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We present a hybrid heuristic computing method for the numerical solution of nonlinear singular boundary value problems
arising in physiology. The approximate solution is deduced as a linear combination of some log sigmoid basis functions. A fitness
function representing the sum of the mean square error of the given nonlinear ordinary differential equation (ODE) and its
boundary conditions is formulated. The optimization of the unknown adjustable parameters contained in the fitness function
is performed by the hybrid heuristic computation algorithm based on genetic algorithm (GA), interior point algorithm (IPA),
and active set algorithm (ASA). The efficiency and the viability of the proposed method are confirmed by solving three examples
from physiology. The obtained approximate solutions are found in excellent agreement with the exact solutions as well as some
conventional numerical solutions.

1. Introduction

The numerical treatment of nonlinear singular boundary
value problems (BVPs) has been considered by several
authors in the last few decades due to their varied appli-
cations in the fields of engineering and science such as
gas dynamics, atomic structures, atomic calculations, and
chemical reactions [1]. Many methods including finite dif-
ference method, Chebyshev polynomial, B-spline method,
and nonpolynomial cubic spline have been employed to
handle singular boundary value problems. The reader may
find a comprehensive survey of computational techniques
utilized for the numerical solution of singular boundary value
problems in [1].

The key objective of this paper is to present a stochastic
computing technique for the numerical solution of nonlinear
singular boundary value problems of the following form
[2]:
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The assumptions normally applied on 𝑓(𝑥, 𝑦) are that it is
continuous, 𝜕𝑓/𝜕𝑦 exists and is continuous, and 𝜕𝑓/𝜕𝑦 ≥ 0,
for all 0 ≤ 𝑥 ≤ 1. The singular boundary value problem (1)–
(3) occurs in numerous applications, especially with 𝑚 = 0,
1, 2 and 𝑎 = 0 in the study of many tumor growth problems
[3, 4] and with 𝑚 = 2 and 𝑎 = 0 in the study of steady state
oxygen diffusion in a spherical cell with Michaelis-Menten
uptake kinetics [5–8]. A similar problem for𝑚 = 2 and 𝑎 = 0

also arises in the study of the distribution of heat sources in
the human head [9–11].

An incredible amount of research work has been invested
for the study of the singular boundary value problems (BVPs)
of the form (1)–(3), and different analytical and numerical
methods have been utilized [2, 12–16]. Among many authors,
Rashidinia et al. employed nonpolynomial cubic spline
method [2], Pandey and Singh used finite difference method
[12], Khuri and Sayfy recently proposed a method based
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on the combination of modified decomposition method
and cubic B-spline collocation [13], Çağlar et al. applied
B-spline method [14], Mittal and Nigam used Adomian
decomposition method (ADM) [15], and very recently Motsa
and Sibanda proposed a numerical scheme based on suc-
cessive linearization method (SLM) [16] for the approximate
numerical solutions of singular BVPs of the form (1)–(3).

In last few decades many researchers have employed evo-
lutionary computing based methods for handling nonlinear
problems arising in engineering and science and particularly
for the numerical solution of nonlinear systems of ordinary
differential equations (ODEs).The efficiency and the viability
of evolutionary computing (EC) based methods have been
demonstrated by several authors [17–22]. Although a large
number of nonlinear ODEs have been solved using the evolu-
tionary computation based methods, only a few are narrated
here. Khan et al. employed a PSO based neural network
(NN) method [17] for the numerical solution Wessinger’
equation. Arqub et al. used continuous genetic algorithm
(CGA) based method [18] for the numerical solution of
linear and nonlinear singular BVPs. Recently Malik et al.
used a hybrid heuristic computing method [19] based on
the combination of genetic algorithm (GA), interior point
algorithm (IPA), and active set algorithm (ASA) for the
numerical solution of Troesch’s problem. Caetano et al.
applied GA based neural network (NN) method [20] for the
solution of nonlinear ODEs arising in atomic and molecular
physics. Raja et al. used a hybrid PSO based neural network
(NN) method [21] for the numerical solution of nonlinear
Riccati differential equation of fractional order. Behrang et
al. employed PSO based NN for the solution of nonlinear
differential equation arising in fluid flow and heat transfer of
vertical cone embedded in porous media [22].

The main focus of this work is to present an approximate
numerical technique for the solution of nonlinear singular
boundary value problems (1)–(3).The technique is stochastic
in nature which is based on the hybrid approach of GA
with two local search algorithms such as IPA and ASA. GA,
IPA, ASA, and two hybrid schemes combining GA with IPA
and ASA here called as GA-IPA and GA-ASA have been
employed for the optimization of a fitness function which
is the main thrust of the presented method. The efficiency
and the viability of the presented method are demonstrated
by solving three examples arising in physiology. To prove
the accuracy and the validity of our results, comparisons
have been carried out with the exact solutions and some
conventional numerical solutions given in [2, 12–14].

