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Abstract: Proteins of the mammalian target of rapamycin (mTOR) signaling axis are overexpressed
or mutated in cancers. However, clinical inhibition of mTOR signaling as a therapeutic strategy in
oncology shows rather limited progress. Nanoparticle-based mTOR targeted therapy proposes an
attractive therapeutic option for various types of cancers. Along with the progress in the biomedical
applications of nanoparticles, we start to realize the challenges and opportunities that lie ahead. Here,
we critically analyze the current literature on the modulation of mTOR activity by nanoparticles,
demonstrate the complexity of cellular responses to functionalized nanoparticles, and underline
challenges lying in the identification of the molecular mechanisms of mTOR signaling affected by
nanoparticles. We propose the idea that subcytotoxic doses of nanoparticles could be relevant for
the induction of subcellular structural changes with possible involvement of mTORC1 signaling.
The evaluation of the mechanisms and therapeutic effects of nanoparticle-based mTOR modulation will
provide fundamental knowledge which could help in developing safe and efficient nano-therapeutics.
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1. Introduction

Clinical applications of nanoparticles (NPs) and nanotechnology are rapidly growing. Because of
their unique size-dependent properties, NPs are becoming indispensable as material coatings, probes
for cell and cell structures labeling, cancer treatment, as well as means of drug and gene delivery [1–5].
Chemical and physical properties that cannot be achieved by bulk materials represent the core of
NPs uniqueness [6]. The integration of nanotechnology with pharmaceutical and biomedical sciences
resulted in the appearance of the novel field of nanomedicine that aims to develop nanoparticle-based
medicines with higher efficacy and improved safety and toxicological profiles [7,8]. Currently, there are
51 FDA-approved nanomedicines and 77 products in clinical trials [7]. The possibility to use NPs for
selective detection and killing of cancer cells still remains up to date and intriguing [7–10]. Moreover,
there is an urgent need for the development of novel therapies because conventional cancer therapies
are not that effective due to their intrinsic limitations [11,12].

Nano-research has generated a myriad of different NPs possessing distinct physicochemical
properties (e.g., size, shape, core composition, shell thickness, and surface chemistry) and having
multiple biological functions [13,14]. Indeed, several nanomedicine platforms have already shown
great promise in clinical studies [8].

Cancers 2019, 11, 82; doi:10.3390/cancers11010082 www.mdpi.com/journal/cancers

http://www.mdpi.com/journal/cancers
http://www.mdpi.com
https://orcid.org/0000-0003-2922-8896
http://dx.doi.org/10.3390/cancers11010082
http://www.mdpi.com/journal/cancers
http://www.mdpi.com/2072-6694/11/1/82?type=check_update&version=2


Cancers 2019, 11, 82 2 of 18

The serine/threonine kinase mammalian target of rapamycin (mTOR) is a key kinase that
controls cell growth and proliferation under favorable environmental conditions, integrating diverse
environmental cues (nutritional and hormone/growth factor-mediated) [15,16]. A number of cancers
overexpress or possess mutated forms of mTOR and of some of the targets of the mTOR kinase
signaling [17,18]. Thus, mTOR signaling has been recognized as a promising target for anticancer
treatment [17–19]. mTOR inhibitors have shown convenient pharmacological profiles and are well
tolerated compared to conventional anticancer drugs [19–21]. It is worth noting here that various NPs
have demonstrated successful ability to modulate mTOR activity [22–25]. For instance, amino-decorated
NPs steadily inhibited mTOR activity and proliferation in three leukemia cell lines [23]. However,
the current knowledge of the physiological and pathophysiological effects of NPs on cancer cells
remains modest.

Only recently, reports started to challenge the applicability of cancer nanomedicine, arguing that
translation of the laboratory results to successful clinical applications is very limited [26,27]. A highly
innovative study has shown that nanomedicine delivery efficiency of about 0.7% of injected NPs to
solid tumors is not superior to that of conventional drugs [27]. This study unfolded a debate over
the clinical translation of nanomedicine [28,29]. The same study also unraveled other challenges of
the clinical applicability of NPs including interactions and fate of nanomedicines in tumors [27,30].
Despite the enormous progress in the field of cancer nanomedicine, the literature lacks sufficient
studies on the evaluation of intratumoral kinetics, interactions, and fate of nanomedicines [9,27,30].
It has been recognized that the modulation of mTOR could be a hint that underlies the biological effects
of engineered NPs [31]. However, understanding the mechanisms of NP-mediated mTOR modulation
is in its infant state.

