
SNP/RD Typing of Mycobacterium tuberculosis Beijing
Strains Reveals Local and Worldwide Disseminated
Clonal Complexes
Anita C. Schürch1,2, Kristin Kremer1, Amber C. A. Hendriks1, Benthe Freyee1, Christopher R. E. McEvoy3,4,

Reinout van Crevel5, Martin J. Boeree6, Paul van Helden3, Robin M. Warren3, Roland J. Siezen2, Dick van

Soolingen1,6*

1 Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, (CIb/LIS, pb 22), Bilthoven, The

Netherlands, 2 Radboud University Nijmegen Medical Centre/NCMLS, Centre for Molecular and Biomolecular Informatics, Nijmegen, The Netherlands, 3 Department of

Science and Technology, National Research Foundation Centre of Excellence in Biomedical Tuberculosis Research, Medical Research Council Centre for Molecular and

Cellular Biology, Stellenbosch University, Tygerberg, Cape Town, South Africa, 4 Department of Microbiology and Immunology, University of Melbourne, Victoria,

Australia, 5 Department of Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands, 6 Department of Pulmonary Diseases, Radboud University

Nijmegen Medical Centre/University Lung Centre Dekkerswald, Nijmegen, The Netherlands

Abstract

The Beijing strain is one of the most successful genotypes of Mycobacterium tuberculosis worldwide and appears to be
highly homogenous according to existing genotyping methods. To type Beijing strains reliably we developed a robust
typing scheme using single nucleotide polymorphisms (SNPs) and regions of difference (RDs) derived from whole-genome
sequencing data of eight Beijing strains. SNP/RD typing of 259 M. tuberculosis isolates originating from 45 countries
worldwide discriminated 27 clonal complexes within the Beijing genotype family. A total of 16 Beijing clonal complexes
contained more than one isolate of known origin, of which two clonal complexes were strongly associated with South
African origin. The remaining 14 clonal complexes encompassed isolates from different countries. Even highly resolved
clonal complexes comprised isolates from distinct geographical sites. Our results suggest that Beijing strains spread globally
on multiple occasions and that the tuberculosis epidemic caused by the Beijing genotype is at least partially driven by
modern migration patterns. The SNPs and RDs presented in this study will facilitate future molecular epidemiological and
phylogenetic studies on Beijing strains.
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Introduction

The tubercle bacillus is one of the most important human

bacterial pathogens, with an estimated 9.4 million incident cases of

tuberculosis globally in 2009 [1]. Using molecular genotyping

methods numerous genotypes of Mycobacterium tuberculosis have

been identified [2,3]. The Beijing genotype is one of the most

studied genotypes, and causes approximately 50% of the

tuberculosis cases in Asia [4]. Beijing strains are also a major

driving force behind the multidrug-resistant tuberculosis epidemic

in Eastern Europe and South Africa [5,6] and ‘‘Typical Beijing’’

strains may be able to circumvent the BCG vaccine-induced

immunity [7,8].

The M. tuberculosis Beijing genotype is easily identified by a

highly characteristic spoligotype pattern, resulting from the

deletion of the RD207 [9,10,11]. Strains of the Beijing genotype

were previously grouped into two lineages; ‘‘Typical’’ and

‘‘Atypical’’ [11] according to the presence or absence of an

IS6110 insertion in the NTF region [12]. Strains of the ‘‘Typical

Beijing’’ lineage can be defined by the presence of 51 SNPs [13]

and form a monophyletic group, whereas strains that were

formerly indicated as ‘‘Atypical Beijing’’ were shown to be

genetically diverse and paraphyletic and do not form a separate

lineage [13]. We address both groups of Beijing strains as ‘‘Beijing

genotype’’. Strains of the dominant ‘‘Typical Beijing’’ lineage are

isolated from about 80% of Beijing-infected cases [13] however,

the ratio of ‘‘Typical’’ versus other Beijing strains differs

significantly by region [7,14,15]. The lack of genetic diversity,

especially among the ‘‘Typical Beijing’’ strains, points to a recent,

clonal expansion of this lineage [13].

