone and is the
main hormone secreted by the pineal gland, with low daytime secretion levels and high
nighttime secretion levels. Melatonin produces a wide range of biological effects through
the neuroimmune endocrine network, and participates in various physiological activities
in the central nervous system, reproductive system, immune system, and digestive
system. Numerous studies have reported that melatonin has extensive physiological and
pharmacological effects such as anti-oxidative stress, anti-inflammation, maintaining
circadian rhythm, and regulating cellular and humoral immunity. In recent years,
more and more studies have been conducted to explore the molecular mechanism
underlying melatonin-induced neuroprotection. The studies suggest beneficial effects in
the recovery of intracerebral hemorrhage, cerebral ischemia-reperfusion injury, spinal
cord injury, Alzheimer’s disease, Parkinson’s disease and meningitis through anti-
inflammatory, antioxidant and anti-apoptotic mechanisms. This review summarizes the
recent studies on the application and mechanism of melatonin in SAH.

Keywords: subarachnoid hemorrhage, early brain injury, melatonin, mechanism, apoptosis, inflammation,
vasospasm, oxidative stress

INTRODUCTION

Subarachnoid hemorrhage (SAH) is one of the common cerebrovascular diseases, and its incidence
varies in different countries and regions; the overall incidence is about 6/100,000 people per year
(Etminan et al., 2019). The incidence of SAH gradually increases with age. Due to the advances
in medical and surgical techniques, the mortality rate of SAH has decreased over the past few
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decades but still remains prevalent (Macdonald and Schweizer,
2017). In addition, 33% of SAH survivors experienced a high
disability rate and required long-term care (Al-Khindi et al.,
2010). Vasospasm has traditionally been considered a major cause
of death and disability post-SAH as it can induce delayed cerebral
ischemia. Therefore, most of the studies in the past decades
have focused on reducing vasospasm with the aim of improving
outcomes of SAH patients (Kassell et al., 1985; Macdonald
and Weir, 1991; Cook, 1995; Crowley et al., 2008; Macdonald,
2016; Etminan and Macdonald, 2021). However, delayed cerebral
ischemia still occurs in a considerable proportion of SAH
patients, even if the cerebral vasospasm is reversed in the early
stage. In addition, not all cerebral infarction after SAH is caused
by cerebral vasospasm in clinical practice. Cerebral infarction
may occur immediately after the occurrence of SAH in some
patients, without any cerebral angiography findings (Naidech
et al., 2006). Several recent large clinical trials have suggested
that treating vasospasm does not significantly improve patient
outcomes (Macdonald et al., 2008, 2011; Shen et al., 2013). It is
suggested that there may be other mechanisms of injury affecting
the prognosis of SAH patients. Recently, the concept of early
brain injury (EBI) was proposed, which refers to brain injury
occurring within 72 h after the occurrence of SAH (Cahill and
Zhang, 2009). EBI is an event with complex pathophysiological
changes, including increased intracranial pressure, decreased
cerebral blood flow, and direct hematoma toxicity to the
brain tissue. These subsequently lead to the destruction of
the blood-brain barrier (BBB), oxidative stress injury, cellular
death, inflammatory response, microcirculation dysfunction and
mitochondrial disorder, causing neurologic injury and poor
outcome after SAH (Cahill et al., 2006; Ostrowski et al., 2006;
Sehba et al., 2012; Fujii et al., 2013; Ji and Chen, 2016). Therefore,
exploring efficient therapeutic methods targeting EBI is essential
in treating SAH.

