
SOFTWARE Open Access

IonCRAM: a reference-based compression
tool for ion torrent sequence files
Moustafa Shokrof1 and Mohamed Abouelhoda2,3,4*

* Correspondence: mabouelhoda@
yahoo.com
2King Faisal Specialist Hospital and
Research Center, Riyadh, Saudi
Arabia
3Saudi Human Genome Program,
King Abdulaziz City for Science and
Technology (KACST), Riyadh, Saudi
Arabia
Full list of author information is
available at the end of the article

Abstract

Background: Ion Torrent is one of the major next generation sequencing (NGS)
technologies and it is frequently used in medical research and diagnosis. The built-in
software for the Ion Torrent sequencing machines delivers the sequencing results in
the BAM format. In addition to the usual SAM/BAM fields, the Ion Torrent BAM file
includes technology-specific flow signal data. The flow signals occupy a big portion
of the BAM file (about 75% for the human genome). Compressing SAM/BAM into
CRAM format significantly reduces the space needed to store the NGS results.
However, the tools for generating the CRAM formats are not designed to handle the
flow signals. This missing feature has motivated us to develop a new program to
improve the compression of the Ion Torrent files for long term archiving.

Results: In this paper, we present IonCRAM, the first reference-based compression
tool to compress Ion Torrent BAM files for long term archiving. For the BAM files,
IonCRAM could achieve a space saving of about 43%. This space saving is superior to
what achieved with the CRAM format by about 8–9%.

Conclusions: Reducing the space consumption of NGS data reduces the cost of
storage and data transfer. Therefore, developing efficient compression software for
clinical NGS data goes beyond the computational interest; as it ultimately contributes
to the overall cost reduction of the clinical test. The space saving achieved by our
tool is a practical step in this direction. The tool is open source and available at Code
Ocean, github, and http://ioncram.saudigenomeproject.com.

Background
Ion Torrent is one of the widely used Next Generation Sequencing (NGS) technolo-

gies, with a market share of 20% (Research and Market Report 2016). This technology

is particularly popular in the medical domain, because it is fast and cost effective. It is

basically used for clinical gene panels and whole exome sequencing. Gene panels are

used to read the sequences of selected genes to screen for variations related to some

inherited disorders [1–5] and cancer [6, 7]. Whole exome sequencing covers the whole

set of genes and is mostly used to identify novel mutations and genes [8–12]. The Ion

Torrent technology is not favored for whole genome sequencing due to its limited

throughput, which would lead to insufficient depth for clinical use.

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless
otherwise stated in a credit line to the data.

Shokrof and Abouelhoda BMC Bioinformatics (2020) 21:397
https://doi.org/10.1186/s12859-020-03726-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03726-9&domain=pdf
http://orcid.org/0000-0002-3483-2644
mailto:mabouelhoda@yahoo.com
mailto:mabouelhoda@yahoo.com
http://ioncram.saudigenomeproject.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

For clinical labs, the NGS data should be retained for a certain period of time [13].

Accreditation entities, such as the College of American Pathologists, require that the

NGS laboratory maintains the data (as it is) for at least two years (2017 CAP Regulation

MOL.35870, revised 08/17/2016). This requirement necessitates that the NGS lab pos-

sesses a high capacity storage systems either in site or in the cloud. For either option,

the cost of data storage is part of the total cost for provisioning the service per sample.

Therefore, efficient data compression should be implemented to reduce the storage

footprint, which in turn reduces the cost of the test.

For medical applications, the NGS analytical pipeline starts with the step of base call-

ing, where the physical signals (either images or electrical signals) are translated to se-

quences of nucleotide bases. The output of this step is a sequence file composed of a

set of reads in the fastq format as in Illumina technology or in the unaligned BAM for-

mat as in Ion Torrent technology. (The read is the sequence of a DNA fragment). The

BAM file is the binary version of the readable SAM text file [14]. The fastq/SAM/BAM

format includes the NGS reads and related quality scores [14]. The next step of the

pipeline is to align the NGS reads to the reference human genome. The output of this

step is a file in the SAM/BAM format with alignment information. Ion Torrent ma-

chines have a built in software for base calling and alignment, called Torrent Suite

(https://github.com/iontorrent/TS). The Torrent Suite delivers the sequencing results

in unaligned BAM format. If the user runs the alignment and variant calling workflow,

then the reads are aligned to the reference human genome and the results are kept in

an aligned BAM format. The unaligned reads are kept as well in the aligned BAM file

but without mapping information. The unaligned BAM file is deleted after the success-

ful generation of the BAM file. In the following parts of the paper, we will use the word

“BAM” to simply refer to the “aligned BAM”. The final step of the analysis pipeline is

the variant calling step to identify variants (mutations) compared to the reference hu-

man genome. The challenge in this step is to discriminate genuine variants from se-

quencing errors. The output of this step is tabular file (VCF format) including list of

mutations.

The NGS data access cycle is composed of three main phases:

1) Analysis, where the NGS files are accessed to run the alignment and variant calling

steps of the variant analysis workflow. This phase requires direct access to the

reads from a fast storage at very high IO speed. It is preferred to run this step on

SSD based storage [15].

2) Interpretation, where the clinical experts sometimes access the BAM/CRAM files

to visualize and review the alignment at certain positions. This phase does not

involve computation, and it is fine that the data moves to moderate speed storage

(hard-disk based). The interpretation phase terminates by issuing a clinical report

to the patient with the findings and the case is then considered closed.

3) Long term archiving, where the data can move to high capacity slow storage (disk

based or tapes) and kept inert, unless needed.

The BAM file is the largest output of this step and this is the one that should be the

main target of compression. For a whole exome sequencing in clinical setting, the

BAM file is in the range of 30–50 GB. The Gene Panel file is in the range of 1G–10G,

Shokrof and Abouelhoda BMC Bioinformatics (2020) 21:397 Page 2 of 16

https://github.com/iontorrent/TS

but usually one runs multiple samples in the same run. The VCF files are relatively

small and they are in the range of a few Megabytes. Optimizing the cost of the storage

is critical for the third phase including long term archiving, where the data is kept inert

for long time and is only decompressed if needed.