In this review, we aim to provide an overview of recent investigations on NP-mediated cell
signaling focused on mTOR modulation and identify gaps in our understanding of mTOR signal
modulation by NPs. Lysosomal stability has been considered a mediator of nanoparticle signaling to
the mTOR cascade [23,31–33]. The so-called “proton sponge effect” was originally postulated as the
main factor responsible for lysosomal stability or impairment by NPs [13,32]. However, novel findings
question the “proton sponge effect” as the dominant mechanism of lysosomal stability [34,35]. Here,
we provide a comprehensive account of the involvement of the “proton sponge effect” in lysosomal
modulation triggered by NPs. Moreover, we provide our vision of the challenges in the identification of
the molecular mechanisms of mTOR signaling modulation by NPs and the resulting cellular processes.

2. Mammalian Target of Rapamycin Signaling as a Pharmacologic Target

The mechanistic/mammalian target of rapamycin (mTOR), also known as FK506-binding protein
12-rapamycin-associated protein 1, is the key regulator of cell metabolism homeostasis [17,36]. mTOR
regulates multiple intracellular processes ranging from cell growth and proliferation to distinct death
pathways [17,36]. A single gene encodes mTOR in mammals [17]. It is well established that mTOR
interacts with several proteins to form two distinct complexes referred to as mTORC1 and mTORC2.
Various signals elicit rapamycin-sensitive mTORC1 complex responses. Activated mTORC1 switches
cell metabolism from the catabolic to the anabolic program. Such switching promotes protein synthesis
and cell growth while repressing autophagy [15–18]. Indeed, cell growth and proliferation are positively
regulated by mTORC1 via activation of many anabolic processes, including biosynthesis of proteins,
lipids, and organelles, and by limiting catabolic processes such as autophagy [37].

It has become widely accepted that the lysosomal membrane is the major site for mTORC1
activation [17,18,38–40]. A detailed mechanism of mTOR activation at the lysosomal site has been
reviewed previously [41,42]. In fact, growth factors, energy status, oxygen, and amino acids are major
signals that are integrated by mTORC1 [37]. The tuberous sclerosis complex (TSC) represents one of the
most important sensors involved in the regulation of mTORC1 activity [17,18,38–40]. TSC was shown
to inhibit mTORC1 in response to endogenous reactive oxygen species (ROS) [43,44]. Conversely, TSC
blockade results in the activation of the small Ras-related GTPase Rheb (Ras homolog enriched in
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brain). The active form of Rheb then directly interacts with mTORC1 to stimulate its activity [37].
Overall, mTOR signaling has been addressed previously in a very comprehensive, well-structured,
and illustrated review [37]. Here, we briefly summarize mTOR activation in Figure 1.
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Figure 1. Mammalian target of rapamycin (mTOR) signaling at the lysosomal surface. Under
growth-promoting conditions, Rag (Ras-related GTPases) and Rheb (Ras homolog enriched in brain)
GTPases activities result in the recruitment and activation of the mTORC1 complex. Loss of these inputs
leads to blockade of mTORC1. TSC: Tuberous sclerosis complex; v-ATPase: vacuolar-type H+-ATPase.

Upon stimulation by growth factors such as insulin, the serine/threonine kinase AKT is activated
and phosphorylates TSC [37,41]. This phosphorylation results in the dissociation of TSC from the
lysosomes, where TSC resides in growth factor-deprived conditions, and thus blocks its inhibitory
effects toward Rheb [45,46]. mTORC1 is recruited to the lysosomal membrane from the cytosol
under normal (non-stressed), nutrition-replete conditions. The recruitment to and retention of
mTORC1 in the lysosomes is regulated through an amino acid-sensing cascade involving v-ATPase
(vacuolar-type H+-ATPase), Ragulator, and Rag (Ras-related GTPases) GTPases [17,18,38–40]. v-ATPase
supports Ragulator activation which leads to the formation of active heterodimeric complexes
RagA/B–RagC/D in the lysosomes [17,18,38–40,47]. The Rag GTPase complex becomes active by
acquiring an activated guanyl-loaded configuration in which RagA/B is GTP-loaded and RagC/D is
GDP-loaded [38,40]. Such configuration facilitates the lysosomal attachment of mTORC1 by direct
interaction with Raptor [38,40]. Active Rag GTPases translocate mTORC1 to the lysosomes where
the kinase is activated by Rheb [17,18,38–40,47]. The activation of Rag GTPases is mediated by
the presence of amino acids [17]. Recent studies advocate SLC38A9 (a putative sodium-coupled
amino acid transporter in the lysosome membrane) to be a sensor that signals arginine sufficiency to
mTORC1 [48–50].