Melatonin is a type of neuroendocrine hormone produced by
the pineal gland, with low daytime levels and high nighttime
levels (Tordjman et al., 2017; Cardinali, 2021). It participates
in regulating the immune, reproductive, endocrine and central
nervous systems, and has attracted widespread attention due
to its strong anti-inflammatory and antioxidant properties
(Majidinia et al., 2018; He et al., 2021; Kvetnoy et al., 2022). Recent
studies have shown that melatonin exerts a neuroprotective
role in many neurological diseases such as stroke (Lee et al.,
2007; Tai et al., 2010), trauma injury (Samantaray et al.,
2009; Osier et al., 2018), neurodegenerative diseases (Alamdari
et al., 2021; Roy et al., 2022), and spinal cord injury (Hong
et al., 2010; Zhang et al., 2018). The mechanisms involved
include anti-inflammation, anti-apoptosis, anti-oxidative stress,
and BBB protection. In addition, numerous studies have been
carried out on the role and mechanism of melatonin in
SAH, and the results established that melatonin can improve
brain injury after SAH through a variety of mechanisms, thus
alleviating neurological impairment and improving prognosis
(Martinez-Cruz et al., 2002). This study summarizes the
current literature on melatonin treatment in EBI after SAH
(Table 1). It explores the relevant mechanism of melatonin-
induced neuroprotection, providing a theoretical basis for

the experimental study and clinical application of melatonin
treatment for SAH.

THE EFFECT AND MECHANISM OF
MELATONIN IN SUBARACHNOID
HEMORRHAGE

Melatonin and Vasospasm
Cerebral vasospasm is a common complication of SAH, which
usually appears around 3 days after SAH, and reaches its peak
within 10 days after SAH (Etminan et al., 2011; Gaspard,
2020). Delayed cerebral ischemia caused by cerebral vasospasm
leads to cerebral infarction, cerebral hernia and other malignant
complications (Kumar et al., 2016; Ikram et al., 2021). In
the acute stage following SAH, the nitric oxide (NO)/NO
synthase (NOS) system and vasoconstrictor factors may be
involved in the occurrence of cerebral vasospasm. The NO/NOS
system plays an important role regulating hemodynamics. NO
regulates cerebral blood flow and blood pressure by dilating
blood vessels, inhibiting platelet aggregation, and diminishing
leukocyte adhesion to the intima (Toda et al., 2009; Attia et al.,
2015; Vanhoutte, 2018). After SAH onset, decreased NO levels are
observed, leading to CBF reduction, cerebral vasoconstriction,
and platelet aggregation. In addition, as a form of free radical,
NO enters the intima cells, causing damage to mitochondria
and blood vessels (Sehba and Bederson, 2011; Crobeddu et al.,
2016; Ehlert et al., 2016; Guo et al., 2016). Endothelin-1 (ET-
1) is a potential vasoconstrictor mainly released by astrocytes
and leukocytes during the early inflammatory response stage
after SAH (Cosentino and Katusić, 1994; La and Reid, 1995;
Vergouwen et al., 2012). Previous studies found that ET-1 levels
in serum and plasma increased within a few minutes after SAH,
and the expression of its receptor increased within 48 h (Lin et al.,
2004, 2006). The declined levels of NO increases the expression
of ET-1, causing continuous vasocontraction and degenerative
morphological changes of the vessels. Notably, previous studies
mainly focus on the spasms of large blood vessels, while ignoring
the microvascular changes. The cerebral microvasculature has
been recently identified as an important intervention target
after SAH. Changes in the anatomical structure of cerebral
microvessels, sufficient to cause functional deficits, are found in
the early post-SAH period. After SAH occurrence, constriction
of microvessels contributes to intima remodeling, basal lamina
degradation, increased vascular permeability, and eventually
leads to microcirculation disorders and brain injury (Nagai et al.,
1976; Sehba and Friedrich, 2011).

To explore whether melatonin treatment reverses vasospasm
in a SAH model, light microscopic measurements of the basilar
arteries were performed to illustrate the arterial wall changes
(Fang et al., 2009). Melatonin injection simultaneously with SAH
or 2 h after SAH both were found to attenuate the constriction
of vessels (Aydin et al., 2005). Additionally, melatonin-induced
improvement of cerebral vasospasm is associated with increased
serum NO levels, decreased arginase levels, and oxidative stress
in the brain (Aladag et al., 2009). Furthermore, the potential
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TABLE 1 | Neuroprotection of melatonin treatment in SAH.