Different compression tools have been developed to compress the SAM/BAM files. The

recent survey papers [16–18] include a description and comparison of these software

tools. Broadly, these tools can be categorized into two big groups: 1) Non-reference based

compression and 2) Reference based compression. Non-reference based methods com-

press the data by making use of its intrinsic characteristics. Reference-based methods

work as follows: They first align the reads to a reference sequence. Then they compress

the alignment information, which is enough to decompress the reads given the reference

sequence. The reference based methods achieve high compression ratio, because the reads

are almost identical to the reference except for few individual variations and sequencing

errors. Reference and non-reference based compression tools can have a lossy and lossless

version. For medical applications, only the lossless version should be used.

For medical applications, where the human genome (hg19 or GRC38) is used as a ref-

erence, the reference-based compression would be the method of choice for compres-

sing the NGS data. Fritz et al. have introduced the CRAM format and related reference

based compression tool [19]. Shortly after its introduction, the CRAM format became

so popular that it is currently accepted by the major public NGS repositories, such as

NCBI and ENA. The CRAM related method has been implemented in different tools,

such as CRAMtools (www.ebi.ac.uk/ena/software/cram-toolkit), SAMtools [14] (https://

github.com/samtools), Picard (http://picard.sourceforge.net), and Scramble [20]. These

tools can produce output in CRAM format from SAM or BAM files.

In addition to its usual fields, the Ion Torrent BAM file includes flow signal data for

each read. The flow signal is a vector of numerical integer values ∈ Z, usually bounded

in practice. The flow signal vectors represent the measurements corresponding to the

change in pH during base hybridization. The flow signal data cannot be discarded be-

cause it is used by the Torrent Suite to improve the accuracy of the variant calling.

As we will demonstrate in the experiment section, the flow signals occupy about 75% of the

BAM file size for the human genome. Converting the BAM files to CRAM files lead to about 35%

reduction in the file size. By examining the CRAM files, we figured out that the flow signals oc-

cupy about 77% of the file size. This shows that there a room for improvement and extra com-

pression can be achieved by targeting the flow signals with a special compression procedure.

In this paper, we present the IonCRAM program to compress the Ion Torrent BAM

files for long term archiving. It is lossless reference-based compression tool aiming at im-

proving the space saving compared to the BAM and CRAM formats.

As we will show in the experimental results, IonCRAM could achieve an average

space saving of about 43% compared to the BAM file. Compared to the CRAM format,

IonCRAM achieves an extra space saving of about 8–9%.

Implementation
The flow signals

In this section, we provide information about the flow signals and explain how they are

generated and stored in the BAM file. Ion Torrent is a Next Generation Sequencing

Shokrof and Abouelhoda BMC Bioinformatics (2020) 21:397 Page 3 of 16

http://www.ebi.ac.uk/ena/software/cram-toolkit
https://github.com/samtools
https://github.com/samtools
http://picard.sourceforge.net

technology based on the use of CMOS semiconductor chips, where the DNA bases are

determined by sensing the release of hydrogen atoms during the hybridization process

[21, 22]. The details are as follows: The DNA molecule is first fragmented into short

fragments, usually around 500–1000 bps. Each single-stranded fragment is attached to

a bead (a particle called ion sphere), where it undergoes a reaction to produce multiple

copies of the same fragment. These copies are referred to as the template. The beads

are then moved to the sequencing CMOS chip. The chip is composed of millions of

wells and each well includes a sensor to detect the change in pH. Ideally, each ion

sphere should reside in one well in the sequencing ship.

The chip is then placed in the sequencer and the sequencing process proceeds as fol-

lows: The sequencer introduces the four bases (A, T, G, and C) one at a time during the

run in a cyclic fashion. The order in which the nucleotides are introduced is referred to as

flow cycle. An introduced nucleotide hybridizes to the template base if it is complementary

to it, and a change in pH takes place. If the template at one site includes a polymer (e.g.,

AAA), then multiple bases can hybridize in the same round of the cycle, and this leads to

a stronger change in pH. If no change is measured in one round of the cycle, then the base

in the template does not match the one in the flow cycle and no hybridization reaction

takes place. A wash step occurs after the introduction of each type of nucleotide to ensure

no nucleotide remains in the well before the introduction of the next one in the flow

cycle. The changes in pH at each round in the flow cycle are recorded, and a vector called

the raw flow-signal is produced. The signal processing software analyzes the raw flow sig-

nals and produces a vector of processed flow signals that are eventually stored in the

BAM file [21, 22]. The flow signals are numerical integer values, usually bounded in prac-

tice. The number of flow signal points is the same as the number of bases in the flow

cycle. Figure 1 shows an example DNA fragment and shows how the information related

to the flow cycle and the flow signals are stored in the SAM/BAM file. The string defining

the flow cycle is stored once in the header of the BAM file. As also shown in the figure,

each read includes information related to the quality and alignment. It also includes the

flow signal vector in the “ZM” field.

Figure 2 explains the steps of the base calling by demonstrating how the flow signals

are analyzed to call the bases of an example fragment using a given flow cycle. The base

calling software uses the flow signals to call the bases in the target DNA as follows:

The algorithm simultaneously scans the flow signal and the bases in the flow cycle. If

there is a signal peak exceeding a certain threshold, then the corresponding base in the

flow-cycle is the base in the target DNA and it is reported. If the flow signal value dou-

bles, this indicates a polymer of identical bases. The base calling software calibrates the

signal values and decides the length of the homopolymer. One can see in the figure that

the flow signals can have ‘noisy’ negative values (around zero). Theoretically, the flow

signal value can go to infinity for a DNA fragment of infinite number of the same nu-

cleotide, (e.g., AAAAA…); but this does not occur in practice.