Whole genome sequencing and subsequent SNP typing is a

method which could be used to analyze the population structure of

clonal bacterial pathogens that lack genetic diversity [16]. Due to

the recent progress in sequencing technologies [17,18] and high-

throughput SNP typing approaches [19], an increasing number of

SNP typing systems have been developed from whole-genome

sequencing data of bacterial pathogens [20,21,22,23,24,25]. M.

tuberculosis is a highly clonal microorganism, and no recent

horizontal gene transfer or recombination events between different

strains have been identified so far [26,27,28]. Given the recent
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ancestry of the M. tuberculosis complex (MTBC) and low selective

pressure on particular loci, SNPs and RDs (if independent from

IS6110-directed recombination) represent unique events at

unidirectional time points in the genealogy of a M. tuberculosis

strain. Synonymous SNPs and RDs are representative of ancestral

states of strains and can act as molecular markers for clonal

complexes. Here, we applied SNPs and newly identified RDs to

characterize the population structure of the Beijing genotype

strains.

Results

Development of SNP/RD typing assay for Beijing strains
To validate identified genome-wide variations and to identify

informative and robust markers that could support studies on the

phylogeny of the Beijing genotype of M. tuberculosis through a

redundancy analysis, we used SNPs identified from whole genome

sequence comparison of six Beijing strains originating from China,

Vietnam, and South Africa, as described in detail in a recent paper

[13]. The 275 SNPs selected represented 14.6% of the total 1889

SNPs identified and 21.3% (of 1294 SNPs) of the Beijing-specific-

or polymorphic SNPs.

Typing of 178 strains with 275 SNPs in a high-throughput

mass-spectrometry typing assay resulted in a total of 48,950 SNP

positions being analyzed. A small subset of 289 SNP positions

(0.59%) was undetermined and 51 positions (0.1%) had an

ambiguous result (both indicated as ‘‘?’’ in Table S1). From the

SNP matrix a phylogenetic tree was inferred using maximum

likelihood (Figure S1-A). The same phylogeny inferred with

maximum parsimony exhibited a consistency index of 0.93, which

can be caused by either homoplasious or erroneous SNPs (i.e. due

to technical failures). Non-clonally distributed SNPs in the tree

included a SNP in katG which is known to be involved in antibiotic

resistance [29], six other non-synonymous SNPs (in genes pta, rpsL,

lipU, lppF, eis and serA1) and a synonymous SNP (in gene cysA3).

Information on drug resistance frequencies between Typical and

other Beijing strains was previously reported in [13].

Two duplicate isolates, that were used to confirm the

consistency of the SNP typing (isolates NLA000200230 and

NLA009701940) clustered at the same node. Moreover, some

genome-sequenced strains were also typed with the SNP typing

assay. As expected, the in silico determined SNP type of strain

CHIN- (that corresponds to strain NLA000700872) was consistent

with the high-throughput mass-spectrometry-typed isolate

NLA000700872, as was CHIN+ consistent with NL000700873

and SA+ with SAWC5527 [13]. Strain V+ clustered slightly

different from its counterpart NLA000800162. After exclusion of

the eight non-clonally distributed SNPs from the SNP matrix, the

strains V+ and NLA000800162 clustered at the same node of the

maximum-likelihood tree (Figure S1-B) which lead us to believe

that these SNPs were at least partially the results of errors of the

SNP detection assay. However, genes involved in drug resistance

are known targets of strong selective pressure which could lead to

independent occurrence of a polymorphism on several branches of

a tree [30].

To develop an assay that types Beijing strains in a reliable and

efficient way we reduced the number of the 275 SNPs initially

selected to type Beijing strains to 51 in a redundancy analysis as

described in Material and Methods. During the course of our

study, Niemann and colleagues [31] reported the genome

sequence analysis of two Beijing strains from Uzbekistan. In order

to reduce branch collapse [32,33] we selected ten SNPs identified

in the Beijing strains from Uzbekistan (K1 and K2) [31]. The

genomes of these two strains differed by 130 SNPs and one

deletion [31] that we named RD131, according to the naming

scheme of Tsolaki and colleagues. Table S2 lists the 61 SNPs in

detail and Figure 1 shows the SNP matrix.

