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Abstract: Cavities are typical features in aeronautical structural parts and molds. For high-speed
milling of multi-cavity parts, a reasonable processing sequence planning can significantly affect the
machining accuracy and efficiency. This paper proposes an improved continuous peripheral milling
method for multi-cavity based on ant colony optimization algorithm (ACO). Firstly, by analyzing the
mathematical model of cavity corner milling process, the geometric center of the corner is selected
as the initial tool feed position. Subsequently, the tool path is globally optimized through ant
colony dissemination and pheromone perception for path solution of multi-cavity milling. With the
advantages of ant colony parallel search and pheromone positive feedback, the searching efficiency
of the global shortest processing path is effectively improved. Finally, the milling programming
of an aeronautical structural part is taken as a sample to verify the effectiveness of the proposed
methodology. Compared with zigzag milling and genetic algorithm (GA)-based peripheral milling
modes in the computer aided manufacturing (CAM) software, the results show that the ACO-based
methodology can shorten the milling time of a sample part by more than 13%.

Keywords: smart manufacturing; complex structural parts; processing sequence planning; corner
milling; ant colony optimization algorithm

1. Introduction

Cavity shapes in aircraft structure parts and molds are often complex with highly
diverse irregularities [1]. They are usually milled at a high-speed rate by a 3-axis milling ma-
chine or a multi-axis computer numerical control (CNC) milling machine [2–6]. High-speed
milling requires avoiding abrupt changes in the cutting direction, preventing collisions
between the cutter and the part, and reducing changes in the material removal rate.

Usually, we use peripheral milling method to process a single cavity [7–9]. However,
in the peripheral milling method, the uneven tool path will cause a sudden increase in
milling force. Generally, when the arc radius of a circular milling cutter is greater than half
the row distance, there will be a discontinuous connection between a straight line and an
arc, which cannot meet the needs of high-speed milling. Therefore, high-speed milling
needs to keep the cutting mode constant while minimizing the idle stroke of the tool. The
current research on this issue mainly focuses on two aspects: (1) improving the cutting
mode of a single cavity to ensure the smooth cutting process and (2) optimizing the cutting
path of the tool to minimize the empty stroke of the tool.

Aiming at improving the cutting mode of a single cavity, An et al. [7] used a B-spline
curve to optimize the traditional circumcision mode, but with this method it is not easy to
control the cross path. Yao et al. [8] replaced the sharp corners in the circular cutting path
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with circular arcs, but the tool path still could not meet the requirements for smoothness of
high-speed milling. Wu et al. [9] identified the tool contour path by identifying the island
and cavity contour boundaries and combining the contour radius of the island contour,
but the algorithm was complex and the tool path still had abrupt direction changes. Wang
et al. [10] used internal interpolation polygons with linearly interpolated cavity boundaries
to generate helical polylines, and B-spline curve fitting to generate continuous spiral helical
tool rails of any order. However, it only solved the problem of rapid milling of cavities
without islands.

To avoid cracks in the corners of cavities, secondary corner-milling is required [11]. In
CNC milling the cavity, in order to avoid over-cutting or under-cutting at the corner, the
programmer needs to set the arc milling program according to the transition arc radius and
tool radius of the part corner [2,12], which is also defined as blend feature [13–15]. When
the processed parts have more blend features, this method increases the difficulty of CNC
programming, prolongs the time of CNC machining process programming, and affects the
production efficiency of the enterprise.

In order to compensate the machining error of the part surface contour, Yue [16]
proposed an automatic tool path compensation method. Karunakaran and Shringi [17]
aimed at the optimized feed rate and proposed an optimization model based on NC codes.
Yang [18] used the cutter location surface to improve the infeed position and optimized the
tool path and processing parameters. Shi [19] improved the general hierarchical algorithm
to generate milling tool paths. The verification results show that this method can keep the
effective machining tool path ratio above 80%. Rao [20] optimized the peripheral milling
path of variable curvature geometry by establishing a cantilever beam force model to
estimate the tool deflection.