The rest of the paper is arranged as follows. In Section 2
we give a brief description of the proposed methodology and
heuristic search algorithms such as GA, IPA, and ASA. In
Section 3 we provide numerical results that are followed by
the discussion. Finally in Section 4 we give some concluding
remarks and future work.

2. Materials and Method

2.1. Proposed Methodology. Wemay assume that the solution
𝑦(𝑥) and its first and second derivatives 𝑦


(𝑥) and 𝑦


(𝑥)

can be approximated by a linear combination of some basis
functions which can be represented as follows:
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where𝜑(𝑥) is taken as the log sigmoid functionwhich is given
by

𝜑 (𝑥) =
1

1 + 𝑒−𝑥
, (7)

where 𝛼
𝑖
, 𝑏
𝑖
, and 𝑐

𝑖
are real valued unknown adjustable

parameters, and 𝑛 is the number of basis functions.
The approximate numerical solution 𝑦(𝑥) represented

by (4) is conveniently obtained once the optimum values
of the adjustable parameters (𝛼

𝑖
, 𝑏
𝑖
, and 𝑐

𝑖
) are acquired.

To attain the optimum values of the adjustable parameters,
a problem exclusive fitness function 𝜀

𝑗
is formulated. This

fitness function consists of the sum of mean square error
associatedwith the givenODE (𝜀

1
)and themean square error

related to the initial conditions (𝜀
2
), which is given as follows:
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where 𝑗 is the cycle index and 𝜀
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where 𝑦(𝑥), 𝑦(𝑥), and 𝑦

(𝑥), are given by (4)–(6).

The fitness function given by (8) contains unknown
adjustable parameters (𝛼

𝑖
, 𝑏
𝑖
, and 𝑐

𝑖
).Theminimization of (8)

is performed by utilizing the heuristic algorithms GA, IPA,
and ASA, and two hybrid schemes such as GA-IPA, and GA-
ASA to attain the optimal values of 𝛼

𝑖
, 𝑏
𝑖
, and 𝑐

𝑖
. Consequently

the approximate numerical solution of the given problem is
straightforward determined from (4).

2.2. Brief Description of Heuristic Search Algorithms. Genetic
algorithm (GA) is one of the most popular stochastic global
search methods in evolutionary algorithms. GA finds the
optimal solution of a problem using the evolutionary ideas
of natural selection and genetics. GA starts from a randomly
generated population of individuals called chromosome.
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Each individual within a population is regarded as a possible
solution to the problem. The individuals within a population
are evaluated using an exclusive fitness function of the
problem at hand.The algorithm evolves population iteratively
by mean three primary operations: selection, crossover, and
mutation to reach the optimal solution [23].

Interior point algorithm (IPA) is a popular local search
methodwhich iswidely used in varied optimization problems
including linear and nonlinear, convex and nonconvex. The
algorithm navigates through the interior feasible region
following a central path until it reaches an optimal solution.
At each iteration the algorithm applies a direct step also called
Newton step or a conjugate gradient step to solve a system of
Karush-Kuhn-Tucker (KKT) equations [24, 25].

Active set methods are iterative algorithms that solve a
sequence of subproblems.The algorithm usually predicts and
preserves a set of active and inactive constraints at an optimal
solution. Generally active set methods work in two separate
phases such as feasibility phase and optimality phase. In the
feasibility phase the method attempts to find a feasible point
for the constraints, while the objective function is ignored.
In the optimality phase the method preserves the feasibility,
while it attempts to find an optimal point [26].

The hybridization of GA with local search methods
can provide improved performance in many optimization
problems [27]. In this work we have used the hybridization
of GA with two local search methods such as interior point
algorithm (IPA) and active set algorithm (ASA). The GA has
been used as global optimization which provides the global
optimal solution which is subsequently fed into IPA and ASA
for local search fine tuning to achieve the improved results.

The procedural steps of the hybrid schemes GA-IPA and
GA-ASA are provided in Pseudocode 1, while the parameter
settings for the implementation of these algorithms are given
in Table 1.

3. Results and Discussion

In this section the proposed methodology is implemented
on three problems arising in physiology. For the accuracy,
efficacy, and viability of the proposed method, comparisons
of the results are made with the exact solutions and some
conventional methods including modified decomposition
method (MDM) combined with B-spline collocation tech-
nique [13], B-spline functions [14], finite difference method
[12], and nonpolynomial cubic spline method [2].