The compression algorithm

Our approach to improve the compression of the Ion Torrent BAM file is based on im-

proving the compression of the flow signals. The idea of our algorithm is that the reads

with similar sequences aligned to the same locus should have similar flow signals.

Shokrof and Abouelhoda BMC Bioinformatics (2020) 21:397 Page 4 of 16

Therefore, exploiting such similarity across multiple identical reads would lead to bet-

ter compression.

Our algorithm sorts the reads in the BAM file first by genomic coordinates then by

their prefix via sorting the respective CIGAR string in order to bring the similar reads

closer to each other. By scanning the sorted reads, the algorithm identifies blocks of

reads mapped to the same locus. We collect the flow signals in each block and com-

press them together as detailed in the algorithm below. Other fields of the BAM file are

compressed using Scramble [20]. The details of our method is in Algorithm IonCRAM-

CompressBAM, presented below.

We implemented Algorithm 1 in the IonCRAM program. In actual implementation,

Steps 2 and 3 are implemented together via Linux pipes. For Step 4.1, it is worth men-

tioning that we tried a different option to select a reference vector other than F1, such

as computing a median vector among all F vectors in B. The other option increased the

running time and did not lead to tangible improvement of compression. So, we decided

to use F1 as the reference flow signal vector.

For Step 4.3, there are multiple options for compressing the flow signals: XZ (https://

tukaani.org/xz/), gzip (http://www.gzip.org), or zstd (https://github.com/facebook/zstd).

The XZ method is the default one. All these implementations are based on the diction-

ary based approach using Lempel Ziv decomposition. Each tool implements different

tuning steps in terms of encoding and algorithm engineering. The gzip technique is

based on the LZSS method which is a variation of the LZ77 algorithm as well as on

Fig. 1 Flow Signals and their position in the SAM/BAM file. The upper part shows an example DNA
fragment to be sequenced by an Ion Torrent machine. The key and bar code sequences are ligated (pre-
pended) to the fragment. The key sequence (TCAG) is a control sequence to ensure correct sequencing. A
barcode sequence is added to a certain group of fragments. The use of barcodes makes it possible to
sequence the DNA of different samples/patients in one run. The lower part of the figure shows a schematic
representation of the fields in the SAM file. The SAM file is the non-binary readable version of the BAM. The
header part includes the flow cycle and the key sequence. Each line in the SAM file represents one read,
aligned to the reference genome. The remaining rows include the read information in a tab-separated
format: We show only the columns/fields of relevance to this paper. We show the fields including the read
ID, the physical position and the CGAR string which represents the alignment, the bases of the DNA
sequence in the read, the quality field, and the flow signals in the ZM field

Shokrof and Abouelhoda BMC Bioinformatics (2020) 21:397 Page 5 of 16

https://tukaani.org/xz/
https://tukaani.org/xz/
http://www.gzip.org
https://github.com/facebook/zstd

Huffman coding [23]. The XZ algorithm is also based on LZ77 plus Huffman coding but

is enhanced with Markov chain models to further improve the compression (The Tukaani

project: https://tukaani.org/xz/). Zstd is a Facebook developed package, also based on

LZ77 but enhanced with tuned levels of compression using Finite State Entropy [24]. Zstd

follows speed-first design approach and it can provide ultra-compression ratios.

For Step 5, we use the Linux tar package for creating an archive of all compressed

files. This archive includes the CRAM file for the input BAM file minus the flow signals

computed in Steps 2 and 3, and the compressed blocks for the flow signals computed

in Step 4.

The decompression algorithm starts with un-archiving the tar folder using the tar

program. Then we use Scramble to decompress the CRAM part. For each block of the

compressed flow signals, the V vectors are decompressed and the D vectors are recon-

structed. The reference F1 is used to reconstruct F2 vector using both D1 and F1 via the

equation F2 = F1 - D1. Then F2 is used to reconstruct F3 using the equation F3 = F2 –

D2. The vector F3 is used to reconstruct F4, and so on. The decompressed flow signals

are finally added to the BAM file.

Parallel processing

Parallel processing is used in IonCRAM at different levels in compressing the BAM

files. First, the flow signals of the forward and reverse reads are processed in parallel.

Fig. 2 Base calling based on flow signals. The upper part shows an example DNA fragment to be
sequenced. The second part shows the sequence of nucleotides in the flow cycle. It also shows the values
of the sensed flow signals and the called bases. A flow signal value exceeding a certain threshold means
that a base had hybridized to the template and the corresponding base in the flow cycle is reported. If the
flow signal value doubles, this indicates a polymer of identical bases. The base calling software calibrates
the signal values and decides the length of the polymer

Shokrof and Abouelhoda BMC Bioinformatics (2020) 21:397 Page 6 of 16

https://tukaani.org/xz/

Second, the compression of the blocks to compress the flow signals can also run in par-

allel. Third, Scramble compresses the BAM file minus the flow signal in parallel. Fi-

nally, one can decompose the BAM file intro sub-files, each correspond to a certain

genomic region. These regions are independent from one another and they can be also

processed in parallel.

Parallel processing is also used during decompression. We decompress the BAM part

which was compressed by Scramble in parallel with decompressing the flow signals.

Also the compressed flow signal blocks are decompressed in parallel.