Therapeutic paradigm Main findings References

5 mg or 10 mg/kg, injected into the cisterna
magna at 1 h before SAH.

Melatonin prevents focal cerebellum injury by induction of HO-1. The antioxidant capability of
melatonin is higher than vitamin E.

Martinez-Cruz
et al., 2002

5 mg/kg, intraperitoneally injection every 12 h
for 48 h, start at 2 h after SAH.

Melatonin prevents SAH-induced vasospasm and apoptosis of endothelial cells of vessels. Aydin et al., 2005

15 mg or 150 mg/kg, intraperitoneally injection
at 2 h after SAH.

High doses of melatonin (150 mg/kg) reduce brain edema and mortality after SAH. Ayer et al., 2008b

15 mg or 150 mg/kg, intraperitoneally injection
at 2 h after SAH.

High doses of melatonin (150 mg/kg) reduce brain edema and mortality after SAH, which is
unrelated to oxidative stress inhibition.

Ayer et al., 2008a

10 mg/kg, intraperitoneally injection
immediately after SAH, then daily for 2 days.

Melatonin alleviates oxidative stress, restores BBB permeability and reduces brain edema after
SAH.

Ersahin et al., 2009

20 mg/kg, intraperitoneally injection at 6 h after
SAH, twice daily for 5 days.

Melatonin alleviates cerebral vasospasm by elevating NO levels in serum and downregulating
the levels of arginase and oxidative stress in the brain.

Aladag et al., 2009

5 mg/kg, intraperitoneally injection every 12 h
for 120 h, start immediately after SAH.

Melatonin attenuates inflammatory response and oxidative stress in the spasmodic artery and
alleviates cerebral vasospasm post-SAH.

Fang et al., 2009

150 mg/kg, intraperitoneally injection at 2 h and
24 h after SAH

Melatonin attenuates EBI via activating the Nrf2-ARE pathway and regulating oxidative stress by
inducing antioxidant and detoxifying enzymes.

Wang et al., 2012

150 mg/kg, intraperitoneally injection at 2 and
24 h after SAH

Melatonin exerts neuroprotection through anti-oxidative and anti-inflammatory signaling
pathways following SAH.

Wang et al., 2013

150 mg/kg, intraperitoneally injection at 2 h
after SAH.

Melatonin improves the neurological outcome by reducing neuronal apoptosis and enhancing
autophagy via a mitochondrial pathway.

Chen et al., 2014b

150 mg/kg, intraperitoneally injection at 2 h
after SAH.

Melatonin inhibits the degradation of tight junction proteins, attenuates cerebral edema,
improves BBB dysfunctions by inhibiting the inflammatory response.

Chen et al., 2014a

150 mg/kg, intraperitoneally injection at 2 h
after SAH.

Melatonin attenuates neurogenic pulmonary edema by preventing alveolar-capillary barrier
dysfunctions via repressing the inflammatory response and reducing apoptosis after SAH.

Chen et al., 2015

150 mg/kg, intraperitoneally injection at 2 h
after SAH.

Melatonin attenuates the EBI post-SAH by inhibiting NLRP3 inflammasome-associated
apoptosis.

Dong et al., 2016

150 mg/kg, intraperitoneally injection at 2 and
12 h after SAH.

Melatonin attenuates EBI following SAH via the MR/Sirt1/NF-κB signaling pathway. Zhao et al., 2017

150 mg/kg, intraperitoneally injection at 2 h
after SAH.

Melatonin exerts a neuroprotective effect after SAHA by inhibiting mitophagy-associated NLRP3
inflammasome.

Cao et al., 2017

150 mg/kg, intraperitoneally injection at 2 and
12 h after SAH.

Melatonin attenuates EBI after SAH by regulating the H19-miR-675-P53 and H19-let-7a-NGF
signaling pathways.