Example 1. We consider the following special case of (1)
which arises in thermal explosions [13, 14]:

𝑦

+

1

𝑥
𝑦

= −𝑒
𝑦 (11)

subject to the boundary conditions

𝑦


(0) = 0, 𝑦 (1) = 0. (12)

The exact solution of (11) is given by 𝑦(𝑥) = 2 ln((𝑐+1)/(𝑐𝑥2+
1)), where 𝑐 = 3 − 2√2.

The approximate numerical solution of (11) with the
given boundary conditions (12) using the proposed method
is achieved by formulating its fitness function 𝜀

𝑗
described in

Section 2. Assuming the number of basis functions 𝑛 = 10,
the fitness function is developed as follows:
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The fitness function given by (13) is minimized by employing
the algorithms GA, IPA, and ASA and two hybrid schemes
GA-IPA and GA-ASA for the determination of the optimal
values of unknown adjustable parameters (𝛼

𝑖
, 𝑏
𝑖
, and 𝑐

𝑖
).

MATLAB 7.6 has been used for the implementation of the
algorithms in this study.

The parameter settings used for the implementation of
the algorithms GA, IPA, GA-IPA, and GA-ASA are given
in Table 1. The length of the chromosome, that is, the
number of unknown adjustable parameters (𝛼

𝑖
, 𝑏
𝑖
, and 𝑐

𝑖
), are

chosen equal to 30. The values of these unknown adjustable
parameters are bounded between −15 and +15. This was
observed by performing many simulation experiments that,
by restricting the values of unknown adjustable parameters to
the interval [−15, +15], we get better results.

The algorithms are executed according to the prescribed
settings in Table 1. The optimal values of the unknown
adjustable parameters corresponding to the minimum fitness
are acquired. The optimal values achieved by the hybrid
schemes GA-IPA and GA-ASA are given in Table 2. The
optimal values of the adjustable parameters from Table 2 are
used in (3) and consequently the approximate numerical
solution 𝑦(𝑥) of Example 1 is obtained. The approximate
numerical results obtained by the proposedmethod are given
in Table 3. For the accuracy of numerical results and the
potency of our method, we also present the absolute errors
and maximum absolute errors by our method in Tables 4
and 5, respectively. The comparisons are made with the exact
solutions and the approximate numerical results obtained by
other conventional methods including modified decompo-
sition method (MDM) combined with B-spline collocation
technique [13] and B-spline functions [14]. It is observed
from the comparison of the absolute errors in Table 4 and
the maximum absolute errors in Table 5 that the proposed
method based on heuristic computing yields the approximate
numerical solution of the problem given by (11)-(12) with
greater accuracy. Furthermore it is evident from comparison
of Table 4 that the errors relative to the exact solutions by the
proposed heuristic hybrid schemes are much smaller than
the errors by the approach I method used in [13], whereas
they are relatively smaller than approach II method errors
given in [13]. Moreover it is observed from the comparison
of Table 5 that the maximum errors by the proposed method
using hybrid schemes are comparable to B-spline method
given in [14].
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Table 1: Parameter settings of algorithms.

GA ASA IPA
Parameters Settings Parameters Settings Parameters Settings

Population size 240 Start point Optimal values from
GA Start point Optimal values

from GA
Chromosome size 30 Maximum iterations 400 Maximum iterations 1000

Selection function Stochastic uniform Maximum function
evaluations 150000 Maximum function

evaluations 150000

Mutation function Adaptive feasible Function tolerance 1𝑒 − 18 Function tolerance 1𝑒 − 18

Crossover function Heuristic Nonlinear constraint
tolerance 1𝑒 − 18

Nonlinear constraint
tolerance 1𝑒 − 18

Hybridization PS/IPA SQP tolerance 1𝑒 − 18 SQP tolerance 1𝑒 − 18

X tolerance 1𝑒 − 18 X tolerance 1𝑒 − 18

Number of
generations 2000 Hessian BFGS

Function tolerance 1𝑒 − 18 Derivative type Central
differences

Nonlinear constraint
tolerance 1𝑒 − 18

Bounds −15, +15

Step 1. Population Initialization
A population of𝑁 individuals or chromosome is generated using
random number generator. The length of the chromosome represents the
number of unknown adjustable parameters to be optimized.

Step 2. Fitness Evaluation
A problem relevant fitness function is used to compute the fitness of
each individual in the current population.

Step 3. Stoppage Criteria
The algorithm stops if the maximum number of generations (cycles) has
exceeded or a certain level of fitness value has reached. If the stopping
criterion is fulfilled then go to step 6 for local search fine tuning, else
continue and repeat steps 2 to 5.

Step 4. Selection and Reproduction
The chromosomes from the current population are selected on the basis
of their fitness which acts as parents for new generation. These parents
produce children (offsprings) with a probability to their fitness through
crossover operation.