Other lysosomal amino acid transporters such as SLC15A4 [51] and proton-assisted amino acid
transporter 1 (PAT1)/SLC36A1 [52] have also been shown to be involved in mTORC1 activation.
The latter transporter functions as a symporter of amino acids with protons in stoichiometry 1:1 [52].
Therefore, for the adequate transport of amino acids, availability of free protons is required. This implies
that a functional v-ATPase and low pH in the lysosomal lumen are needed for successful mTORC1
activation. Whereas reduced lysosomal function due to v-ATPase inhibition resulted in strong
mTORC1 inactivation with subsequent reduction of mTOR-dependent phosphorylation [53–55],
mounting evidence suggests that activation of lysosomal function (acidification and delivery of
hydrolases) is associated with suppression of mTOR activity [56–58]. It is noteworthy that, in some
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specific cell types such as chondrocytes, pharmacological inhibition of lysosomal acidification activates
the mTORC1 signaling pathway [59].

Mammalian target of rapamycin is a well-accepted negative regulator of autophagy [17,36],
and low lysosomal pH is crucial for the successful execution of autophagy [60,61]. Autophagy is
a self-degradative process by which cytoplasmic materials are delivered to and degraded in the
lysosomes [62]. Increased lysosomal acidification and enhanced autophagic flux then inhibits mTORC1
signaling [63].

Summarizing all these data together is puzzling. On one hand, v-ATPase integrity and low
pH in the lysosomes are crucial for mTORC1 activation [53]. On the other hand, it was shown that
lysosomal acidification is reduced in MCF-7 cells [63]. Additionally, those cells exhibit increased levels
of autophagosomes and increased activity of mTORC1 [63]. How can that be explained?

Lysosomotropic fluorescent dyes are used to analyze lysosomal activity but do not provide
quantitative measurements of lysosomal pH. None of the studies assessed the extent of lysosomal pH
changes; nonetheless, there is emerging evidence showing that the autolysosome possesses even lower
pH than a lysosome upon fusion with an autophagosome [56]. We propose the tentative following
description. In favorable environmental conditions, a “normal” state of lysosomal acidification persists,
which includes functional v-ATPase and low pH (≈4.6–5.6) of the lysosomal compartments. This state
promotes mTORC1 activity, cell growth, and proliferation. “Decreased” acidification (pH > 5.6) is most
likely responsible for the inhibition of mTOR signaling, cell cycle arrest, and cell death. Contrarily,
“increased” acidification (pH < 4.6) accompanies the autophagic process that suppresses mTORC1.
Thus, the lysosomal pH should be tightly regulated to preserve normal mTOR function. Indeed, it is
not surprising that altered v-ATPase activity and lysosomal pH dysregulation together with altered
mTOR signaling have been found in various pathophysiological conditions [17,36,64].

Deregulated mTOR signaling was found in ageing and human diseases such as cancer and
metabolic diseases [15,17]. Whereas dysfunction of autophagy that promotes cancer through cellular
stress and the role of mTOR in this process are discussed by Paquette et al. [65], oncogenic signal
transduction through mTOR is deliberately discussed by Rad et al. [66]. Due to the prevalence of
mTORC1 activation in human cancers, there is a growing interest in mTORC1 inhibitors for the
treatment of a wide variety of cancers, including solid carcinomas and sarcomas, as well as those of
hematopoietic origins [67]. Thus, mTOR as well as some of the targets of mTOR kinase are recognized as
promising pharmacological targets [17–19]. Indeed, rapamycin showed excellent anticancer properties
in vitro [19]. However, to date, the application of rapamycin as an anti-cancer drug in clinical
trials has shown limited success [17,19]. Thus, many derivatives of rapamycin, known as rapalogs
(e.g., temsirolimus, everolimus46, ridaforolimus), were developed to improve the pharmacokinetic
properties and efficacy of rapamycin [68,69]. Despite the promise of rapalogs, they have achieved
modest effects in treating major solid tumors. The reasons for the limited clinical success of rapalogs
have not been established [69]. It is worth noting that recent studies have demonstrated that novel
v-ATPase inhibitors, which have inhibition selectivity, can be systemically administered to animals and
are highly efficacious against different cancer models in vivo [70–72]. However, so far, there is only
preclinical evidence that v-ATPase inhibitors can enhance the efficacy of many cancer therapies [70–72].
Further clinical trials are needed to provide solid proof for the use of v-ATPase inhibitors in the
treatment of cancers.