Results and discussion
The test dataset

The genome NGS file (ERR317482) used to test the original CRAM tool [19] and Scramble

[20] was produced by Illumina. Later, the MPEG HTS consortium has compiled genomic test

data to evaluate the available compression methods at that time [17]. The benchmarking data-

set included many genomic files from different technologies and different organisms. How-

ever, there is only one small genome (ERR303541) from the early days of NGS, sequenced at

very low depth of 0.6X. This low depth is no longer used in practice, neither in research nor

in clinical diagnosis. To cope with recent advances in the Ion Torrent technology, we com-

piled a dataset for Ion Torrent BAMs, whose depth is similar to what is used in clinical prac-

tice (Table 1). This set includes four public standard exomes from the NIST and “Genome in

a Bottle” Consortium [25]. These exomes were sequenced using modern Ion Proton platform

with the following parameters: Ion AmpliSeq™ Exome RDY Kit for library preparation, with a

mean insert size of 215 bp, Ion PI™ Sequencing 200 Kit v4 for sequencing, and Torrent Suite

v4.2 for base calling and alignment. For an up-to-date version of the kits, chemistry, and ana-

lysis package, we also added a set of three test exomes and eleven test gene panels, generated

at clinical grade quality from the Saudi Human Genome Program. They were sequenced

using the Ion Proton Platform with the following parameters: Ion Proton Hi-Q kits for library

preparation, Ion PI Hi-Q Sequencing 200 Kit for sequencing, and Torrent Suite v5.0.4 for base

calling and alignment. All these files are available to download from the program website.

The table includes gene panel and exome data used for measuring the performance

of IonCRAM. The BAM file size is given in MB and GB. The size of the target region

is 57.7 Mbp for whole exome sequencing and about 0.48 Mbp for gene panels. The

average depth is the average number of reads covering a target base.

Measuring the flow signal content

As we mentioned in the introduction, the flow signals occupy a big portion of the BAM file.

In this experiment, we measured how big that portion is in the test dataset. Also in this ex-

periment, we measured the size of the flow signals in the corresponding CRAM files, after

converting the BAM files into CRAM format using the program Scramble. Table 2 shows that

the size of the flow signals in the BAM and CRAM files. The results show that the flow signals

occupy about 75 and 77% of the BAM and CRAM file size, respectively.

Measuring the space saving

In this experiment, we measured the compression power of IonCRAM compared to the

BAM and CRAM formats. For the CRAM format, we used the program Scramble to

Shokrof and Abouelhoda BMC Bioinformatics (2020) 21:397 Page 7 of 16

compress the test BAM files in the CRAM format. Scramble is currently the most

stable, optimized and popular implementation of the CRAM related methods, and its

techniques are now part of the samtools/htslib package. Best compression options for

Scramble were used (−9 for highest level of compression, −Z for using lzma method,

and –p –P for preserving all tags in SAM/BAM file). The same options are also used

when IonCRAM invokes Scramble to compress the part of the BAM file not including

the flow signals (Step 2 Algorithm IonCRAM-CompressBAM). The experiments ran on

Table 1 Test datasets

Bam Name Source Bam
Size
GB

No.
Reads

Average
Depth
(reads)

GP1.bam In-house 1.04 1,675,
346

75

GP2.bam In-house 1.1 1,747,
374

80

GP3.bam In-house 1.46 2,355,
416

109

GP4.bam In-house 1.01 1,603,
486

145

GP5.bam In-house 1.47 2,362,
387

210

GP6.bam In-house 1.41 2,269,
592

201

GP7.bam In-house 1.44 2,352,
413

470

GP8.bam In-house 1.42 2,271,
890

485

GP9.bam In-house 2.13 3,480,
496

711

GP10.bam In-house 2.14 3,494,
124

1053

GP11.bam In-house 2.83 4,637,
535

1400

WES1 In-house 53.6 91,
339,
566

172

WES2 In-house 60.2 97,
605,
030

202

WES3 In-house 57.3 92,
927,
166

293

HG002_
NA24385_
SRR1767406

NCBI (ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/
AshkenazimTrio/HG002_NA24385_son/ion_exome/HG002_
NA24385_SRR1767406_IonXpress_020_rawlib_24028.bam)

50.0 82,
654,
309

201

HG003_
NA24149_
SRR1767411

NCBI (ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/
AshkenazimTrio/HG003_NA24149_father/ion_exome/
HG003_NA24149_SRR1767411_IonXpress_022_rawlib_
24022.bam)

43.8 73,
777,
136

185

HG004_
NA24143_
SRR1767448

NCBI (ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/
AshkenazimTrio/HG004_NA24143_mother/ion_exome/
HG004_NA24143_SRR1767448_IonXpress_024_rawlib_
24026.bam)

50.6 83,
487,
089

214

NA12878 NCBI (ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/
NA12878/ion_exome/IonXpress_020_rawlib.hg19.bam)

25.1 41,
792,
386

131

Shokrof and Abouelhoda BMC Bioinformatics (2020) 21:397 Page 8 of 16

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/

a Dell server R940 of 88 physical Cores (Intel Gold 222), 128 GB RAM, and 8 TB SSD

disks with Centos 7 OS. As a measure of compression, we use the percent space saving

defined as follows:

space saving ¼ 1‐
compressed file size

uncompressed file size

� �
¼ 1‐

1
compression ratio

� �

percent space saving ¼ 100�space saving

We used this measure because it directly reflects the amount of saving in physical

storage, which directly leads to cost reduction.

Table 3 shows the results of compressing the test BAM files using Scramble and our

program IonCRAM. The table also shows the results for a naïve implementation, where

the flow signals are removed from the BAM file and compressed without any pre-

processing. That is, in the naive implementation, no pre-processing as explained above

in Algorithm IonCRAM-CompressBAM is performed. The table shows the average file

sizes and average space saving for each group of files. Supplementary File 1 includes

the details for each test file.