Application of SNP/RD typing assay for Beijing strains
These 61 SNPs were assayed on 259 MTBC strains with the

high-throughput mass-spectroscopy method (Table S3 and Figure

S1-C). The clonal complexes were defined by collecting strains

with the same patterns of presence and absence of the markers as

indicated in Figure 1. Non-Beijing SNP types were called H37Rv,

O1 (outgroup 1) and O2 (outgroup 2), where O2 contains the

isolate with the complete spoligotype (all 43 direct variable repeats)

and O1 consisted of the sets of MTBC- and non-Beijing strains

described in Material and Methods. The inclusion of information

on the absence/presence of RD131 (described below in more

detail) divided one clonal complex into two distinct complexes

(Beijing SNP/RD types (BST) BST18 and BST19). RD131 was,

therefore, included in the SNP/RD matrix (Figure 1, number 36),

allowing 27 Beijing clonal complexes to be distinguished. These

clonal complexes are represented by types BST1 to BST19, and

the types with the name of the respective genome-sequenced

isolate (Figure 1). The presence of marker 29 and 30 indicate

Typical Beijing strains. The SNP/RD assay showed an overall

discriminatory power (D) of 0.9.

Comparison of SNP/RD typing and Beijing lineage
designation

For 58 isolates from South Africa, SNP/RD typing results were

compared to lineage designation (see Material and Methods). The

South African lineage designation [15] had a better discriminatory

power for isolates that clustered at SNP/RD types BST7 and

BST10, which were differentiated into three and two lineages. The

SNP/RD typing system achieved a higher discriminatory power

for strains in lineage 6 and 7, which were split up in three SNP/

RD types each (Table 1). Overall, the SNP/RD assay had a better

discriminatory power compared to the lineage designation on this

specific set of isolates (D = 0.78 versus D = 0.54).

Comparison of SNP/RD typing and RFLP typing of K1 and
K2

In general the isolates represented the diversity of RFLP

patterns within the Beijing genotype. Beijing strains K1 and K2

however exhibited an identical IS6110 RFLP pattern [31] and

were isolated in the same geographical region. With the

application of RD131 it was possible to identify 15 strains that

share a more recent ancestor with K1 than K2, despite the

identical RFLP pattern of K1 and K2 (for the IS6110 RFLP

pattern see [31]).

Identification of RDs within Beijing sublineages
The distribution of RDs known to be polymorphic among

Beijing genotype strains (RD105, RD142, RD149, RD150,

RD152, RD207 and RD181) in the genome sequenced strains

was previously described [13]. In this study we investigated the

occurrence of newly identified RDs among Beijing genotype

strains (Table 2). In silico analysis identified DNA fragments that

were absent in one or more of the genome-sequenced strains when

compared to the reference strain H37Rv which had not been

previously described [9,10,34,35,36,37]. These RDs were assayed

on a selection of the 259 Beijing strains for absence or presence of

RDs with PCR and gel electrophoresis. The strains were selected

based on their DNA availability. The strain selection and the

results for each of the assayed RDs are shown in the Figures S2,

SNP/RD Typing of Beijing Strains
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S3, S4, S5, S6 and S7. In summary, the patterns of presence and

absence of seven RDs was concordant with the grouping on basis

of SNP patterns for all strains assayed. The presence/absence

pattern of one RD, RD131 (see above) differentiated one of the

clonal complexes defined by SNP typing (BST18 and BST19). The

chromosomal position and occurrences of all RDs are summarized

in Table 2.

Phylogeography of the Beijing genotype
To assign a strain to a particular geographic, area the country of

origin was indicated for strains isolated in countries other than the

Netherlands. For isolates from the Dutch database the patient’s

country of origin which often coincides with the country of birth of

the patients was used.

The typed M. tuberculosis strains originated from across the

globe: 68 strains were isolated in Asia, 43 strains in Europe

(including three strains from countries that are also on the Asian

continent, Azerbaijan and Russia), 74 from Africa, (of which 65

from South Africa), 20 from North- or South America or the

Caribbean and 54 with an unknown origin (Figure 2A and Table

S4).

All but two clonal complexes that comprised more than one

isolate were associated with diverse geographic origins (Figure 2).