Mammalian target of rapamycin kinase inhibitors are under development and being tested for
their impact on autophagy regulation [15], tissue hypertrophy [73], diabetes, and ageing [17], and
for treatment of different cancers [74,75]. At this point, the anti-angiogenic properties of mTOR
inhibitors have shown their potential in various cancer models (reviewed by Faes et al. [76]). However,
despite a significant efficacy in pre-clinical models, the clinical tumor response to mTOR inhibitors
is relatively modest [19,77] because the compounds have only limited efficacy as single agents in
cancer therapy [75]. There are several factors which might explain this limited impact in clinical
applications [69]: Incomplete inhibition of mTORC1 [78], mutations in mTOR causing its resistance to
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inhibitors, activation of alternate proliferative signaling pathways, and intratumoral heterogeneity
of mTOR activity [79]. Although the performance of the tested mTOR inhibitors in cancer therapy
was moderate, it is still believed that the full therapeutic potential of targeting mTOR has yet to be
exploited [19,77], and NP-based medicines are thought to have the ability to overcome the problems
presented by regular drugs in mTOR signaling modulation.

3. Key Examples of Nanomaterials Used in Drug Products

In recent years, we faced a rapid development and expansion of the field of nanomedicine [80–82].
Indeed, nanomedicine is a relatively new and rapidly evolving field that merges nanotechnology
with the biomedical and pharmaceutical sciences. It is worth mentioning here that the development
and application of nanotechnology in medicine has resulted in significant advances in the diagnosis,
treatment, and prevention of different diseases [8,80–82]. Nowadays, we define NP-based medicines as
drugs or biologically active compounds that incorporate NPs (1–100 nm) in order to achieve beneficial
biomedical applications [7]. These applications lead to improved targeting, reduced toxicity, or
otherwise enhanced efficacy of therapeutic or imaging agents in vivo [7]. Nanoparticles have unique
biological properties due to their sub-micrometer size and high surface-area-to-volume ratio [80].
In fact, NPs show key differences in comparison to bulk materials, including specific biochemical,
magnetic, optical, and electronic properties [14,80,83,84]. Additionally, NPs’ large functional surface
area allows them to bind, absorb, and carry other compounds such as small-molecule drugs, DNA,
RNA, proteins, and probes [82]. Therefore, the unique physicochemical and biological properties
of NPs have allowed the generation of several NP-based medicines, such as liposomes, albumin
NPs, and polymeric micelles, that have been approved for cancer treatment [7,8,80,82]. Moreover,
there are many other nanotechnology-based therapies that are currently under clinical investigation,
including chemotherapy, hyperthermia, radiation therapy, gene or RNA interference therapy, and
immunotherapy [8,82]. A recent study has identified 51 FDA-approved NP-based medicines and
77 products in clinical trials [7]. NPs used in nanodrug formulations currently include liposomes,
polymers, micelles, nanocrystals, metals/metal oxides and other inorganic materials, and proteins,
although research is also being conducted with other types of NPs, such as carbon nanotubes (Table 1).

It is worth noting here that the tunable size, shape, and surface characteristics of NPs allow
them to have high stability, high carrier capacity, and the ability to incorporate both hydrophilic and
hydrophobic substances [80–82]. Such characteristics of NPs make them compatible with different
administration routes. The major routes of administration of drug products containing nanomaterials
are the following: Intravenous, oral, ophthalmic, inhalation (oral/nasal), topical (skin), intramuscular,
and vaginal. Indeed, a majority of NP-based medicines typically use intravenous administration.
Oral administration is a second commonly utilized type of nanoparticle administration [7,8,80,82,85].
A recent comprehensive analysis showed that most NP-based medicines focus on cancer treatment
(35%), followed by inflammatory/immune/pain disorders (18%) and infections (12%) [80].

Targeted delivery is one of the highly researched areas of nanotechnology. It was postulated that
NP-based targeting would revolutionize the treatment of cancer [82]. Nonspecific biodistribution and
persistent background retention dramatically affect the target efficiency of NPs [86]. Indeed, there are
passive and active targeting strategies or a combination of both [87]. Passive targeting utilizes the
so-called enhanced permeation and retention (EPR) effect. Generally, the EPR effect is referred to as the
phenomenon by which NPs tend to accumulate preferentially in tumor tissues because of the leaky
tumor vasculature and poor lymphatic drainage [8]. Active targeting relies on the specific interactions
between targeting ligands on the particles and markers associated with the tumor. Such targeting
strategy results in enhanced accumulation or retention of particles at the tumor site or in increased
uptake of particles by cells expressing the target receptor [8,82]. To extend the tumor retention of
small molecules, an effective strategy is to conjugate active targeting ligands (e.g., proteins, peptides,
aptamers) or to use a mechanism of selective tumor uptake (the most successful examples is (18F)FDG,
i.e., glucose labeled with radioactive 18F) [88–90]. By utilizing specific molecular motifs, one can target
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specific cell types (for reviews see [88–90]). Through passive tumor targeting via the EPR effect, one can
get a tumor targeting efficiency higher than 7% of the injected dose (ID)/g for various types of NPs
in different tumor xenograft mouse models, such as EMT-6 (mouse breast carcinoma), MDA-MB-435
(human melanoma), U-87 MG (human glioblastoma), and 4T1 (mouse breast carcinoma) (for review
see [88]). Polyethylene glycol (PEG)ylated Au NPS have been shown to actively accumulate in tumors
with targeting efficiencies of 15.3% ID/g [91] and 12.5% ID/g [92].