Step 5. Mutation
Mutation operation introduces random alterations in the genes to retain
the genetic diversity to find a good solution.

Step 6. Local Search Fine Tuning
The optimal chromosome achieved by the GA is fed to IPA for fine
tuning and improvement.

Pseudocode 1: Hybridization of GA with IPA and ASA.

Example 2. We consider the following nonlinear singular
boundary value problem [2]:

𝑦
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(1) = ln(
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5
) − 5. (17)

To obtain the approximate numerical solution of (16) subject
the boundary conditions (17) using the proposed method, its
fitness function with 𝑛 = 10 is developed as follows:
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Table 2: Optimal values of adjustable parameters acquired by hybrid schemes GA-IPA and GA-ASA for Example 1.

Algorithm 𝑖 𝛼
𝑖

𝑏
𝑖

𝑐
𝑖

GA-IPA

1 −0.881133727216563 0.175902006189556 2.693904577232850
2 −1.914168112274790 1.024785387381440 −0.272756383809543
3 0.901876834716753 1.555229731984290 0.208750983272920
4 −1.947284050383540 0.246494504533957 2.816685127611610
5 0.319195846157371 0.311493860596170 2.589042884403360
6 0.338828303168466 1.412954189710230 2.134887086122020
7 1.815710626779760 −1.118954968300880 2.558280772425890
8 0.597896084699779 1.439765864844720 0.831615402493059
9 −0.910846359413137 −2.055541748351630 −2.280854618769590
10 0.921033436460622 −0.501229298596323 1.104201541521030

GA-ASA

1 −1.222686746438630 0.189242172392676 8.252947472264750
2 −2.523521838558800 0.932853654818075 −1.298732098734470
3 0.093712913166590 2.928861096270040 1.277936661162530
4 −3.184466684228680 0.032276934636307 7.151638887800430
5 0.841907376147177 0.624133706586784 6.016699202542360
6 0.543579681831342 2.609855976017300 4.653625396488530
7 2.180560092827050 −1.246422531808260 5.635726739884160
8 1.088558307376610 1.635782026957210 0.687577406535134
9 −1.174842130910290 −3.963774572717790 −5.326425392182380
10 1.017060692847850 −0.833587641581821 2.237065486971310

Table 3: Numerical results of Example 1 by the proposed method.

𝑥 Exact GA IPA ASA GA-IPA GA-ASA
0 0.3166943676 0.3166656886 0.3167235925 0.3166903739 0.3166919976 0.3166964930
0.1 0.3132658505 0.3132354298 0.3132887292 0.3132625857 0.3132642918 0.3132672136
0.2 0.3030154228 0.3029841724 0.3030366052 0.3030123698 0.3030141051 0.3030160399
0.3 0.2860472653 0.2860174116 0.2860660073 0.2860446109 0.2860462114 0.2860481870
0.4 0.2625311275 0.2625020387 0.2625462372 0.2625289616 0.2625304715 0.2625320664
0.5 0.2326967839 0.2326670299 0.2327085884 0.2326948398 0.2326964390 0.2326970733
0.6 0.1968268057 0.1967963971 0.1968370622 0.1968247535 0.1968264983 0.1968263055
0.7 0.1552481067 0.1552187706 0.1552588254 0.1552459379 0.1552476485 0.1552472821
0.8 0.1083227634 0.1082965176 0.1083348565 0.1083208348 0.1083222537 0.1083221989
0.9 0.0564386025 0.0564160020 0.0564511385 0.0564372448 0.0564383104 0.0564384736
1.0 0.0000000000 −0.0000203826 0.0000106706 −0.0000009654 −0.0000000250 −0.0000000622

Table 4: Comparison of absolute errors for Example 1 between proposed method and the method given in [13].

Proposed method MDM—cubic B-spline collocation method [13]

𝑥 GA IPA ASA GA-IPA GA-ASA Approach I
(with𝑁 = 20)

Approach II
(with𝑁 = 20)