On the other hand, all isolates from the Archangel Oblast region

Figure 1. SNP/RD typing results matrix. Matrix of single nucleotide polymorphisms (SNPs)/region of difference (RD) typing scheme results for
different clonal complexes of M. tuberculosis complex (outgroups H37Rv, O1, O2 and Beijing-SNP types BST1 to BST19 and SA2, CHIN2, V2, SA+, V+,
CHIN+, K1 and K2). For the positions and polymorphic sites of the SNPs see Table S2, for details on RDs see Table 2. Black: SNP is present or RD is
absent. SNPs and RDs that confer the same information are summarized in one column.
doi:10.1371/journal.pone.0028365.g001

SNP/RD Typing of Beijing Strains
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that were part of this study (Figure 2B) were from clonal complexes

that have SNP 32 present, showing that a wide distribution of the

clonal complexes is not necessarily coupled to a wide variety

locally. However, even a clonal complex that is highly resolved

with 13 SNPs present, the K2 clonal complex, comprised two

isolates from different origins. This clonal complex consists of

isolate K2 (from Uzbekistan) and an isolate from the Archangel

Oblast region. The distance between these two locations is more

than 2000 km.

In contrast, two clonal complexes (BST13 and BST14) contain

only samples from South Africa. These isolates belong to a group

of Beijing strains that were associated with an increased

transmissibility and ability to cause disease in South Africa

(lineage 7, [15]). The more basal clonal complex BST12, which

constitutes a clonal complex ancestral to the BST13/BST14

lineage, comprised three isolates from Indonesia and four from

Hong Kong, along with two Beijing strains from an unknown

origin. These isolates share a common ancestor with the South

African strains from BST13 and BST14. Whether this ancestor

originated in one of the three countries or a fourth unknown

country remains unresolved.

Materials and Methods

A scheme of the workflow can be found as Figure S8.

Selection of SNPs
Whole genome sequences from eight Beijing genotype M.

tuberculosis isolates representing ‘‘Typical’’ (+) and other (2) Beijing

strains [11,31] were analyzed to identify SNPs and regions of

difference (RDs). These Beijing strains originated from four

different countries; China (CHIN+ and CHIN2), South Africa

(SA+ and SA2), Vietnam (V+ and V2) and Uzbekistan (K1 and

K2) [13,31]. H37Rv was used as the reference genome for SNP

calling.

From the 1889 SNPs that were identified in a previous study

[13], 275 SNPs were selected for a SNP typing assay. The selected

SNPs were annotated to be in coding regions, with a preference for

characterized genes as opposed to genes that are annotated as

‘‘hypothetical gene’’. The selection contained only SNPs that did

not have any other SNP closer than 500 bp, to avoid

hypervariable regions and mutational hotspots. From this

selection, 34 SNPs were located in 3R genes (genes involved in

DNA repair, recombination and replication [38,39,40,41]). The

SNP selection by Mestre et al. [41] based on 3R genes is the

current best selection for SNP typing of Beijing strains but has only

low discriminatory power within Typical Beijing strains. Of all 275

SNPs, seven SNPs were H37Rv-specific (only present in H37Rv),

10 SNPs were Beijing-specific (with Mycobacterium bovis as out-

group), and 258 SNPs were polymorphic among the six Beijing

genomes (CHIN+, CHIN2, SA+, SA2, V+, V2). A total number

of 168 SNPs were annotated as non-synonymous and 107 SNPs

were synonymous.

Strain selection
One-hundred and seventy-two Beijing genotype strains were

selected to cover the diversity of IS6110 RFLP patterns within the

Beijing genotype [11] and comprised strains previously charac-

terized with other markers [42,43,44]. The selected strains were

representative of 45 countries on five continents: they were isolated

in that country or isolated from a patient born in the respective

country. H37Rv and five strains from other genotypes were

included. Each strain was genotyped using the selected 275 SNPs.