Table 1. Key types of nanoparticles (NPs) in approved NP-based medicines available for clinical
use [7,8,80,82,85].

Type of Nanomaterials Size Range Clinical Indications

Polymer-based NPs 5 nm–5 µm

Severe combined immunodeficiency disease (SCID)
Crohn’s disease

Rheumatoid arthritis
Psoriatic Arthritis

Ankylosing Spondylitis
Multiple Sclerosis (MS)

Prostate Cancer
Hepatitis B; Hepatitis C

Acute lymphoblastic leukemia
Chronic gout
Hemophilia

Liposome formulations ≈100 nm

Pancreatic Cancer
Fungal/protozoal infections

Breast cancer
Cutaneous T-Cell lymphoma

Acute lymphoblastic leukemia
Kaposi’s Sarcoma

Ovarian cancer
Fungal infections

Micellar NPs 10–200 nm

Antifungal
Menopausal therapy

Antineoplastic
Aneasthesia

Immunosuppressant
Anti-HIV

Protein NPs 50–500 nm
Breast cancer

Pancreatic cancer
Cutaneous T-Cell lymphoma

Nanocrystals 50–1000 nm

Antiemetic
Hyperlipidemia

Immunosuppressant
Anti-anorexic

Psychostimulant
Muscle relaxant

Inorganic and metallic NPs 10–200 nm

Glioblastoma
Iron deficiency in chronic kidney disease

Iron deficiency in patients undergoing chronic hemodialysis
Iron deficiency anemia

4. Examples of Side Effects of Nanomaterials

Generally, NPs have been successfully utilized to reduce their free-drug counterparts’ toxicity
and improve drug accumulation at the site of action [7,8,80,82,85]. However, despite their beneficial
impacts, the use of nano-based drugs raises several safety concerns.

Cytotoxic effects in vitro as well as in vivo have been reported more regularly with some categories
of NPs [13,93–97]. Frequently, nanoparticle-induced cytotoxicity is caused by lipid membranes
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damage and impairment of cell homeostasis [13,93–97]. Recent studies showed lysosomal membrane
degradation after exposure to different NPs types, such as polystyrene [98], titanium dioxide [99],
and zinc oxide [100]. Additionally, lysosomal leakage together with the release of lysosomal contents
may result in mitochondrial and endoplasmic reticulum dysfunction [13,93–97]. In fact, lysosomal
dysfunction leads to ROS production, which results in oxidative stress [13,93–97].

The undesired immune system activation represents one of the major limitations for the successful
clinical use of NP-based medicines [101–103]. Indeed, cells of the mononuclear phagocytic system,
especially phagocytic macrophages, are able to recognize and engulf NPs [101–103]. This process
begins with opsonization, together with absorption of plasma proteins (including serum albumin,
apolipoproteins, immunoglobulins, and components of the complement system), onto the surface
of NPs [13,104]. After protein absorption, NPs are attached to specific surface receptors of
phagocytes, then internalized and transported to the lysosomes [105,106]. Additionally, some
NPs can directly stimulate the immune system by binding to Toll-like receptors and, together
with complement activation, enhance the inflammatory response [107]. Moreover, clearance of
NPs by macrophages reduces their accumulation in the target site and subsequently decreases the
therapeutic efficiency [26,27,101–103]. Nowadays, several approaches have been suggested to overcome
NP-directed immune response [108–110]. The most common way is the usage of antifouling agents to
decrease protein binding. One of the best examples is PEG [26,27,101–103]. However, coating of NPs
with PEG does not reduce protein binding completely [109]. Another strategy utilizes the binding
of lipoproteins (high-density lipoprotein and low-density lipoprotein), which are able to prevent
complement activation [110]. Indeed, the inhibition of distinct components of the complement systems
seems to be very effective in reducing nanoparticle-induced immune response [108].

Moreover, there is a still persistent problem with targeted delivery of NPs. The EPR effect
is typically believed to be responsible for increased delivery of NPs to targeted tumors in animal
experiments [8,26,27,88]. However, very often, the interpretation of EPR is oversimplified and
overestimated [8,26,27]. A careful analysis of the nanoparticle delivery literature from the past decade
revealed that the median delivery efficiency of NPs is still low (only 0.7% of an injected dose) [27].
Only isolated studies show delivery efficiency >7% of the injected dose (for review see [88]). On a
large scale, this effect shrinks to ≈0.7% ID [27]. This has negative consequences for the translation of
nanotechnology for human use in clinical applications [27].