Yang et al., 2018b

15 mg or 150 mg/kg, intraperitoneally injection
at 2 h after SAH.

Melatonin attenuates SAH-induced EBI by diminishing neuronal apoptosis and autophagy,
partially involving the ROS-MST1 pathway.

Shi et al., 2018

150 mg/kg, intraperitoneally injection at 2 and
12 h after SAH.

Melatonin attenuates EBI after SAH by regulating the protein expression of SIRT3. Yang et al., 2018a

150 mg/kg, intraperitoneally injection at 2 and
12 h after SAH.

Melatonin provides protection against EBI post-SAH by inducing mitophagy and increasing the
expression of NRF2.

Sun et al., 2018

Intraperitoneally injection at 2 h after SAH. Melatonin treatment attenuates EBI following SAH via the JAK1/STAT3 signaling pathway. Li et al., 2019

150 mg/kg, intraperitoneally injection at 2 and
12 h after SAH.

Melatonin ameliorates cerebral vasospasm by regulating the H19/miR-138/eNOS and
H19/miR-675/HIF1α signaling pathways.

Hou et al., 2020

50 mg/kg, 150 mg/kg, or 300 mg/kg,
intraperitoneally injection at 15 min after SAH.

Melatonin exerts a white matter-protective effect in SAH pathophysiology, possibly by
attenuating apoptosis in oligodendrocytes.

Liu et al., 2020

150 mg/kg, intraperitoneally injection at 12 h
after SAH.

Melatonin ameliorates delayed brain injury following SAH via H19/miR-675/HIF1A/TLR4
signaling pathway.

Xu et al., 2022

underlying mechanism of melatonin treatment after SAH was
studied. Hou et al. (2020) reported that melatonin ameliorates
post-SAH vasospasm by regulating the expression of endothelial
nitric oxide synthase (eNOS) and hypoxia-inducible factor-
1 (HIF-1α) via the H19/miR-138/eNOS/NO and H19/miR-
675/HIF-1α signaling pathways. However, the crosstalk of the
pathway network is complex, and the exact mechanism behind
the anti-vasospasm effect of melatonin needs further research.
Recently, a clinical trial provided evidence for the delayed
elevation of circulatory daytime melatonin after SAH and
described the role of aneurysm location, resulting in high levels

during the critical phase (Neumaier et al., 2021). However, the
relationship between endogenous melatonin level changes and
vasospasm were not discussed. Further clinical trials focusing on
the role of endogenous changes and administration of melatonin
in vasospasm after SAH may provide more clinical evidence for
the clinical application of melatonin in SAH.