The results show that the naïve method could achieve improvement in compression

compared to the BAM file. But its performance is still inferior to Scramble and Ion-

CRAM. The results also show that IonCRAM achieves consistent improvement by

about 7.5–9% compared to Scramble. The space saving with respect to the BAM file

Table 2 Flow signal size in the BAM and CRAM files in GB

Bam Name Bam Size
GB

Flow signal
Size (GB)

% Flow signal
in BAM

Flow signal size
in CRAM

%Flow Signal in
CRAM

GP1.bam 1.02 0.77 75.5% 0.52 77.4%

GP2.bam 1.06 0.80 75.5% 0.54 77.5%

GP3.bam 1.43 1.08 75.7% 0.73 77.6%

GP4.bam 0.98 0.74 75.9% 0.50 77.58%

GP5.bam 1.44 1.09 75.8% 0.73 77.5%

GP6.bam 1.37 1.04 75.8% 0.70 77.47%

GP7.bam 1.40 1.07 75.9% 0.71 77.62%

GP8.bam 1.38 1.06 76.4% 0.71 76.90%

GP9.bam 2.08 1.59 76.3% 1.06 77.52%

GP10.bam 2.09 1.60 76.5% 1.07 77.76%

GP11.bam 2.76 2.12 76.6% 1.41 77.67%

WES1 53.64 39.80 74.2% 26.42 76.94%

WES2 60.25 45.24 75.1% 30.11 77.47%

WES3 57.33 43.60 76.1% 29.18 78.15%

HG002_NA24385_
SRR1767406

50.04 37.66 75.3% 26.73 78.03%

HG003_NA24149_
SRR1767411

43.79 33.00 75.6% 23.41 78.12%

HG004_NA24143_
SRR1767448

50.60 38.20 75.6% 27.09 78.15%

NA12878 25.11 18.78 74.8% 13.33 77.86%

Shokrof and Abouelhoda BMC Bioinformatics (2020) 21:397 Page 9 of 16

Ta
b
le

3
Sp
ac
e
sa
vi
ng

of
Sc
ra
m
bl
e
an
d
Io
nC

RA
M

Fi
le

B
am

Si
ze

(G
B
)

C
RA

M
Si
ze

(G
B)

Sc
ra
m
b
le

C
RA

M
%
sa
vi
ng

of
flo

w
si
g
na

lc
om

p
ar
ed

to
B
A
M

O
ve

ra
ll
Sc
ra
m
b
le

C
RA

M
%
Sa

vi
ng

w
.r
.t
.B

A
M

N
aï
ve

(S
cr
am

b
le
+

X
Z/
Zs
td
)

%
sa
vi
ng

N
aï
ve

Io
nC

RA
M

Si
ze

(G
B)

Io
nC

RA
M

%
sa
vi
ng

of
flo

w
si
g
na

lc
om

p
ar
ed

to
B
A
M

O
ve

ra
ll
Io
nC

RA
M

%
Sa

vi
ng

w
.r
.t.

B
A
M

Im
p
ro
ve

m
en

t
ov

er
C
RA

M

G
en

e
Pa

ne
ls

A
ve

ra
g
e
va
lu
es

fo
r
G
en

e
Pa

ne
ls

1.
55

1.
02

33
.0
3%

34
.3
6%

1.
28

17
.1
1%

0.
89

45
.0
9%

42
.6
0%

8.
24
%

M
in

va
lu
es

fo
r

G
en

e
Pa

ne
ls

1.
02

0.
67

32
.8
2%

34
.0
0%

0.
85

16
.7
7%

0.
59

44
.7
3%

42
.3
9%

7.
46
%

M
ax

va
lu
es

fo
r

G
en

e
Pa

ne
ls

2.
76

1.
82

33
.2
3%

35
.0
0%

2.
28

17
.4
4%

1.
59

45
.6
7%

42
.9
0%

8.
90
%

In
ho

us
e
Ex
om

es

A
ve

ra
g
e
va
lu
es

fo
r
In

ho
us
e

Ex
om

es

57
.0
7

36
.8
5

33
.3
7%

35
.3
3%

48
.6
1

18
.1
9%

32
.1
7

45
.3
6%

43
.5
9%

8.
31
%

M
in

53
.6
4

34
.3
4

33
.0
6%

35
%

44
.5
1

13
.8
9%

30
.3
1

44
.9
7%

43
.3
7%

7.
49
%

M
ax

60
.2
5

38
.8
7

33
.6
1%

36
%

51
.8
8

22
.3
6%

34
.1
2

45
.9
4%

43
.9
0%

9.
06
%

Pu
b
lic

St
an

d
ar
d
Ex
om

es

A
ve

ra
g
e
va
lu
es

fo
r
p
ub

lic
Ex
om

es

42
.3
9

29
.0
1

29
.0
5%

31
.7
5%

36
.5
7

13
.7
1%

25
.4
45

41
.7
1%

39
.8
4%

8.
09
%

M
in

25
.1
1

17
.1
2

29
.0
1%

31
%

21
.7
5

13
.3
3%

14
.9
9

41
.3
4%

39
.7
%

7.
80
%

M
ax

50
.6
0

34
.6
7

29
.0
9%

32
%

43
.7
2

14
.5
5%

30
.3
5

41
.9
2%

40
.0
%

8.
70
%

Sp
ac
e
sa
vi
ng

of
Sc
ra
m
bl
e
an

d
Io
nC

RA
M

fo
r
gr
ou

ps
of

te
st

fil
es
.T
he

se
co
nd

an
d
th
ird

co
lu
m
ns

in
cl
ud

e
th
e
BA

M
an

d
C
RA

M
fil
e
si
ze
s
in

G
B,

re
sp
ec
tiv

el
y.
In

C
ol
um

n
4,

w
e
sh
ow

th
e
sa
vi
ng

in
flo

w
si
gn

al
ac
hi
ev
ed

by
Sc
ra
m
bl
e
in

th
e
C
RA

M
fo
rm

at
.I
n
C
ol
um

n
5,

th
e
ov

er
al
ls
pa

ce
sa
vi
ng

ac
hi
ev
ed

by
Sc
ra
m
bl
e
in

th
e
C
RA

M
fo
rm

at
co
m
pa

re
d
to

th
e
or
ig
in
al

BA
M

fil
e.

C
ol
um

ns
6,

7,
an

d
8
sh
ow

th
e
Io
nC

RA
M

fil
e
si
ze
,p

er
ce
nt

sa
vi
ng

in
flo

w
si
gn

al
s
an

d
ov

er
al
ls
av
in
g,

re
sp
ec
tiv

el
y.
Th

e
fin

al
co
lu
m
n
co
m
pa

re
s
ov

er
al
lp

er
ce
nt
ag

e
sa
vi
ng

of
Io
nC

RA
M

co
m
pa

re
d
to

th
e
re
sp
ec
tiv

e
C
RA

M
fil
es

pr
od

uc
ed

by
Sc
ra
m
bl
e.