A conceptual understanding of the biological responses to nanomaterials and the consideration of
their side effects are needed to develop and apply safe nanomedicines.

5. Nanoparticles in the Modulation of Mammalian Target of Rapamycin Activity: Challenges in
Finding Mechanisms

An increasing number of publications in recent years suggest that various NPs modulate mTOR
activation, leading to cell cycle arrest in cancer cells [22–25]. The regulation of cell death/survival
and metabolic responses by NPs via modulation of mTOR was postulated previously [31]. However,
the current knowledge of the possible mechanisms that drive mTOR-related effects of NPs on cells
remains limited. We have summarized the current literature about mTOR signaling modulation by
engineered NPs in Table 2.
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Table 2. Effects of nanoparticles (NPs) on Mammalian target of rapamycin (mTOR) signaling.

NPs Charge/Surface
Modification Size (nm) Zeta Potential (mV) Activity of

mTOR Ref.

PS 1 Positive/NH2 62 nm +34.97 in dH2O
−12.33 in DMEM inhibited [22]

PS 1 Positive/NH2 117 ± 17 nm +54.4 in PBS inhibited [23]

Iron oxide Negative/N.A. 2 51 nm −39.3 in dH2O inhibited [24]

Zinc oxide N.A. 2/N.A. 2 N.A.2 N.A. 2 inhibited [111]

PS 1 Positive/NH2 30.6 ± 6.1 nm +39.1 ± 6.5 in PBS inhibited [33]

nano-TiO2 N.A. 2/N.A. 2 21 nm N.A. 2 inhibited [112]

UCNP
Upconversion NPs

Positive/poly-(allylamine
hydrochloride) (PAH) 110 nm +35 in PBS inhibited [113]

SWCNT
functionalized single-walled

carbon nanotube
N.A. 2/COOH N.A. 2 N.A. 2 inhibited [25]

SWCNT
functionalized single-walled

carbon nanotube
N.A. 2/N.A. 2 N.A. 2 N.A. 2 inhibited [114]

Silica N.A. 2/N.A. 2 62.1 ± 7.2 nm −40 in dH2O inhibited [115]

PAMAM
polyamidoamine dendrimers N.A. 2/N.A. 2 N.A. 2 N.A. 2 inhibited [116]

Layered double hydroxide
(LDH) NPs

LDH-VP16 nanocomposites

Positive/Etoposide
(VP16) 105 nm +39.9 in PBS inhibited [117]

Bismuth NPs (BiNP) Negative/N.A. 2

63.72 nm in water
52.46 nm and

52.92 nm in PBS
and DMEM

−27.43 ± 0.39 in dH2O
−10.71 ± 0.53 in PBS
−11.38 ± 0.5 in DMEM

inhibited [118]

Mesoporous silica NPs
(MSNs) N.A. 2/BFA (Brefeldin A) 72 nm N.A. inhibited [119]

Multiwalled carbon
nanotubes (MWCNTs) Negative/COOH ≈30–50 (outer),

≈5–12 (inner)
−30.5 ± 74.2 in

ultrapure dH2O inhibited [120]

Silica Positive/NH2 28.6 ± 4.2 nm +36.9 ± 8.2 in PBS activated [33]

Silica Negative/OH 31.2 ± 5.5 nm −40.3 ± 7.4 in PBS activated [33]

Copper Oxide Negative/N.A. 2 56.2 ± 22.9 nm in media
85.6 ± 27.2 nm in water −0.057 in dH2O activated [121]

Gold NPs N.A. 2/N.A. 2 2 nm N.A. 2 activated [122]

Gold NPs N.A. 2/N.A. 2 30 nm N.A. 2 activated [123]

PS Negative/COOH 119 ± 19 nm −36.2 in PBS activated [23]
1 PS: Polystyrene; 2 N.A.: Not assessed; NH2: Amino group; COOH: Carboxyl group; OH: Hydroxyl group; mTOR:
Mammalian/mechanistic target of rapamycin.

Depending on their composition and original source, NPs can be divided into two groups.
Natural-based NPs are typically synthesized from biomolecules, particularly chitosan, lactic acid,
dextran, lipids, and phospholipids. Chemical-based NPs are frequently made from synthetic materials
such as metals, silica, various polymers, and carbon. Rapamycin-loaded liposome formulations were
proposed as an efficient alternative compared to the free-drug composition for therapy of breast
cancer [124]. The advantages of rapamycin liposome formulations could be potentially explained by
their stability, fluidity, proper drug distribution and incorporation, and loading of rapamycin into the
lipid bilayer [125].