Melatonin and Inflammation
Previous studies have found that in the early SAH stage,
erythrocyte degradation products accumulated in the
subarachnoid space, activating an inflammatory response and
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participating in the acceleration of brain injury (Schallner et al.,
2015; Zhang et al., 2016). Both experimental studies and clinical
trials have demonstrated that the aseptic inflammatory response
after SAH can aggravate tissue damage and is an independent
predictor of mortality in SAH patients (Pradilla et al., 2010;
Muroi et al., 2011; Luo et al., 2021; Devlin et al., 2022). Microglia
are innate immune cells of the central nervous system and can
be activated rapidly under inflammatory conditions, trauma, or
other stimulating factors. Previous studies have confirmed that
microglia can be activated within minutes of the occurrence of
SAH and contribute to the process of inflammation (Coulibaly
and Provencio, 2020; Heinz et al., 2021; Chen et al., 2022). When
microglia are activated in a normal physiological state, they can
remove harmful substances by phagocytosis. However, when
microglia are overactivated, they exacerbate brain injury by
releasing pro-inflammatory factors and oxidative metabolites,
promoting the activation of neutrophils and macrophages, thus
resulting in the destruction of BBB, inflammatory response
and neuronal damage (Lucke-Wold et al., 2016; van Dijk et al.,
2016; Schneider et al., 2018). Similar to microglia, astrocytes
can also synthesize and secrete inflammatory factors (such as
cytokines and chemokines) and participate in the inflammatory
response of SAH (Gris et al., 2019; Zhang et al., 2021). In
addition to inflammatory cells, inflammatory-related proteins
such as C-reactive protein, intercellular adhesion molecule
(ICAM)-1, high mobility group box 1 (HMGB1), and galectin-3
also play key roles in the inflammatory reaction following SAH
(Lin et al., 2007; Sun et al., 2014; Nishikawa and Suzuki, 2018;
Mota Telles et al., 2021). Damage-associated molecular patterns
(DAMPs) are released by neurons, astrocytes, microglia and
endothelial cells in the early stage of SAH, activating local and
peripheral immune cells and releasing cytokines to promote
an inflammatory response. This process leads to early brain
injury (Chaudhry et al., 2018; Lu et al., 2018; Ahmed et al., 2021;
Balança et al., 2021). Furthermore, pro-inflammatory cytokines,
such as interleukin-1 β (IL-1β), interleukin-6 (IL-6) and tumor
necrosis factor -α (TNF-α), can trigger an inflammatory cascade
that ultimately leads to the destruction of the BBB, and cause
secondary injury post-SAH (Duris et al., 2018; Savarraj et al.,
2018; Okada and Suzuki, 2020). Therefore, therapies inhibiting
the inflammatory response may alleviate the EBI after SAH,
thereby improving the prognosis of patients.

Melatonin has shown anti-inflammatory properties in
SAH. It can reduce neuroinflammation and improve axonal
hypomyelination by modulating M1/M2 microglia polarization
via the JAK2-STAT3-telomerase pathway (Zhou et al., 2021).
Moreover, melatonin reduces the release of pro-inflammatory
mediators (IL-1β, IL-6, and TNF-α, etc.), alleviates the
inflammatory response, thus improving secondary brain damage
and neurobehavioral dysfunction after SAH (Fang et al., 2009).
In addition, inhibition of inflammation by melatonin effectively
protects the integrity of the BBB structure and function, and
reduces the degree of brain edema (Chen et al., 2014a, 2015).
Wang et al. (2013) found that melatonin markedly decreased the
expressions of TLR4 pathway-related agents, such as HMGB1,
toll-like receptor 4 (TLR4), myeloid differentiation factor 88
(MyD88), indicating the involvement of the TLR4 pathway in

melatonin-induced neuroprotection. Among the inflammatory
responses after SAH, NLRP3 inflammasome activation has
recently been investigated. NLRP3 inflammasome activation
promotes the maturation and secretion of pro-inflammatory
cytokines and participates in cell death processes such as
pyroptosis. Various studies have revealed that reduction of
NLRP3 inflammasome activation exerts strong neuroprotective
effects in the acute phase following SAH, which was associated
with the downregulation of pro-inflammatory cytokines. Cao
et al. (2017) proposed that melatonin is neuroprotective against
EBI post-SAH via inhibiting mitophagy-associated NLRP3
inflammasome. In addition, Dong et al. (2016) demonstrated
that melatonin treatment attenuates brain injury by inhibiting
NLRP3 inflammasome-associated apoptosis following SAH.
Notably, NLRP3 signal activation is performed by microglia, and
reduced NLRP3 is related to decreased white matter injury after
melatonin treatment in SAH (Liu et al., 2020).