0 2.87𝐸 − 05 −2.92𝐸 − 05 2.37𝐸 − 06 3.99𝐸 − 06 −2.13𝐸 − 06 1.05𝐸 − 05 2.00𝐸 − 06

0.1 3.04𝐸 − 05 −2.29𝐸 − 05 1.56𝐸 − 06 3.26𝐸 − 06 −1.36𝐸 − 06 1.05𝐸 − 05 1.99𝐸 − 06

0.2 3.13𝐸 − 05 −2.12𝐸 − 05 1.32𝐸 − 06 3.05𝐸 − 06 −6.17𝐸 − 07 1.03𝐸 − 05 1.97𝐸 − 06

0.3 2.99𝐸 − 05 −1.87𝐸 − 05 1.05𝐸 − 06 2.65𝐸 − 06 −9.22𝐸 − 07 1.02𝐸 − 05 1.94𝐸 − 06

0.4 2.91𝐸 − 05 −1.51𝐸 − 05 6.56𝐸 − 07 2.17𝐸 − 06 −9.39𝐸 − 07 9.93𝐸 − 06 1.83𝐸 − 06

0.5 2.98𝐸 − 05 −1.18𝐸 − 05 3.45𝐸 − 07 1.94𝐸 − 06 −2.89𝐸 − 07 9.62𝐸 − 06 1.78𝐸 − 06

0.6 3.04𝐸 − 05 −1.03𝐸 − 05 3.07𝐸 − 07 2.05𝐸 − 06 5.00𝐸 − 07 6.93𝐸 − 06 1.67𝐸 − 06

0.7 2.93𝐸 − 05 −1.07𝐸 − 05 4.58𝐸 − 07 2.17𝐸 − 06 8.25𝐸 − 07 4.75𝐸 − 06 1.34𝐸 − 06

0.8 2.62𝐸 − 05 −1.21𝐸 − 05 5.10𝐸 − 07 1.93𝐸 − 06 5.64𝐸 − 07 2.93𝐸 − 06 9.20𝐸 − 07

0.9 2.26𝐸 − 05 −1.25𝐸 − 05 2.92𝐸 − 07 1.36𝐸 − 06 1.29𝐸 − 07 1.37𝐸 − 06 4.57𝐸 − 07

1.0 2.04𝐸 − 05 −1.07𝐸 − 05 2.50𝐸 − 08 9.65𝐸 − 07 6.22𝐸 − 08 0 0
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Table 5: Comparison of maximum absolute error for Example 1 between the proposed method and the methods given in [13, 14].

Proposed method Method in [13]
Approach I

Method in [13]
Approach II B-spline method [14]

3.13𝐸 − 5 ( GA) 1.05𝐸 − 5 (𝑁 = 5) 3.22𝐸 − 5 (𝑁 = 5) 3.16𝐸 − 5 (ℎ = 1/20)
2.92𝐸 − 5 (IPA) 1.05𝐸 − 5 (𝑁 = 10) 8.06𝐸 − 6 (𝑁 = 10) 7.87𝐸 − 6 (ℎ = 1/40)
2.37𝐸 − 6 (ASA) 1.05𝐸 − 5 (𝑁 = 20) 2.00𝐸 − 6 (𝑁 = 20) 3.50𝐸 − 6 (ℎ = 1/60)
3.99𝐸 − 6 (GA-IPA) 1.55𝐸 − 6 (ℎ = 1/90)
2.13𝐸 − 6 (GA-ASA) 4.97𝐸 − 7 (ℎ = 1/161)

Table 6: Optimal values of adjustable parameters acquired by the hybrid schemes GA-IPA and GA-ASA (for𝑚 = 0.25).

Algorithm 𝑖 𝛼
𝑖

𝑏
𝑖

𝑐
𝑖

GA-IPA

1 2.00000990197459 −2.53327380955379 −2.04436628299064
2 −1.28602583694444 0.628600926323132 −3.08615267144563
3 0.765196864102529 −0.826071194697222 −0.448002389749568
4 −3.36316154283773 1.94124108704907 −2.24922902674485
5 −2.81754759022593 1.90734595147276 −2.66329404646048
6 −0.749086831887256 −3.10918782644835 1.59601601647687
7 −2.56750443242766 −1.64680511116928 −2.3695938077251
8 1.67102584035366 3.3098175417873 −2.95032975955236
9 −2.91926666202298 −1.4378519528881 −1.43522291979122
10 −0.516212440164525 −0.623509775567634 −2.703478256228

GA-ASA

1 0.464500439684582 −11.0028781120949 −12.7636935584212
2 −3.33324694261012 2.11315018577675 −5.37188638435383
3 −0.194337559721311 0.47470727444725 −0.042351193375573
4 −3.45408759766678 2.70099441007266 −3.75724365940641
5 −5.48801698503117 −14.9999432116995 −13.806030007752
6 −1.28645991543674 −2.97502002092667 2.6266679780155
7 −6.56302549714287 −5.15963787587387 −8.09010590696137
8 1.9884484940218 2.42668650849131 −5.97859767484604
9 −9.05563942802748 −1.15701411492891 −11.8680893657959
10 −1.05136593168004 −1.23760873949133 −10.0917104751297

Table 7: Comparison of maximum absolute errors in solution of Example 2 between the proposed heuristic computing method and the
methods given in [2, 12] (for𝑚 = 0.25, 1).