Another formulation that could be recognized as nano-based is polyamidoamine (PAMAM)
dendrimer [126]. PAMAM NPs deregulate mTOR and its downstream signaling pathway and induce
autophagic cell death [116,127].

It is also possible to create protein-based NPs. Utilizing albumin-bound rapamycin NPs, one can
effectively increase the lifespan of an animal xenograft model of multiple myeloma [128].

Further, the PI3K–Akt–mTOR signaling pathway could be inhibited by SiO2 NPs [129].
Mechanistically, SiO2 NPs deregulate the NO–NOS system and trigger an inflammatory response which
results in autophagy [129]. Amino-functionalized polystyrene nanoparticle treatment initiates G2 cell
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cycle arrest and blocks proliferation and vascularization in leukemia cell lines through the inhibition
of mTOR signaling pathways [23]. Furthermore, COOH-functionalized carbon nanotubes exert a
dramatic autophagic effect on the cells through modulation of the AKT–TSC2–mTOR pathway [25].

In summary, the majority of NPs resulted in mTOR inhibition in various types of both cancer and
normal cells (Table 2). However, if one tries to find out any pattern in NP–mTOR relations, the data are
lacking. We actually see that NPs of different chemical composition, size, and shape are able to affect
mTOR signaling, and it is difficult to decipher any pattern in their chemical and biophysical effects.

NPs may affect lysosomal recruitment and activation of mTORC1 via interaction with
lysosomes [23,33]. What initiates this recruitment is not known. Alternatively, NPs may affect mTOR
signaling via ROS production [22–24,111,121]. ROS accumulation has been linked with the stimulation
or suppression of mTORC1 activity [130]. However, this cannot explain the bewildering effects of NPs
on mTOR activity, taking into account that ROS production and accumulation initiated by NPs starts
from lysosomes [13]. Another popular explanation is the “proton sponge” effect or “proton sponge”
hypothesis [13,31,34]. According to this hypothesis, positively charged (e.g., amino-functionalized or
polyallylamine hydrochloride-coated) polystyrene, poly-amine dendrimer, or rare-earth upconversion
NPs induce lysosomal swelling and damage via osmotic destabilization [13,34]. Unprotonated
amines of positively charged particles/polymers can absorb protons as they are pumped into the
lysosomes, resulting in more protons being pumped. This leads to an increased influx of Cl− ions and
water. Left uncontrolled, this process causes lysosomal swelling and rupture [13,34]. Subsequently,
such osmotic disturbance causes lysosomal dysfunction and inhibition of mTORC1 [23,31]. In general,
the “proton sponge” hypothesis was adopted from the proposed mechanistic understanding of the
interaction between non-viral vectors made of, coated with, or just containing polycations, such as
polyethylenimine (PEI), and cells [34]. However, the “proton sponge” hypothesis is contradicted by
recent research showing that buffering polymers are unable to increase the endolysosomal pH [34,35].
These data clearly show that the osmotic effect alone is perhaps insufficient to induce lysosomal
leakage or rupture [34,35]. v-ATPase is capable of overcoming the “proton sponge” effect and stabilize
the pH [35]. In regard to NPs, even some negatively charged NPs inhibited mTOR via lysosomal
dysfunction (Table 1). Thus, this hints at the involvement of additional factors other than surface
charge/chemical functionalization that contribute to the modulation of mTOR activity by NPs.

In biological environments, NPs are not “naked”. They are covered with a layer of biomolecules,
predominantly proteins [131,132]. This so-called protein corona forms around NPs in protein-rich
fluids found to be crucial in mediating subsequent NP-triggered interactions with cells [131–133]. Blood
circulation, extravasation into and interaction with the perivascular tissue microenvironment, tissue
penetration, and cell internalization are influenced by the formation of the protein corona [131–133].
The protein corona can also give rise to undesirable adverse effects, e.g., the loss of NPs’ targeting
capabilities [134]. For example, the protein corona may reduce nanoparticle cell membrane adhesion,
mitigating the disruption of cell membranes by bare NPs [135]. The proteins adsorbed on NPs cause a
loss or reduction of the targeting capability of surface-functionalized NPs [134]. In addition, adsorbed
proteins undergo conformational changes on the surface of NPs [136–138]. Such conformational
changes can modify cell recognition by NPs and initiate alternative cell signal transduction [136–139].
In addition, the adsorbed proteins may support mTOR activation and negatively impact on the
specificity of NPs to induce apoptosis in cancer cells [33]. Indeed, structural changes induced by NPs
have been reported for ribonuclease A, cytochrome c, albumin [140–142]. Additionally, NPs can induce
protein aggregation [143]. This can trigger an immune response and affect NPs’ toxicity and targeting
capabilities [144,145].