Melatonin and Apoptosis
Apoptosis is one of the main pathophysiological processes
of EBI, and its degree is closely related to the neurological
function recovery after SAH (He et al., 2012; Hong et al., 2014).
Previous experiments have shown that apoptosis of neurons
begins within 10 min after the occurrence of SAH (Friedrich et al.,
2012). The increased intracranial pressure, cerebral edema and
oxidative stress induced by SAH can all lead to extensive cell
apoptosis, including neurons, glial cells and vascular endothelial
cells (Ostrowski et al., 2006; Hasegawa et al., 2011; Shao et al.,
2020). Apoptosis after SAH involves many pathways, including
the death receptor pathway, mitochondrial pathway, and
dependent or independent caspase pathway (Cahill et al., 2006).
The mitochondrial pathway is mediated by the Bcl-2 family
and manifests as increased permeability of the mitochondrial
membrane. Cytochrome c transfers from mitochondria to the
cytoplasmic septum and participates in apoptosome assembly
with apoptosis protease-activator factor 1 (Apaf-1), thus leading
to the activation of caspase-9. Subsequently, caspase-3 is further
activated to induce apoptosis (Ceccatelli et al., 2004; Bornstein
et al., 2020). The caspase-independent pathway is mainly
mediated by the mitochondrial release of apoptosis-inducing
factor (AIF). AIF exists in the mitochondrial membrane gap
in its normal state, and can be transferred to the nucleus after
SAH to induce DNA destruction and cell apoptosis without
caspase activation (Lorenzo et al., 1999; Lorenzo and Susin, 2007;
Norberg et al., 2010). Death receptors participate in external
apoptosis pathways. The expression of Fas and TNF ligands of
death receptors are upregulated after SAH, binding to death
receptors and activating the caspase cascade (Gorojod et al., 2017;
Cha et al., 2019). These pathways interact with each other and
participate in the occurrence and regulation of apoptosis after
SAH. By intervening on the above pathways, apoptosis may be
effectively alleviated, thus improving the neurological injury and
promoting the recovery of neurologic function after SAH.

The neuroprotective role of melatonin by diminishing cellular
apoptosis in EBI after SAH was investigated. A study published
in 2005 first reported the anti-apoptosis effect of melatonin in a
SAH rabbit model by reducing the apoptosis of endothelial cells
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(Aydin et al., 2005). Subsequently, many studies confirmed the
role of melatonin in alleviating neuronal apoptosis after SAH,
contributing to the amelioration of spatial learning and memory
deficits and improvement of therapeutic outcomes (Wang et al.,
2012, 2013; Dong et al., 2016; Sun et al., 2018). Moreover,
melatonin can reduce oligodendrocyte apoptosis associated
with the attenuation of white matter injury. The mechanism
of the above anti-apoptosis effects is related to enhancing
autophagy, which improves cell apoptosis via a mitochondrial
pathway (Chen et al., 2014b). In addition, melatonin reduces
cellular apoptosis partially via the regulation of the melatonin
receptor/Sirt1/NF-κB signaling pathway (Zhao et al., 2017),
ROS/mammalian sterile 20-like kinase 1 (MST1) pathway (Shi
et al., 2018), ROS/SIRT3 pathway (Yang et al., 2018a), and
JAK/STAT pathway (Li et al., 2019). Recently, many studies
have shown that melatonin abolished apoptosis by regulating
microRNAs. Xu et al. (2022) established that melatonin affects
HIF-1α and ameliorates delayed brain injury following SAH
via the H19/miR-675/HIF1A/TLR4 pathway. In contrast, Yang
et al. (2018b) demonstrated that long non-coding RNA and
microRNA-675/let-7a mediate the protective effect of melatonin
against EBI after SAH via targeting TP53 and neural growth
factor. Notably, melatonin not only reduces cell apoptosis in the
brain but also prevents alveolar-capillary barrier dysfunctions via
repressing cell apoptosis in the lung, thus attenuating neurogenic
pulmonary edema after SAH (Chen et al., 2015).