However, corner-milling is a part of cavities machining. Most researchers used the
corner-milling as an independent study and rarely combined corner-milling with whole
cavities tool path generation. With the development of artificial intelligence technology,
researchers have tried various artificial intelligence algorithms to optimize the milling tool
path of multi-cavity parts, such as genetic algorithms (GA) [7,8], ant colony optimization
(ACO) algorithms [9], particle swarm algorithms [21], etc.

In order to solve the optimization problem of surface roughness during part processing,
Li et al. [22] used a neural network algorithm to optimize the machining parameters and
tool paths. This method manually calculates the distance between processing features and
it is difficult to ensure the accuracy of the calculation results. Chu et al. [23] simplified
the processing of feature boundaries in three dimensions to two-dimensional boundary
curves, and then used the ACO algorithm to search the optimal solution. The division of
the boundary greatly reduced the sample space, thereby greatly improving the calculation
efficiency. However, the machining feature boundary of the cavity is affected by mixed
features (curved surface or trapezoidal angle), which makes it difficult to obtain directly.
Plakhotnik and Lauwers [24] designed a developed optimization method, which can find a
series of tool positions, including the displacement of the machine’s rotating axis.

The above researchers used various methods to achieve the tool path optimization for
multi-cavities. However, there are two main factors that affect the efficiency and accuracy
of the calculation results. Firstly, the calculation of the spatial distance between different
cavities lacks an effective method for identifying the feature position, which is mainly
accomplished by manually setting the position coordinate parameters. Secondly, the
interference of blend features makes the acquisition of processing boundaries inaccurate,
resulting in inaccurate calculation results.

To improve milling accuracy and efficiency, in previous work, we proposed a blend
feature simplification (BFS) method to accurately obtain the machining boundaries and tool
feed position [25,26]. Firstly, we proposed to construct virtual boundaries of the transition
feature in order to accurately obtain the tool feed position and prevent over-cutting or
under-cutting. In this way, the arc surface transition feature is simplified to a linear feature.
On this basis, the compensation calculation of the transition fillet radius in the corner
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milling programming process can be omitted. Secondly, using the coordinates of different
tool feed positions at the corners, we optimized the tool paths based on genetic algorithm.

In this method, the tool feed position for a single cavity is selected randomly. In order
to avoid repeatedly selecting corner tool feed positions in the same cavity, it is necessary to
select a tool feed position for each cavity based on BFS. Thus, the optimization of cavities
machining sequences is limited. When milling a cavity using the peripheral milling method,
there are different options for the tool feed position. In theory, each corner and geometric
center both can be selected. If a certain feed point is selected artificially, it is easy to cause a
local optimal solution.

Hence, this paper tries to use an ACO algorithm to make up for the shortcomings of
previous work. In ACO, the pheromone released during the ant travel is used to find the
shortest path. Ants with shorter paths release more pheromone. As time progresses, the
concentration of pheromone accumulated on the shorter paths gradually increases, and the
number of ants that choose the path increases. Finally, the entire ant colony will focus on
the best path under the action of positive feedback. At the same time, it corresponds to the
optimized solution of the problem. Figure 1 shows the idea of searching for the shortest
processing path based on ant colony algorithm.

Figure 1. Ant colony optimization (ACO)-based tool path optimization.

The remainder of this paper is organized as follows. In Section 2, we analyze the
corner milling methods. Subsequently, Section 3 describes the tool path generation using
the ACO algorithm. In Section 4, the feasibility of this method is proven using a tool path
planning case of an aircraft structural part. Section 5 concludes the paper.

2. Cavity Milling Methods and Corner Milling Analysis
2.1. Cavity Milling Methods

Figure 2 shows a typical aircraft multi-cavity part. Considering the overall rigidity
requirements, most cavities are closed cavity. In order to avoid stress concentration at the
corners, blend features are used to replace sharp edges or sharp corners.
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Figure 2. Blend features in a multi-cavity aeronautical part.