Nanoparticles are typically internalized into cells where they are trafficked along the well-defined
endo-lysosomal pathway [13]. After engulfment by a cell, nanoparticles accumulate in acidic vesicular
organelles, such as endosomes and lysosomes [1,13,146]. Endocytosed nanomaterials are degraded
by hydrolytic enzymes abundant in these organelles. Specific proteins present in the original protein
corona are retained on the NPs until they accumulate in lysosomes [132]. The protein layer may play
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a crucial role in triggering distinct cellular functions [131,132]. In fact, the power of nanoparticles
to carry proteins that are atypical in endogenous processes has many potential implications [132].
These processes have not been investigated in detail. Therefore, until now, we poorly understand
the phenomena of intracellular nanoparticle-mediated protein trafficking [132]. Generally, protein
coronas reduce the cytotoxicity and immunotoxicity of NPs [144,145,147]. However, sometimes,
cytotoxicity and immunotoxicity can be mitigated or activated depending on the type of NP and
adsorbed plasma proteins [144,145,147]. The physicochemical surface properties of NPs (ie, physical
surface architecture and chemical functionality) influence the immunological response to NPs’ protein
coronas [147]. Therefore, future works should investigate the effective physicochemical properties of
NPs to determine their protein coronas and associated cell signaling responses.

Significant amounts of proteins adsorbed on NPs are degraded within the lysosomes (e.g., serum
albumin and transferrin) [132]. Still, some fragments remain for a long time within the lysosome
lumen, and some smaller fragments are distributed widely within the cytosol [132]. The latter
may induce alterations in cellular functionalities and contribute to the deregulation of cellular
pathways [144,145,147,148]. A recent proteomics study revealed cell signaling pathways putatively
affected by the protein corona [148]. Those pathways include oxidative stress response, mitochondrial
energy metabolism, cell–cell contacts- and kinase-dependent signaling [148]. In the context of mTOR
signaling, the protein corona may serve as an independent factor supporting mTOR activation [33].
However, studies that associate mTOR signaling with NPs’ protein coronas are at the very initial stage,
and, so far, there is a lack of data on this issue [33,121,148,149].

Thus, there is a need for a systematic debugging of protein corona issues in general and to
understand how protein coronas specifically affect mTOR signaling. Such progresses in the field will
not only reduce the conflicts in nanotoxicology knowledge but also provide a fundamental basis for
the use of nanomedicine approaches in the clinic.

6. Conclusions

In summary, it is difficult to decipher the mechanisms of mTOR activity modulation by NPs.
In general, it is still not clear how exactly lysosomal pH and mTORC1 activation or inhibition are
linked. The explanation of NP-induced lysosomal destabilization exclusively by the “proton sponge”
hypothesis is not supported by most recent studies. We propose a tentative hypothesis outlined here,
which still needs to be rigorously tested. Since only a few studies have used genetic/pharmacological
blockade of mTOR signaling to directly confirm the involvement of mTOR in nanoparticle-mediated
effects [25,116,122], we do not know yet all players involved in NP-mediated mTOR signaling. The role
of the protein corona in this process awaits verification, and a more systematic approach is necessary
to explore the mechanism by which nanomaterials interact with the mTOR pathway. The emerging
picture points to lysosomes as key regulators of nanoparticle-induced signaling. It is essential to clarify
how the whole cell adapts to nanoparticle engulfment. However, some progress in this area has now
been achieved [150].

Regulators of the lysosome–mTORC1 pathway and its interplay with NP-induced signaling
should also be investigated in more detail. The latter might be very important in mediating responses
in cells exposed to subcytotoxic doses of NPs. Indeed, it has been shown recently that subcytotoxic
doses of NPs induce specific morphological changes in cells [150,151]. Multiple studies have linked
the disruption of organelles and other subcellular structures caused by NPs with cytotoxicity [13,152].
For instance, iron oxide NP-induced cytotoxicity is accompanied by oxidative stress, which is indicated
by endogenous ROS production, lysosomal leakage, compromised mitochondrial potential and integrity,
and mitochondrial substrate reduction [13,152,153]. It is worth noting that emerging studies indicate
that mTOR modulates not only mitochondrial functions [154] but also mitochondrial dynamics [155].

The molecular knowledge of nanoparticle mediated mechanisms may be helpful in the treatment
of malignancies. However, we have to deliberately assess the molecular foundations of NP–cell
interactions. Thus, it is of great interest to further study the relationship between mTOR activity and
lysosomal and mitochondrial dynamics and the perturbations induced by NPs.
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