Melatonin and Blood-Brain Barrier
Disruption
BBB is mainly composed of capillary endothelial cells, pericytes,
astrocytes, and vascular basilemma. Due to the tight connection
between capillary endothelial cells, the cell gap is small. In the
physiological state, most substances (such as plasma components,
red blood cells, etc.) cannot pass the BBB except for a few lipid-
soluble small molecules (Daneman and Barres, 2005; Zhao et al.,
2015). In SAH, the expression of type IV collagen is significantly
increased, which degrades the BBB basement membrane and
is accompanied by the elevation of vascular endothelial growth
factor, activation of endothelial cell apoptosis, resulting in the
enhanced permeability of BBB (Yang and Rosenberg, 2011;
Kanamaru and Suzuki, 2019; Li et al., 2020). Cerebral edema
directly results from BBB dysfunction, which includes vasogenic
and cytotoxic edema (Rosenberg, 1999; Sandoval and Witt,
2008). Vasogenic edema refers to blood flow from the vessels to
brain tissue due to the apoptosis of endothelial cells and glial
cells around blood vessels. The increase of intracranial pressure
after SAH induces the decrease of CBF, which causes global
cerebral ischemia, leading to the failure of the Na+ /K+ pump,
and resulting in cytotoxic edema (Okada et al., 2020; Chen
et al., 2021). Clinical studies have shown that about 8% of
patients were found to have global cerebral edema after head
CT examination upon admission, and another 12% of patients
developed prominent cerebral edema within 6 days following
SAH (Cahill et al., 2006). Severe cerebral edema often leads to
increased intracranial pressure, acute cerebral ischemia, cerebral
hernia, and death. Therefore, it is of great significance to

protect the integrity of BBB and reduce the development of
cerebral edema, aiming to improve the prognosis of patients
(Michinaga and Koyama, 2015).

Pragmatic therapeutic strategies for brain edema such as
acupuncture, osmotherapy, non-peptide vasopressin receptor
antagonist, and calcium channel blockers are used in clinical
practice (Rowland et al., 2019; Corry et al., 2020; Hinson et al.,
2020; Guo et al., 2022). Although the above-mentioned treatment
approaches have been well-studied and display partial protective
effects in attenuating cerebral edema, a single therapy capable of
inhibiting cerebral edema is yet to be found due to the complex
mechanisms involved. Recently, experimental studies have shown
that melatonin not only reduces cerebral edema but also protects
the BBB by preventing the disruption of tight junction protein
expression (ZO-1, occludin, and claudin-5), indicating that
melatonin may be an effective alternative for alleviating brain
edema after SAH (Ayer et al., 2008a,b; Chen et al., 2014a; Li et al.,
2019; Liu et al., 2020). Additionally, melatonin can easily cross
the BBB, while preserving BBB permeability and reducing brain
edema (Ersahin et al., 2009).

Melatonin and Oxidative Stress
Superoxide dismutase (SOD), glutathione peroxidase, catalase
and other important antioxidant enzymes in brain tissue are
down-regulated after SAH, leading to a decrease in antioxidant
capacity. Meanwhile, vasospasm and cerebral edema caused by
SAH lead to cerebral ischemia, resulting in the production
of a large number of oxygen ions (O2−) and hydrogen
peroxide (H2O2) (Yang et al., 2017; Shao et al., 2020). The
high concentration of Fe2+ and Fe3+ produced by erythrocyte
degradation can combine with H2O2 and O2− by Fenton reaction
to form hydroxyl radicals. Hydroxyl radicals are among the most
toxic reactive oxygen species (ROS), which can directly damage
neurovascular units and cause neurologic injury. In addition,
free radicals-induced oxidative stress cause brain damage by
promoting lipid peroxidation, protein degradation, and DNA
destruction, resulting in neuronal apoptosis, endothelial cell
damage, and BBB destruction. These changes result in severe
brain injury and neurological deterioration after SAH (Lu et al.,
2019; Wu et al., 2021). Therefore, the intervention of oxidative
stress can inhibit the secondary cascade reaction of pathological
changes and reduce subsequent brain damage (Zhang et al., 2014;
Lin et al., 2021a).