One-hundred and fifty-nine of these strains were subsequently

tested in a second assay of 61 informative SNPs (Table S2) and these

strains were complemented with five Beijing strains from the same

database that met the same inclusion criteria (representing different

countries and the diversity of RFLP patterns) as described above. In

addition, the 61 SNPs were assayed on 11 additional M. tuberculosis

Beijing strains from Indonesia (in addition to six strains from

Indonesia that were already present in the collection, total

Indonesian strains n = 17) and 55 additional Beijing strains from

South Africa (in addition to ten South African strains that were

already present in the Dutch database, total South African strains

n = 65). These 55 strains represented the 7 Beijing lineages described

by Hanekom et al. [15] and the abundance of the different Beijing

strains in South Africa. To determine the specificity of the markers

for the Beijing genotype, an additional two sets of strains consisting of

13 strains of other species within the MTBC; including Mycobacterium

africanum (n = 2), Mycobacterium bovis (n = 6), M. bovis BCG (n = 2),

Mycobacterium canettii (n = 1) and Mycobacterium microti (n = 2) and

14 M. tuberculosis genotypes other than Beijing were included. One of

these strains exhibited a complete spoligotype; such a strain is

regarded to be closely related to Beijing strains as shown by large

sequence polymorphisms [45]. Furthermore SNP data of two

genome-sequenced strains K1 and K2 were included [31]. In total,

259 MTBC strains were assayed using 61 SNPs.

High-throughput SNP typing and clustering
Bacterial isolates were typed on the Sequenom genotyping

platform (Sequenom GmbH, Hamburg, Germany) with iPLEX

Table 1. Comparison of clustering of 58 M. tuberculosis isolates.

clonal complex SA2 BST7 BST10 BST17 BST9 BST14 BST13 SA+

Lineage

1 1

2 2

3 1

4 1

5 4

6 3 7 1

7 20 17 1

Compared were isolates of the Beijing genotype from South Africa, clustered by the lineage designation of Hanekom et al. (Hanekom et al., 2007) to the clonal complex
designation resulting from SNP/RD typing in this study. The numbers in the table represent the number of strains in the respective clonal complex/lineage.
doi:10.1371/journal.pone.0028365.t001

SNP/RD Typing of Beijing Strains
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Gold biochemistry. To this end, primer extension reactions were

carried out using oligonucleotide primers designed with the

AssayDesigner 3.1 software. Single base extension of a primer

that annealed directly adjacent to the SNP was measured on a

compact MALDI-TOF mass spectrometer, following automated

protocols in a 384-well format [46]. The SNP positions of the

genome-sequenced strains (CHIN+, CHIN2, SA+, SA2, V+,

V2, K1 and K2) were extracted from the literature [13,31].

The results of the high-throughput SNP typing for the 275 SNPs

or the 61 SNPs were concatenated for each isolate and treated as

alignments. A phylogenetic tree was inferred with maximum-

likelihood using Phyml version 2.4.4 [47]. The trees were visualized

as cladograms in Figures S1-A, S1-B and S1-C with Dendroscope

[48]. Subsequently, for each internal and external branch of the

phylogenetic tree that was established from 275 SNPs, SNPs were

identified that represented the respective branch by their presence

or absence in the isolates. To determine the consistency index, a tree

was established with maximum-parsimony in MEGA 5 [49]. Non-

clonally distributed SNPs in the tree were determined with mixed

method discrete character parsimony carrying out Camin-Sokal

parsimony as implemented in the Phylip suite (Phylip 3.69).

Redundancy analysis
SNP results of the assay with 275 SNPs were classified as

reliable if no ambiguous bases were detected by the assay and

could not be determined less than twice in the different strains

(after isolates with more than ten empty SNP positions were

excluded). Moreover we did not select the eight SNPs that were

potentially the result of convergent evolution or SNP detection

errors. Synonymous SNPs were chosen as these are generally

assumed to be selectively neutral. We included one coding SNP

that was not part of the first assay, but that was representative for a

group of four SNPs that marked a short internal branch in the

phylogeny of the six genome-sequenced Beijing strains [13]. This

SNP causes a conservative amino acid change (valine-to-alanine

substitution) in a probable acid-maltase protein.

Of the SNPs that were either specific for K1 or K2 [10] or

present in both strains, but not reported in CHIN+, SA+, V+,

SA2, CHIN2 or V2, ten synonymous SNPs were randomly

selected (three specific for strain K1, three specific for strain K2

and four SNPs specific for both K1 and K2).

The nucleotides at the 61 positions in the chromosome of each

isolate were arranged in a SNP matrix and positions with the same

and therefore redundant information content were merged (see

Figure 1). RD131 was treated as one mutation event, and added to

the concatenated 61 SNPs.

Identification and verification of RDs
A BLAST search (BLAST 2.2.19, [50] of all genes of H37Rv

with a sliding-window of 200 bp against the raw read collection of

six 454/Roche-sequenced Beijing genomes (CHIN2, CHIN+,

SA2, SA+, V+, V2, [13] with read lengths of 250 bp on average

was performed. Hits with query coverage of less than 0.8 were

used to identify potential RDs.