Generally, the cavity can be processed by ball milling cutters and end milling cutters,
as shown in Figure 3. The end milling cutters do not have the ability to feed in a large
depth along the axial direction. Thus, for milling a closed cavity, the cutter feeds in two
ways. (1) Pre-drilled holes. When rough milling of a cavity, we firstly drill a hole, which is
larger than the diameter of the cutter. After the cutter reaches the cutting plane, the cavity
is milled, as shown in Figure 3b. (2) Spiral feed above center. The material is milled in a
spiral feed with the side and bottom cutting edges. This approach can avoid the influence
of no cutting edge in the tool center [27], which is shown in Figure 3c.

Figure 3. Feed methods of cavity milling.

When the tool reaches the milling plane to perform allowance cutting, the cutter
feeds above the corner. There are three common milling methods. (1) Zigzag milling. As
shown in Figure 4a, the tool travels along a zigzag path, which has a high processing
efficiency. However, there will be uneven residues between two adjacent traveling tool
paths, resulting in uneven finishing allowances, and the residual height is related to the
tool diameter and line spacing [28,29]. (2) Peripheral milling. Figure 4b shows the tool path
of peripheral milling. Using this method, the remaining allowance after rough milling is
uniform. The disadvantage is the long path and low processing efficiency [30]. (3) Synthetic
method. As shown in Figure 4c, the zigzag method is used for rough milling, and then
the cavity is processed along the periphery. This tool path combines the advantages of the
previous two methods, which is not only conducive to improving the accuracy of roughing,
but also to ensuring that the machining allowance is uniform.



Micromachines 2021, 12, 88 5 of 14

Figure 4. Milling methods of cavity.

2.2. Corner Milling Analysis

When processing corners of the cavity, cutting thickness is uneven due to the sudden
change in contact area between cutting tool and the part.

Therefore, in milling the corners of multi-cavity part, over-cutting or under-cutting
often occurs [31]. In order to accurately design the tool path, it is necessary to grasp the
change of the contact range between the tool and the part. The milling process at the corner
can be divided into three stages as shown in Figure 5.

Figure 5. Corner milling analysis.

The tool path from T1 to T2 is a stable linear motion during the milling process, and a
constant radial depth ae is maintained at this stage. The coordinates of the tool feed position
at the corner can be obtained from the tool contour and the part contour. As shown in
Figure 4, the intersection of the two contours is Pn, and the coordinates of the tool feed
position On(xn, yn) can be obtained by Formulaes (1) and (2).

(x− xn)
2 + (y− yn)

2 = [R(n)]2 (1)

x = (R(n)− ae)− xn (2)

where Rn is the corner radius after milling.
From T2 to T3 is the corner machining stage. The tool path is an arc, and the radial cut-

ting depth changes from ascending to descending. We can obtain On(xn, yn) by Formulaes
(3) and (4).

(x− xo1)
2 + (y− yo1)

2 = R2
1 (3)

y = y− (R(n)− ae) (4)
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where O1(x1, y1) is the arc center point of the corner contour before machining. The tool
path after T3 becomes a stable linear motion again.

The tool feed position On(xn, yn) can be calculated by Formulae (1) and (2). In theory,
for the milling of a single cavity, the machining time for different corner infeeds is equal.
However, considering the global perspective of multi-cavity part machining, choosing
different corner infeeds will affect the empty travel distance from one cavity to the next,
thus affecting the part processing time.

3. Tool Path Planning of Multi-Cavity Based on ACO Algorithm

For island-type cavities, how to choose the optimal combination of tool feed positions
becomes a traveling salesman problem (TSP), as shown in Figure 6. The ACO algorithm is
a probabilistic algorithm that is used to find optimized paths frequently. The algorithm
constructs a solution path from the walking paths of multiple ants and improves the quality
of the solution by exchanging pheromones on the solution path, thereby achieving the
purpose of optimization. Compared with other heuristic algorithms, the ACO algorithm
has stronger robustness and better global optimization ability.

Figure 6. Tool path planning of a multi-cavity part.