𝑚 = 0.25 𝑚 = 1

Proposed method Method in [12] Method in [2] Proposed method Method in [2] Method in [12]
1.11𝐸 − 4 (GA) 1.17𝐸 − 4 (𝑁 = 16) 2.07𝐸 − 4 (𝑁 = 16) 6.46𝐸 − 4 (GA) 1.46𝐸 − 3 (𝑁 = 16) 1.71𝐸 − 3 (𝑁 = 16)
1.10𝐸 − 4 (IPA) 3.04𝐸 − 4 (𝑁 = 32) 1.87𝐸 − 4 (𝑁 = 32) 1.43𝐸 − 4 (IPA) 3.68𝐸 − 4 (𝑁 = 32) 1.87𝐸 − 4 (𝑁 = 32)
1.42𝐸 − 4 (ASA) 7.67𝐸 − 5 (𝑁 = 64) 3.88𝐸 − 5 (𝑁 = 64) 3.23𝐸 − 4 (ASA) 9.20𝐸 − 5 (𝑁 = 64) 1.96𝐸 − 5 (𝑁 = 64)
6.47𝐸 − 5 (GA-IPA) 1.92𝐸 − 5 (𝑁 = 128) 8.10𝐸 − 5 (𝑁 = 128) 1.14𝐸 − 5 (GA-IPA) 2.30𝐸 − 5 (𝑁 = 128) 1.72𝐸 − 5 (𝑁 = 128)
1.40𝐸 − 4 (GA-ASA) 4.81𝐸 − 6 (𝑁 = 256) 2.75𝐸 − 6 (𝑁 = 256) 1.51𝐸 − 4 (GA-ASA) 5.75𝐸 − 6 (𝑁 = 256) 1.77𝐸 − 6 (𝑁 = 256)

Table 8: Comparison of maximum absolute errors in solution of Example 2 between the proposed heuristic computing method and the
methods given in [2, 12] (for𝑚 = 2, 8).

𝑚 = 2 𝑚 = 8

Proposed method Method in [12] Method in [2] Proposed method Method in [2]
9.04𝐸 − 2 (GA) 1.82𝐸 − 3 (𝑁 = 16) 7.71𝐸 − 3 (𝑁 = 16) 1.11𝐸 − 4 (GA) 4.11𝐸 − 3 (𝑁 = 16)
1.26𝐸 − 4 (IPA) 4.52𝐸 − 4 (𝑁 = 32) 7.78𝐸 − 5 (𝑁 = 32) 1.1𝐸 − 4 (IPA) 9.76𝐸 − 4 (𝑁 = 32)
9.52𝐸 − 5 (ASA) 9.20𝐸 − 5 (𝑁 = 64) 7.05𝐸 − 5 (𝑁 = 64) 1.42𝐸 − 4 (ASA) 2.38𝐸 − 4 (𝑁 = 64)
4.29𝐸 − 4 (GA-IPA) 2.80𝐸 − 5 (𝑁 = 128) 6.45𝐸 − 6 (𝑁 = 128) 6.47𝐸 − 5 (GA-IPA) 5.89𝐸 − 5 (𝑁 = 256)
5.47𝐸 − 5 (GA-ASA) 7.00𝐸 − 6 (𝑁 = 256) 7.38𝐸 − 7 (𝑁 = 256) 1.40𝐸 − 4 (GA-ASA) 3.66𝐸 − 6 (𝑁 = 512)
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Table 9: Optimal values of adjustable parameters acquired by the hybrid schemes GA-IPA and GA-ASA (for𝑚 = 0.25).

Algorithm 𝑖 𝛼
𝑖

𝑏
𝑖

𝑐
𝑖

GA-IPA

1 −1.21283109847133 2.10611144213430 −1.74180188323508
2 1.03571174166241 3.33901417043102 1.97927968097166
3 2.54354943860472 −2.81356919290601 −1.82477617426169
4 −0.08380302331005 −0.89090920684382 −3.47294702330385
5 −3.78578617501133 2.34830432992743 −0.46468044922713
6 0.77113283421175 1.39103539510805 0.60221633923140
7 −0.39166723764742 −2.78667344812987 −2.71312485832199
8 2.60276365782489 3.24107191442605 2.25289685558876
9 −4.01442973095422 0.11578635663362 −1.55798487398090
10 −0.01034412572293 −0.73422658403828 −1.74180188323508

GA-ASA

1 −1.29954899127975 1.55618946670852 −4.97951286549580
2 0.36030995762761 4.54268965985819 −1.53639071233373
3 1.35509804608392 −3.67898087578096 1.22063364702299
4 −1.49517350846173 −8.31269717983695 −6.46006519243648
5 −3.56649523601647 2.84611416572567 −4.07363209952837
6 0.13571937537889 1.49401185018163 −1.64402410793090
7 −1.17448382336998 2.18102189143932 1.16234155281522
8 3.14946103860480 1.98119612209956 −0.89293215000584
9 −2.50385665347528 1.39658982973737 4.20709618704552
10 −0.21700379010878 −2.35736445901048 −5.76189602761190

Table 10: Optimal values of adjustable parameters acquired by the hybrid schemes GA-IPA and GA-ASA (for𝑚 = 0.75).