Shokrof and Abouelhoda BMC Bioinformatics (2020) 21:397 Page 10 of 16

has improved to reach a range between 40 and 44%. In other words, we use 56% of the

storage space for storing an NGS file. From the experiments, we observe little improve-

ment of compression when the depth increases. The gene panel files with higher depth

are compressed little bit better than those with lower depth. Another observation is

that the space saving of the four public exomes is less than that of the in-house BAM

files (WES1-WES3). The reason for this is that these public exomes were sequenced

using older chemistry and an older base calling program. The new chemistry achieves

more consistent readings of the signal at the same position in the read and accordingly

lead to more similar flow signal value, which ultimately leads to better compression.

Testing different compression options

Our implementation of IonCRAM includes three compression options: gzip (version

1.5), XZ (version 5,2,2), and Zsdt (version 1.4.4). Table 4 shows the performance of Ion-

CRAM using these different compression options to compress the flow signal part. To

achieve maximum compression, we used the option “--ultra” for Zstd, and “-9” for gzip

and XZ. It can be observed that XZ achieves the best compression. Zsdt is in second

place with very comparable results to XZ. The gzip tool is in third place with a reduc-

tion in space saving of about 2%.

Space saving of IonCRAM using different options: Columns 4, 6, and 8 show the average

file sizes after compression using the options xz, gzip, and Zstd, respectively. Columns 5, 7,

and 9 show the percentage space saving with the options xz, gzip, and Zstd, respectively.

Measuring the running time and RAM consumption

Figures 3 and 4 summarize the running time and RAM consumption when running

Scramble and IonCRAM using different options. Supplementary File 1 includes detailed

experiments in tabular and graphical formats. As expected, IonCRAM takes more time

and uses more RAM than Scramble. This is mainly due to the extra work for process-

ing the flow signals. The running time of IonCRAM improves when it runs in parallel

using multiple cores, which shows very good scalability. For whole exome sequencing,

it takes about 30 min in average using 8 cores and it takes 18 min using 24 cores. This

is very affordable to cope with the rate of data production, even for labs with moderate

computing power. (An Ion Torrent system is usually shipped with a tower server with

16 cores and 64 GB RAM.) We did not observe significant speedup beyond 24 cores.

The RAM consumption increases with the use of more cores. It does not increase be-

yond 64 GB. From the results, we would recommend best parameters at 24 cores if high

specification server is available. For workstations with moderate computing power, we

would recommend the use of 16 cores so that the memory consumption does not ex-

ceed 32 GB RAM.

We also tested the running times and space consumption of IonCRAM with the gzip,

xz, and Zstd options. The use of gzip option in IonCRAM leads to the best running

time and best RAM consumption. It can be 50% faster and saves about 50% of the

RAM consumption. Using Zstd leads to running time that is little bit faster than that of

xz but still slower than gzip. As indicated by the Zstd authors in the program manual,

the “ultra compression” option uses huge RAM; we could observe that in the

experiment.

Shokrof and Abouelhoda BMC Bioinformatics (2020) 21:397 Page 11 of 16

Recalling from Table 4 that the space saving of IonCRAM using gzip is 2% less than

that using xz, then there is a kind of a trade-off, In our view, we think that the differ-

ences in running time, which is still in the range of few minutes, cannot weigh out the

advantage of extra saving in storage.

Extra experiments

Use of median flow signal

As explained in the Methodology section, we use the first flow signal F1 as a reference

sequence, from which differences are computed. We also tried to use the median se-

quence as a reference instead of F1, but the results shown in the supplementary file

(Sheet 2) shows no improvement. (The median flow signal is composed of the average

signal value of each point, which minimizes the total distances. Specifically, for a block

of signals F1 .. Fj, the median signal Fm is computed as follows: Fm[i] = average (F1[i] ..

Fm[i]), where 1 ≤ i ≤ n. The average value is the point that minimizes the function (Fm[i]

- F1[i]) + .. + (Fm[i] - Fm[i]). The reason why taking F1 as a reference has better perform-

ance may be attributed to better locality and is favored by the subsequent XZ and gzip

compression.

Comparison to genozip and use of binning option

We also compared IonCRAM to the program genozip [26], using the lossless and lossy

(−-optimize) options. Supplementary File 1 (Sheet 2) shows the results of this experi-

ment. For the lossless version, IonCRAM and Scramble is superior to genozip. For the

lossy version based on binning the flow signal values, genozip performs well compared

Table 4 Space saving of IonCRAM using different options

File Bam
Size
(GB)

CRAM
Size
(GB)

IonCRAM
Size with
xz (GB)

IonCRAM
%Saving
w.r.t. BAM
(xz)

IonCRAM
File Size
(MB, gzip)

IonCRAM
%Saving
(gzip)

IonCRAM
size (zstd)

IonCRAM
%Saving
(zstd)

Gene Panels

Average
values for
Gene Panels

1.55 1.02 0.89 42.60% 0.92 40.56% 0.90 42.10%

Min 1.02 0.67 0.59 42.46% 0.61 40.13% 0.59 41.83%

Max 2.76 1.82 1.59 42.90% 1.63 41.13% 1.59 42.40%

In house Exomes

Average
values for
In-house
Exomes

57.07 36.85 32.17 43.64% 33.80 40.77% 32.84 42.46%

Min 53.64 34.34 30.31 43.37% 31.84 40.53% 30.86 42.18%

Max 60.25 38.87 34.12 44.06% 35.83 41.14% 34.83 42.72%

Public Standard Exomes

Average
values for
public
Exomes

42.39 29.01 25.45 40.04% 26.46 37.59% 25.86 40.01%

Min 25.11 17.12 14.99 39.70% 15.64 37.42% 15.27 39.70%

Max 50.60 34.67 30.35 40.31% 31.56 37.74% 30.82 40.31%

Shokrof and Abouelhoda BMC Bioinformatics (2020) 21:397 Page 12 of 16

to the equivalent binning option of IonCRAM. The binning option sets the negative

values to zeros and maps the flow signals to certain bins, similar to the binning proced-

ure introduced initially by Illumina to reduce the space of quality scores [27]. The bin-

ning options of IonCRAM allows the user to select the level of binning; I.e., the user

select the value x to map each value y to z ¼ ðdyxe:� x). From the results in the supple-

mentary file, one can see that the binning option to the nearest 10 (x = 10) could lead

to extra 8–9% space saving.