For the problem of multi-cavity tool path planning, the influence of cavity machining
sequence is significant. Therefore, we use the ACO algorithm to calculate the initial cavities
machining sequence in the global scope. When the tool path is globally optimized, a unique
feed position needs to be determined for each cavity. Therefore, it is necessary to add the
remaining tool feed positions of the same cavity to the tabu list, which avoids obtaining
repeated tool feed positions when machining the same cavity.

Based on the above analysis, we designed the algorithm shown in Figure 7. The
specific algorithm steps are as follows:

Step 1. Initialize all parameters. Let the number of loops Nc = 0 and set the maximum
number of iterations Ncmax. Place m ants on n feed positions.

Step 2. According to the transition probability Pk
ij, m ants select the next feed position.

The remaining feed positions of the same cavity are added to the tabu list, and each ant
completes the travel of the respective cavity.

Step 3. Store the route distance. Let Nc = Nc + 1 and continue the iteration.
Step 4. Update the pheromone and empty the tabu list.
Step 5. Judge if Nc reaches the maximum number of iterations. If the maximum

number of iterations is not reached, return to Step 1 for the next iteration, otherwise, the
algorithm ends.
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Figure 7. Flow chart of optimal tool feed positions using ACO algorithm.

In Step 2, the probability Pk
ij that each ant depends on when selecting the next cavity

feed position is calculated according to the state transition Formula as,

Pk
ij =


τα

ij η
β
ij

∑s∈allowedk
τα

isη
β
is

, j ∈ allowedk

0
(5)

where Pk
ij is the kth ant’s transition probability; j is the feed position of unvisited cavity; τk

ij

is the pheromone track strength of path (i, j); ηk
ij is visibility of path (i, j), which reflects

the inspiration level of transition; α is information heuristic factor, indicating the relative
importance of accumulated information; β is expected heuristic factor, indicating the
relative importance of visibility; allowedk is the position of tool feed that each ant can
choose after one transfer. The range of allowedk is allowedk = {0, 1, . . . , n− 1}.

In order to meet the needs of all ants passing through all cavities, it is necessary
to create a data structure called tabu list to store the tool feed positions that the ants
have passed. Since there may be more than one feed position for each cavity, the ants
should exclude the remaining feed positions of the same cavity before proceeding to the
next path selection. In order to avoid the residual information flooding the heuristic
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information caused by large amounts of residual pheromone, after each ant finishes a
cavity or completes the traversal of all cavities (that is, the end of one cycle), the residual
information is updated. The amount of pheromone on each path can be modified as

τij(t + 1) = ρ · τij(t) + ∆τij(t, t + 1) (6)

∆τij(t, t + 1) =
m

∑
k=1

∆τk
ij(t, t + 1) (7)

where ∆τk
ij(t, t + 1) is the pheromone left by kth ant at the time (t, t + 1) on the path (i, j).

∆τk
ij(t, t + 1) means the increment of the pheromone quantity of the path (i, j) in this loop.

ρ represents the residual coefficient of the pheromone.
In general, ∆τk

ij has three pheromone update models which include ant-quantity model,
ant-density model, and ant-cycle model. The ant-cycle model uses global information, that
is, the ant updates the pheromone on all paths after completing a loop, and the ant-quantity
and ant-density models use local information, that is, the ant updates the pheromone on
the path after completing one step [23]. Therefore, we use the ant-cycle model for the global
update of pheromone in multi-cavity tool path planning. The value of updated pheromone
can be obtained as

∆τij(t + n) =

{
Q
Lk

, ant is in the path(i, j)
0, ant is out of the path(i, j)

(8)

where Lk is the length of the path taken by the kth ant in this cycle.

4. Implementation and Verification

In order to verify the effectiveness of the proposed method, the CNC tool path plan-
ning of an aircraft structural part (shown in Table 1) was used as a sample. This part
mainly involves 20 cavities, and each cavity corner adopts blend features which should be
considered compensation in CNC programming.

Table 1. The dimension and process parameters of sample part.