Algorithm 𝑖 𝛼
𝑖

𝑏
𝑖

𝑐
𝑖

GA-IPA

1 −2.83258569000288 2.98033056807418 −5.23172928318637
2 −4.42010332472099 0.13495932817614 4.02502515752573
3 3.30600805415091 2.08467745171526 4.03825862924909
4 0.00408821799800 8.27613404808222 1.33095013889441
5 1.32492260599249 −3.71698529742389 4.55970043938072
6 −2.30918802461094 4.73975316526285 6.29762522267394
7 1.71075781492918 2.37576486096926 −2.55486267649637
8 4.52199590675746 −4.38217408351950 −7.46847005821201
9 0.28578832784628 −1.39979371265597 2.03514844007566
10 0.55554404620260 −1.63197937784219 0.41337265836928

GA-ASA

1 −2.73056565691944 3.49085467009396 −5.25776847865554
2 −4.33634711954231 0.23184895540015 4.31738960575493
3 3.80423016883327 1.80591217864829 4.67576012584760
4 0.01364375729467 9.41077798745202 1.15634974437215
5 0.80980144878077 −3.95901379093358 4.45931462422107
6 −2.33747274025478 5.28336935304114 6.13742438292330
7 1.88177593528183 2.61799608130219 −3.08482698001940
8 4.88126374826236 −4.73664684075954 −8.02792576795810
9 0.40997080411581 −1.47729741688129 2.21958697592547
10 0.33789053645730 −1.33529803313717 0.44393611859182

𝜀
2
=

1

2
{(𝑦


(0))
2

+ ((𝑦 (1) + 5𝑦


(1)) − ln(
1

5
) + 5)

2

} ,

(19)

𝜀
𝑗
= 𝜀
1
+ 𝜀
2
. (20)

The heuristic algorithms GA, IPA, GA-IPA, and GA-ASA are
executed with the same parameter settings given in Table 1
for the minimization of (20). To prove the effectiveness
and the viability of the proposed method we have obtained
the approximate numerical solutions of (16)-(17) for various
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Table 11: Approximate numerical results of Example 3 (for𝑚 = 0.25) by the proposed method.

𝑥 Exact GA IPA ASA GA-IPA GA-ASA
0.1 −1.386296861 −1.38624919 −1.386296338 −1.386262628 −1.386296203 −1.386298753
0.2 −1.386374358 −1.386352825 −1.386374473 −1.386378504 −1.386376846 −1.386391479
0.3 −1.386901677 −1.386878034 −1.386901875 −1.386941133 −1.386906884 −1.386932751
0.4 −1.388851090 −1.388860232 −1.388851841 −1.388925666 −1.388858277 −1.388889837
0.5 −1.394076502 −1.394112267 −1.394077442 −1.394174061 −1.394085067 −1.394124318
0.6 −1.405547818 −1.405577315 −1.405548911 −1.405653799 −1.405558190 −1.405605243
0.7 −1.427453099 −1.42749144 −1.427454577 −1.427568614 −1.427464669 −1.427513251
0.8 −1.465031602 −1.465118065 −1.465033212 −1.465167671 −1.465043706 −1.465096028
0.9 −1.523986772 −1.524106136 −1.523988676 −1.524137607 −1.524000240 −1.52405989
1.0 −1.609437912 −1.609549628 −1.609439991 −1.609586337 −1.609451732 −1.609511922

Table 12: Approximate numerical results of Example 3 (for𝑚 = 0.75) by the proposed method.

𝑥 Exact GA IPA ASA GA-IPA GA-ASA
0.1 −1.386296861 −1.386242375 −1.3862993910 −1.386375450 −1.386296290 −1.3863373760
0.2 −1.386374358 −1.387183465 −1.3863751180 −1.386502926 −1.386372340 −1.3864155390
0.3 −1.386901677 −1.388226417 −1.3869011670 −1.387062656 −1.386898891 −1.3869443860
0.4 −1.388851090 −1.390515300 −1.3888500510 −1.389039265 −1.388847721 −1.3888928150
0.5 −1.394076502 −1.395971989 −1.3940748480 −1.394277913 −1.394072825 −1.3941203720
0.6 −1.405547818 −1.407612573 −1.4055457830 −1.405749932 −1.405543725 −1.4055940940
0.7 −1.427453099 −1.429641077 −1.4274510240 −1.427661399 −1.427448708 −1.4274983690
0.8 −1.465031602 −1.467294836 −1.4650293580 −1.465258995 −1.465027141 −1.4650765090
0.9 −1.523986772 −1.526277928 −1.5239846410 −1.524225647 −1.523982007 −1.5240343800
1.0 −1.609437912 −1.611726339 −1.6094358900 −1.609670616 −1.609433051 −1.6094855960

values of the parameter 𝑚 (0.25, 1, 2, and 8). The optimal
values attained by the hybrid schemes corresponding to
the minimum fitness are provided in Table 6 for 𝑚 =