Conclusions
Compression of NGS data is important to reduce the storage requirement. It is also im-

portant to speed up the transmission of data and overcome the bandwidth issues. The

research community has focused on compressing NGS data produced by Illumina

Fig. 3 Compression Running times and space consumption. Compression running times and RAM
consumption: Average running times for compressing (a) gene panels in seconds, (c) in-house exomes in
minutes, (e) and public exomes in minutes. The measurements are for using Scramble and for using
IonCRAM with the gzip, xz, and Zstd options. The average running time for gene panels is the average
running times of the 11 gene panel files, and so did we for the set of the three public exomes and the set
of four public exomes. The average RAM consumption in GB for gene panels, in-house exomes, and public
exomes is shown in (b), (d), and (f)

Shokrof and Abouelhoda BMC Bioinformatics (2020) 21:397 Page 13 of 16

platforms and no work addressed NGS data out of the Ion Torrent ones. The Ion Tor-

rent files include extra technology-specific data fields not included in the Illumina file.

This data is of large size and requires extra and should be specially addressed in com-

pression. In this paper, we have presented the program IonCRAM for compressing the

Ion Torrent BAM files. IonCRAM is the first program that could achieve significant

lossless compression for such type of files. IonCRAM could achieve a space saving of

about 43%, which improves upon the CRAM format by about 8–9%. This directly leads

to great savings in storage, backup, and bandwidth cost.

Future research for reducing the space consumption of the Ion Torrent BAM files

would include the binning of the flow signal and quality values. The idea of binning

was initially introduced by Illumina [27] to reduce the space consumption of the quality

values. This initiative was immediately followed by intensive research to optimize the

binning procedure and address its effect on the downstream analysis, especially on the

Fig. 4 Decompression Running times and space consumption. Decompression running times and RAM
consumption: Average running times for decompressing (a) gene panels in seconds, (c) in-house exomes in
minutes, (e) and public exomes in minutes. The measurements are for using Scramble and for using
IonCRAM with the gzip, xz, and Zstd options. The average running time for gene panels is the average
running times of the 11 gene panel files, and so did we for the set of the three public exomes and the set
of four public exomes. The average RAM consumption in GB for gene panels, in-house exomes, and public
exomes is shown in (b), (d), and (f)

Shokrof and Abouelhoda BMC Bioinformatics (2020) 21:397 Page 14 of 16

variant calling step [28–31]. We think that the binning of flow signals and quality data

of Ion Torrent would also be successful, provided that the manufacturer contribute to

this research. We added an option to IonCRAM for binning the flow signals, in a simi-

lar way to the binning method implemented in [26], and measured its effect on com-

pression (Supplementary File 1). We left the step for investigating the effect of this

binning on the downstream analysis to further research.

It is worth mentioning that IonCRAM has not been only used for the test data in the

paper, it has also been used to compress and backup thousands of files for the Saudi

Human Genome Program. IonCRAM is an open source and it is available for free along

with the related test data at the tool website http://ioncram.saudigenomeproject.com.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-03726-9.

Additional file 1.

Abbreviations
SAM: Sequence Alignment Mapping; BAM: Binary Alignment/Mapping; RAM: Random Access Memory; NGS: Next-
generation sequencing

Acknowledgements
We acknowledge the Saudi Human Genome Program, King Abdulaziz City for Science and Technology (KACST). The
authors also thanks Mohamed El-Kalioby and Zeeshan Shah for their support.

Authors’ contributions
MA conceived the development of IonCRAM. MA and MS made the implementation and reviewed methods and
results. All authors wrote the paper and revised it. All authors read and approved the final manuscript.

Funding
Not Applicable.

Availability of data and materials
Project name: IonCRAM.
Project home page: http://ioncram.saudigenomeproject.com, https://codeocean.com/capsule/0889064/tree/v2,
https://github.com/ionCRAM/ionCRAM
Operating system(s): Linux.
Programming language: Python, C, C++.
Other requirements: NA.
License: GPL.
Any restrictions to use by non-academics: No restrictions.

Ethics approval and consent to participate
Not Applicable.

Consent for publication
Not Applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Faculty of Computer Science, University of California at Davis, Davis, CA, USA. 2King Faisal Specialist Hospital and
Research Center, Riyadh, Saudi Arabia. 3Saudi Human Genome Program, King Abdulaziz City for Science and
Technology (KACST), Riyadh, Saudi Arabia. 4Systems and Biomedical Engineering Department, Faculty of Engineering,
Cairo University, University Square, Giza, Egypt.

Received: 19 March 2020 Accepted: 31 August 2020

References
1. The Saudi Mendliome Group. Comprehensive gene panels provide advantages over clinical exome sequencing for

Mendelian diseases. Genome Biol. 2015;16(1):134.
2. Rehm HL. Disease-targeted sequencing: A cornerstone in the clinic. Nat Rev Genet. 2013;14(4):295–300.