To confirm the RDs identified in silico and to assay their

presence or absence in selected Beijing isolates, PCR primers were

designed adjacent to the putative deletion sites with Primer3plus

(http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.

cgi) with standard parameters. For RDs larger than 2000 bp, two

sets of primers were designed (primer sequences are indicated in

Table S5). PCR reactions were performed with either PuReTaq

Ready-To-GoTM PCR beads (GE Healtcare LifeScience, Little

Chalfont, UK) or HotStarTaq Master Mix (Qiagen, Hilden,

Germany) as mono- or multiplex reactions. The sizes of the PCR

products were estimated on a 1% agarose gel to specify the

presence or absence of the RD. Selected products were sequenced

on an ABI 3730x sequencer (Applied Biosystems, Foster City, CA,

USA) following standard protocols.

Discriminatory power
The discriminatory power (D) is the average probability that a

typing system will assign a different type to two unrelated strains

and was calculated according to the method described by Hunter

and Gaston [51,52]. To compare the discriminatory power of the

SNP/RD typing system relative to other typing systems, we

compared another lineage designation (Lineage 1 to 7, established

by Hanekom and colleagues [15]) of 58 isolates from South Africa

to our classification in clonal complexes. These 58 isolates

comprised three strains from the Dutch database from lineage 7.

The lineage designation was based on IS6110 insertion sites as well

as on synonymous SNPs, RDs, and SNPs in mismatch repair genes

[15].

Discussion

We attempted to define a set of evolutionary stable, non-

homoplasious genomic changes in the Beijing genotype identified

in eight genome-sequenced strains that could serve as phylogenetic

markers, and selected nucleotide changes at neutral or nearly-

neutral sites. Furthermore, we included newly identified RDs in

the SNP/RD typing scheme for Beijing strains, since deletions that

occurred independently from IS6110-directed recombination have

been successfully used to identify lineages in the MTBC

Table 2. Regions of difference (RD) identified in M. tuberculosis Beijing strains.

Position in H37Rv Reference Genes (partially) deleted RD name
Co-occurrence with
marker (Figure 1)

Corresponding
Figure

859243 – 859496 [31] Rv0766c RD131 36 S2

3120521– 3127920 [9]. Rv2814c – Rv2820c RD207 spoligo S3

2949906–2955132 this study Rv2623 – Rv2627c RD197 52, 53 S4

2626969–2633061 this study Rv2394c – Rv2350c RD185 61, 62 S5

358030–363748 this study Rv0294–Rv0299 RD112 61, 62 S6

1715870–1733378 this study Rv1522c–Rv1531 RD148 61,62 S6

2238647–2242137 this study Rv1995–Rc1997 RD174 61, 62 S6

2128379–2129584 this study Rv1878 RD163 5, 6, 7, 8, 9, 10 S7

doi:10.1371/journal.pone.0028365.t002

SNP/RD Typing of Beijing Strains
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Figure 2. Origins of clonal complexes. A. Continent of origin of the M. tuberculosis isolates belonging to clonal complex H37Rv, O1, O2 and BST1
to BST19 and SA2, CHIN2, V2, SA+, V+, CHIN+, K1 and K2. ‘‘America’’ includes isolates from the South- and North American continent. B. Distribution
of country of origin within clonal complexes of the M. tuberculosis isolates. Here, only isolates belonging to countries or regions with more than five
isolates assayed in this study were considered.
doi:10.1371/journal.pone.0028365.g002

SNP/RD Typing of Beijing Strains
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[9,53,54,55,56,57,58]. With the application of the 61 SNPs and

one RD to MTBC strains, 30 clonal complexes, of which 27

strictly comprised Beijing genotype strains, were distinguished.

A SNP/RD assay has many advantages over spoligotyping,

IS6110 RFLP and VNTR typing. Synonymous SNPs and RDs are

phylogenetically robust, and do not suffer from convergent

evolution (at least if deletions were independent from repeat

regions [59]) and moreover, they are relatively easy to determine

by a PCR-based detection method [54]. In this study, the

discriminatory power of RDs is low compared to that of the SNPs:

only five clonal complexes could be distinguished by the RDs

described (D = 0.52). Moreover, RDs did not improve the

resolution of the SNP-based assay, with one exception (RD131).