Dimension

Top border L1 (mm) 669.2 Bottom border L2
(mm) 869.5

Height
L3 (mm) 910.8 Deep

Dc (mm) 23

Thickness
D (mm) 50 Material 7B04-T651

Process Parameters

Vc (r/min) 2000 ap (mm/min) 0.5
Vf (mm/min) 250 Tool material D16

4.1. Obtain the Coordinates of Tool Feed Positions

In this case, the tool feed positions of cavities are obtained by Formulaes (1) and (2).
We make use of the application programming interface of the Siemens Unigraphics (UG)
software and carry on the secondary development to UG, which realizes the algorithm, as
shown in Figure 8.
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Combined with the 3D model as shown in Figure 8, part of the tool feed positions
coordinates are shown in Table 2. There is a total of 85 tool feed positions in all the
20 cavities, which form a coordinate position matrix P.

Table 2. Tool feed position coordinate (cavity 1–cavity 5).

Cavity No.
Coordinate Cavity No.

Coordinate
x y z x y z

1

1© 92.60 13.98 50
4

12© 20.87 426.45 50
2© 15.84 14.47 50 13© 35.12 295.79 50
3© 90.56 119.07 50 14© 14.14 448.01 50

4© 17.81 119.27 50

5

15© 15.89 579.60 50

2

5© 40.32 276.37 50 16© 21.51 449.41 50
6© 15.50 273.91 50 17© 33.45 578.54 50
7© 17.98 146.72 50 18© 17.30 602.75 50
8© 105.59 152.34 50 19© 20.73 730.61 50

3
9© 99.56 144.64 50

10© 14.82 297.29 50
11© 15.60 426.99 50

4.2. Optimization of Milling Tool Path Using ACO Algorithm

The number of ants is determined by the number of cavities. Combined with Table 3,
a total of 20 ants were randomly assigned to 85 tool feed positions in 20 cavities to construct
an initial random distribution. In the TSP optimization process of the same scale as sample,
the optimal range of information heuristic factor α is [0.7, 1.1], the expected heuristic
factor β has a value range of [3.8, 4.5], the pheromone intensity Q value can be selected
between 1 and 20, the residual coefficient of the pheromone ρ has little effect on time,
when ρ = 0.5, the optimal solution performance is better [23]. According to Section 4, the
distance-weighted adjacency matrix P is obtained from the tool feed position matrix D. The
control parameters and algorithm codes are shown in Table 3. In the algorithm codes, each
ant selects the next corner according to the probability calculated by Formula (5). Once the
corner feature of the same cavity is selected, the remaining tool feed positions of this cavity
are added to the tabu list and are no longer candidates. Each ant stops moving as it passes
through all the cavities.
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Table 3. Control parameters and codes of ACO algorithm.

Parameters m α β Q ρ Nc

Value 20 0.7 3.8 20 0.5 50

Code

Input P, Nc, m
Output Optimal tool path
1: for j = 2:n
2: for i = 1:m
3: visited = Tabu(i,1:(j − 1));
4: J = zeros(1,(n – j + 1));
5: P = J;
6: Jc = 1;
7: for k = 1:n
8: if length(find(visited == k)) == 0
9: if length(find(Tabu(i,1:j) == C(k,4))) == 0
10: J(Jc) = k;
11: Jc = Jc + 1;
12: end
13: end
14: end
15: for k = 1:length(J)
16: P(k) = (Tabu(visited(end),J(k))ˆAlpha)*(Eta(visited(end),J(k))ˆBeta);
17: end
18: P = P/(sum(P));
19: Pcum = cumsum(P);
20: Select=find(Pcum ≥ rand);
21: to_visit = J(Select(1));
22: Tabu(i,j) = to_visit;
23: end
24: end