Shokrof and Abouelhoda BMC Bioinformatics (2020) 21:397 Page 15 of 16

http://ioncram.saudigenomeproject.com
https://doi.org/10.1186/s12859-020-03726-9
http://ioncram.saudigenomeproject.com
https://codeocean.com/capsule/0889064/tree/v2
https://github.com/ionCRAM/ionCRAM

3. Xue Y, Ankala A, Wilcox WR, Hegde MR. Solving the molecular diagnostic testing conundrum for Mendelian disorders in
the era of next-generation sequencing: Single-gene, gene panel, or exome/genome sequencing. Genet Med. 2015;17(6)
Nature Publishing Group:444–51.

4. McCullough RM, et al. Non-Invasive Prenatal Chromosomal Aneuploidy Testing - Clinical Experience: 100,000 Clinical
Samples. PLoS One. 2014;9(10):e109173.

5. Hu H, et al. Clinical experience of non-invasive prenatal chromosomal aneuploidy testing in 190,277 patient samples.
Curr Mol Med. 2016;16(8):759–66.

6. Suhaimi SS, et al. Targeted next-generation sequencing identifies actionable targets in estrogen receptor positive and
estrogen receptor negative Endometriod endometrial Cancer. Front Pharmacol. 2018;9:750.

7. Liu S, et al. Rapid detection of genetic mutations in individual breast cancer patients by next-generation DNA
sequencing. Hum Genom. 2015;9(1):2.

8. Yohe S, Thyagarajan B. Review of clinical next-generation sequencing. Arch Pathol Lab Med. 2017;141(11) College of
American Pathologists:1544–57.

9. Caspar SM, Dubacher N, Kopps AM, Meienberg J, Henggeler C, Matyas G. Clinical sequencing: from raw data to
diagnosis with lifetime value. Clin Genet. 2018;93(3):508–19.

10. Peterson TA, Doughty E, Kann MG. Towards precision medicine: advances in computational approaches for the analysis
of human variants. J Mol Biol. 2013;425(21):4047–63.

11. Bamshad MJ, et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat. Rev. Genet. 2011;12(11):745–
55.

12. Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE. Rare-disease genetics in the era of next-generation sequencing:
discovery to translation. Nat Rev Genet. 2013;14(10):681–91.

13. Rehm HL, et al. ACMG clinical laboratory standards for next-generation sequencing. Genet Med. 2013;15(9):733–47.
14. Li H, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
15. Kaul G, Shah ZA, Abouelhoda M. A high performance storage appliance for genomic data. Cham: Springer; 2017. p. 480–8.
16. Zhu Z, Zhang Y, Ji Z, He S, Yang X. High-throughput DNA sequence data compression. Brief Bioinform. 2015;16(1):1–15.
17. Numanagic I, et al. Comparison of high-throughput sequencing data compression tools. Nat Methods. 2016;13(12):

1005–8.
18. Hosseini M, Pratas D, Pinho A. A Survey on Data Compression Methods for Biological Sequences. Information. 2016;7(4):56.
19. Hsi-Yang Fritz M, Leinonen R, Cochrane G, Birney E. Efficient storage of high throughput {DNA} sequencing data using

reference-based compression. Genome Res. 2011;21(5):734–40.
20. Bonfield JK. The scramble conversion tool. Bioinformatics. 2014;30(19):2818–9.
21. Rothberg JM, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;

475(7356):348–52.
22. Merriman B, I. T. R&D Team, Rothberg JM. Progress in ion torrent semiconductor chip based sequencing.

Electrophoresis. 2012;33(23):3397–417.
23. Storer JA, Szymanski TG. Data Compression via Textual Substitution. J ACM. 1982;29(4):928–51.
24. J. Duda, “[0902.0271] Asymmetric numeral systems.” [Online]. Available: https://arxiv.org/abs/0902.0271. Accessed 07 Mar

2020.
25. Zook JM, et al. Extensive sequencing of seven human genomes to characterize benchmark reference materials. Sci Data.

2016;3. https://pubmed.ncbi.nlm.nih.gov/27271295/, https://www.nature.com/articles/sdata201625.
26. B. L. Divon Lan, Raymond Tobler, Yassine Souilmi, “genozip: a fast and efficient compression tool for VCF files |

Bioinformatics | Oxford Academic.” [Online]. Available: https://academic.oup.com/bioinformatics/article/doi/10.1093/
bioinformatics/btaa290/5837110. [Accessed: 27 Jun 2020].

27. Illumina inc., “Understanding Illumina Quality Scores,” 2012.
28. Greenfield DL, Stegle O, Rrustemi A. GeneCodeq: quality score compression and improved genotyping using a Bayesian

framework. Bioinformatics. 2016;32(20):3124–32.
29. Yu YW, Yorukoglu D, Peng J, Berger B. Quality score compression improves genotyping accuracy. Nat Biotechnol. 2015;

33(3) Nature Publishing Group:240–3.
30. Cánovas R, Moffat A, Turpin A. Lossy compression of quality scores in genomic data. Bioinformatics. 2014;30(15):2130–6.
31. Ochoa I, Asnani H, Bharadia D, Chowdhury M, Weissman T, Yona G. QualComp: A new lossy compressor for quality

scores based on rate distortion theory. BMC Bioinformatics. 2013;14(1). https://pubmed.ncbi.nlm.nih.gov/23758828/,
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-187.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Shokrof and Abouelhoda BMC Bioinformatics (2020) 21:397 Page 16 of 16

https://arxiv.org/abs/0902.0271
https://pubmed.ncbi.nlm.nih.gov/27271295/
https://www.nature.com/articles/sdata201625
https://academic.oup.com/bioinformatics/article/doi/10.1093/bioinformatics/btaa290/5837110
https://academic.oup.com/bioinformatics/article/doi/10.1093/bioinformatics/btaa290/5837110
https://pubmed.ncbi.nlm.nih.gov/23758828/
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-187

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	The flow signals
	The compression algorithm
	Parallel processing

	Results and discussion
	The test dataset
	Measuring the flow signal content
	Measuring the space saving
	Testing different compression options
	Measuring the running time and RAM consumption
	Extra experiments
	Use of median flow signal
	Comparison to genozip and use of binning option

	Conclusions
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