0.25, while for the rest of the values of 𝑚, these optimal
values of adjustable parameters have been omitted here. For
comparison maximum absolute errors have been computed
corresponding to all the specified values of 𝑚 (0.25, 1, 2,
and 8). The comparison of the maximum absolute errors
between the proposed heuristic method and the standard
numerical methods such as finite difference method [12] and
nonpolynomial cubic spline method [2] are presented in
Table 7 for 𝑚 = 0.25 and 𝑚 = 1 and in Table 8 for 𝑚 = 2

and 𝑚 = 8, respectively. The comparison noticeably reveals
the potency and the accuracy of the proposed method. The
comparison also reveals the improved performance of hybrid
schemes GA-IPA and GA-ASA.

Example 3. We consider Example 2 again with a change in
boundary condition as follows [12]:

𝑦 (0) = ln(
1

4
) , 𝑦 (1) + 5𝑦



(1) = ln(
1

5
) − 5. (21)

The fitness function of this example is given as follows:
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2
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The fitness functions given by (24) is subject to minimization
using the heuristic algorithms GA, IPA, and ASA and two
hybrid schemes GA-IPA and GA-ASA with the same param-
eter settings prescribed in Table 1 for the determination of
the unknown adjustable parameters. The optimal values of
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Table 13: Comparison of maximum absolute errors for Example 3 between the proposed method and the method given in [12].

𝑚 = 0.25 𝑚 = 0.75

Proposed method Finite difference
method [12] Proposed method Finite difference

method [12]
1.11𝐸 − 4 (GA) 7.85𝐸 − 4 (𝑁 = 16) 6.46𝐸 − 4 (GA) 7.94𝐸 − 4 (𝑁 = 16)
1.10𝐸 − 4 (IPA) 1.94𝐸 − 4 (𝑁 = 32) 1.43𝐸 − 4 (IPA) 2.00𝐸 − 4 (𝑁 = 32)
1.42𝐸 − 4 (ASA) 4.83𝐸 − 5 (𝑁 = 64) 3.23𝐸 − 4 (ASA) 5.00𝐸 − 5 (𝑁 = 64)
6.47𝐸 − 5 (GA-IPA) 1.21𝐸 − 5 (𝑁 = 128) 1.14𝐸 − 5 (GA-IPA) 1.25𝐸 − 5 (𝑁 = 128)
1.40𝐸 − 4 (GA-ASA) 3.01𝐸 − 6 (𝑁 = 256) 1.51𝐸 − 4 (GA-ASA) 3.13𝐸 − 6 (𝑁 = 256)

the unknown adjustable parameters acquired by the hybrid
schemes GA-IPA and GA-ASA are provided in Tables 9 and
10 for𝑚 = 0.25 and𝑚 = 0.75, respectively.

In Tables 11 and 12 our results are compared with the
exact solutions when 𝑚 = 0.25 and 𝑚 = 0.75. Moreover
in Table 13 we also present a comparison of the maximum
absolute errors between our method and the finite difference
method given in [12]. It is observed that the proposedmethod
yields the approximate solutions fairly comparable to the
finite difference method given in [12].

4. Conclusions and Future Work

In this study a hybrid heuristic computational approach has
been successfully implemented for the approximate numeri-
cal solution of nonlinear singular boundary value problems
(BVPs) arising in physiology. It can be concluded on the
basis of the comparisons of the results made with the exact
solutions and some of the standard approximate numerical
solutions that the proposed method possesses a great poten-
tial and viability for solving nonlinear singular boundary
value problems (BVPs) arising in diverse fields of engineering
and science. The strength of proposed method has been
illustrated by solving three nonlinear problems appearing
in physiology. Moreover the proposed methodology can
provide the approximate numerical solution straightforward
and on a continuous grid of time once the optimal values of
the unknown adjustable parameters are attained.

In future we intend to employ the proposedmethodology
to other such nonlinear singular boundary value problems,
nonlinear ordinary differential equations (ODEs), and non-
linear coupled ODEs arising in various fields of engineering
and applied science. We also seek to use other evolutionary
algorithms and different basis functions for the approximate
solutions of such problems.
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