We record the moving length of each ant and select the shortest ones. Then, the
pheromone is updated and the pheromone information on the path (considering the
pheromone accumulation and volatilization for each movement) is stored to the pheromone
matrix. In the end, we empty the tabu list for the next iteration. When the number of
iterations reaches the set value, the iteration is stopped and the resulting optimal path is
returned. For the purpose of the validity of the algorithm, we implemented a verification
experiment in Matlab. The results are shown in Figure 9. In this experiment, the terminate
condition (maximum iterations Nc) is set to 50. As shown in Figure 9a, we can obtain
the optimal tool path using ACO algorithm from 85 tool feed positions of 20 cavities. In
Figure 9b, we can see that the shortest distance tends to stabilize after 10 iterations and the
average distance traveled by the ants tends to be stable at about 3000 mm. This implies
that the tool moving distance at 3000 mm, the machining time may be the shortest.
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4.3. Comparative Analysis of Simulation and Experiment Results

In order to verify the advantages of the method proposed in this paper, we performed
a comparative simulation experiment in the UG software. The ball end milling cutter
we used has a diameter of 10 mm and a length of 75 mm. The main process parameters
are given in Table 1. In order to achieve the comparison verification, we simulate three
different tool paths in the UG software, as shown in Figures 10 and 11.

Figure 10. Tool paths simulation in the Siemens Unigraphics (UG) software.

Figure 11. ACO-based simulation path and machining experiment.

In Figure 10a, the first tool path follows zigzag. To compare the efficiency of different
milling methods, Figure 10b shows the tool path of peripheral milling, and the idle strokes
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between cavities are optimized by improved-GA algorithm, which was described in detail
in previous work [25]. Figure 11 shows the simulation path and machining experiment
based on ACO algorithm. Table 4 shows the machining time required to use these three
tool paths.

Table 4. Machining time comparison of three tool paths.

Tool Path Type Machining Time (h/min/s)

Zigzag 02:00:30
Peripheral 01:54:09

ACO-based tool path 01:39:15

The Siemens SINUMERIK 808D CNC system is adopted in the machining experiment.
The G codes of tool path shown in Figure 11c are generated by the the UG software post-
processing function. The tool is a ball milling cutter (Φ12 mm × 30 mm × 60 mm), and the
milling parameters are shown in Table 1. The Perthometer M2 was used to measure the
four walls of the No. 19 cavity. The measurement results, as shown in Table 5, represent
that the processing has good uniformity and the surface roughness meets the requirements,
which verifies the validity of the simulation trajectory.

Table 5. Surface roughness measured of the No. 19 cavity.

Measurement Platform The No. 19 Cavity

The measurement data (µm)

wall1 wall2

0.482 0.567

wall3 wall4

0.503 0.512

Based on the above experiments, we obtain the following results:

• As shown in Figure 9b, we can see that the shortest distance tends to stabilize after
10 iterations. This proves the superiority of the ACO algorithm in multi-cavity milling
path optimization.

• In Figure 11c, a total of 20 tool feed positions were obtained by ACO algorithm. On
this basis, it is more suitable for automatically calculating the distance of tool paths.
We can get the optimized machining sequence of the 20 cavities.

• Table 4 shows that the machining time of the ACO-based optimal tool path is 21 min
shorter than the zigzag milling path and is 14 min shorter than GA-based peripheral
milling. Computational results show that the tool path planning method proposed in
this paper can effectively shorten the machining time.

• The machining results in Table 5 show that the milling method mentioned in this
article can guarantee high quality machining uniformity.

5. Conclusions and Future Work

This paper proposed and validated a novel NC tool path planning method for high-
speed milling of multi-cavity part based on ACO algorithm. Some of the main contributions
of this research are listed below.
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• For the milling of inner cavity corners by peripheral milling method, we established a
mathematical model of the corner milling process. Based on this, we combine with
ACO algorithm to select the optimal tool feed position for each cavity.

• The ACO algorithm is used to optimize the tool path of multi-cavity part. Compared
with the other two commonly used tool path planning methods, the method proposed
in this paper can shorten the machining time by more than 13%.

In the near future, several issues are worth being further researched: (1) extension of
our research to other machining features, e.g., optimization of process routing in machining
a group of holes, and (2) exploration the automatic identification technology of blend
features to support intelligent NC machining process planning.
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