Melatonin is a powerful antioxidant. Its antioxidant effects
include direct scavenging of free radicals, stimulation of
antioxidant enzyme activity and gene expression, stimulation
of glutathione synthesis, reduction of electron leakage of
mitochondrial electron transport chain, and reduction of
cytokine production (Reiter et al., 2016; Galano and Reiter, 2018).
Previous research has shown that lipopolysaccharides-induced
hyperreactivity of vascular smooth muscle is mediated through
enhanced release of ROS and prostanoids, and melatonin
inhibits the vascular hyperreactivity via selective scavenging of
ROS (Müller-Schweinitzer et al., 2004). Melatonin can cause a
significant increase in brain glutathione (GSH) and superoxidase
dismutase (SOD) content, as well as Na+-K+-ATPase activity and
GSH/GSSG ratio, which is accompanied by significant decreases
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in ROS, malondialdehyde (MDA) levels, and myeloperoxidase
(MPO) activity, thereby providing neuroprotection from EBI
following SAH (Ersahin et al., 2009; Fang et al., 2009; Yang
et al., 2018a). Besides, melatonin alleviates SAH-induced EBI by
inhibiting the ROS-stimulated activation of the MST1 pathway
(Shi et al., 2018), NLRP3 inflammasome (Cao et al., 2017), and
SIRT3 pathway (Yang et al., 2018a). An in vivo and in vitro study
demonstrated that H2O2 markedly upregulated the expression
of H19, miR-675, and NGF, and downregulated let-7a and TP53
levels. These findings were reversed by melatonin treatment,
revealing the potential antioxidant mechanisms of melatonin
(Yang et al., 2018b). It is worth noting that Nrf2 is a global
promoter of antioxidant response and has potential protective
effects against post-SAH EBI. It has been shown that Nrf2-
knockout animals have poorer outcomes in SAH. Melatonin can
increase the effects of the antioxidant system by upregulating the
expression of Nrf2 (Wang et al., 2012; Sun et al., 2018).

CONCLUSION AND PROSPECTS

Melatonin is a neuroendocrine hormone that protects the
central nervous system mainly through anti-vasospasm, anti-
oxidative stress, anti-inflammatory response, anti-apoptosis and
BBB protection. At present, the study of melatonin in SAH is
mostly limited to animal and cell models, and lack of clinical
evidence. So far, four clinical studies with small cohort of patients
have explored the association between melatonin and SAH
patients. Melatonin could decrease fatigue, but has no significant
impact on depression and apathy post-stroke (Gilard et al., 2016).
In addition, melatonin administration has no effect on delayed
cerebral ischemia, but may reduce mortality of SAH (Lin et al.,
2021b). Another prospective and observational study enrolls
169 aneurysmal SAH patients, to ascertain the relationship

between endogenous melatonin level and neurological outcome
post-SAH. The results indicate that higher level of serum
melatonin is associated with poor outcome after SAH (Zhan
et al., 2021). As many factors can affects the concentrations of
serum melatonin such as the severity of brain injury, and rhythm
of melatonin secretion, the accurate influence and changes
of melatonin after SAH need to be studied. Neumaier et al.
(2021) reports that there is a delayed upregulation of circulatory
daytime melatonin levels after SAH, and higher concentration of
melatonin is related with patients with anterior communicating
artery aneurysms or poor clinical outcome, indicating the
potential role of hypothalamic dysfunction. Further large-scale
clinical trials are needed to verify its neuroprotective effect in
SAH patients. Additionally, the effects of melatonin in patients
with different degrees of injury and ages should be explored.
Moreover, the secretion of melatonin in the body follows
the circadian rhythm. The time of administration likely plays
an essential role in achieving the optimal therapeutic effect,
and needs further study. Furthermore, the drug dosage and
administration interval of melatonin used in current studies
vary greatly. The optimal dose and administration frequency
should be determined to effectively improve the therapeutic
effect. Finally, melatonin regulates biological rhythms, and a large
proportion of SAH patients have sleep disorders. Determining
the therapeutic strategy of melatonin for this population is
worth exploring.
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