However, the SNPs from the lineage leading to K1 and K2 have

not been selected by a redundancy analysis but stochastically and

thus may not provide the optimal discriminatory power that might

have been achieved by a different set of SNPs. It is likely that some

SNPs exist that can split up the identified clonal complexes, as

does RD131. For these reasons we combined SNPs and RDs in

one typing scheme.

A particularly striking result of this study is the almost complete

absence of strong geographical associations of all but two clonal

complexes. This in contrast to phylogeographical studies of

diseases such as the plague [60], lepra [22], buruli ulcer [23],

and in contrast to the strong phylogeographic association of

major tuberculosis strain lineages reported in several studies

[28,61,62,63]. In those studies, the Beijing/W lineage was strongly

associated with patients of Asian origin. It has been suggested that

this lineage has evolved so as to become adapted to the specific

host background and that transmission of disease among patients

with the same ethnicity is more likely [61]. In our study, patients

from Asian origin form the second largest group (with 68 patient

isolates) after patients from African origin (74 isolates). However,

our study was not designed to include a representative sample

from each region, but to include the genetic diversity among the

Beijing RFLP patterns in our database combined with varying

countries of origin of the isolates. Thus our study could not

estimate the prevalence by region, or give information about the

likelihood of transmissibility of clonal complexes. Our study does

show that most Beijing clonal complexes can be isolated from

patients with diverse genetic backgrounds.

The main difference between studies that find strong

phylogeographic associations and our study is the scale of genetic

diversity of the strains studied. Our results suggest that several

Beijing ancestors spread successfully to different parts of the

world and to hosts from diverse ethnicity on multiple occasions.

One of the driving forces of the Beijing epidemic might be

migration patterns which allow the wide distribution of closely

related strains, such as air travel. In contrast, two clonal

complexes (BST13 and BST14) were populated exclusively with

samples from South Africa and show a strong association to a

single country. It is unclear whether these strains are adapted to

the South African population or if these clonal complexes did not

have the chance to spread to other parts of the world yet, because

of limited time or the socioeconomic circumstances of their hosts.

Recently, van Helden et al. [64] suggested that Beijing strains

might have been introduced to South Africa following the sea

trade route from East Asia to Europe that started 400 years ago.

Indeed, in the 17th and 18th centuries, Dutch colonists at the

Cape of Good Hope largely imported slaves from Indonesia,

Madagascar, Mozambique, and India. However, while the

conjecture that Beijing strains were transported via the slave or

trade route is plausible the study design and sampling do not

preclude this conclusion.

The application of SNPs and RDs to non-genome-sequenced

strains yields linear phylogenies with a complete absence of

secondary branches (branch collapse), a phenomenon inherent to

SNP-based phylogenies [32,33,65]. As expected in a branch-

collapsed typing scheme, clonal complexes that are determined

with a maximum number of SNPs present discriminate better than

SNP types that are defined by fewer markers. These cannot

distinguish between different lineages, as exemplified by compar-

ing the lineage designation to the SNP/RD typing scheme. All

samples that were typed in this study were more or less

contemporary with respect to TB infections (they were isolated

between 1993 and 2009). If fully sequenced, all these isolates

would be separated by long branches [32,33]. In addition, the

number of SNPs is not representative for the genetic distance

between the clonal complexes, because we selected one to six SNPs

to mark a clonal complex, regardless of evolutionary distance.

We postulate that, with the increasing number of SNPs

identified from whole genome sequencing efforts, the resolution

to determine the population structure will increase, and possibly

more clonal complexes could show an association with country of

origin. This improved discriminatory power will reach its optimum

by genome sequencing of all M. tuberculosis isolates in the future. It

is already clear however, that almost every Beijing clonal complex

has disseminated to different parts of the world on multiple

occasions. The SNPs and RDs presented in this study could –

partially or jointly – be used in typing assays that aid in future

molecular epidemiological studies of the Beijing genotype.

Supporting Information

Figure S1 Maximum-likelihood trees from SNP data. A:

Maximum-likelihood tree of 275 concatenated SNPs in 178 M.

tuberculosis complex strains. B: Maximum-likelihood tree of 267

concatenated SNPs in 178 M. tuberculosis complex strains. Eight

SNPs that were non-clonally distributed in Figure 1A were

excluded for this figure. C: Maximum-likelihood tree of 61

concatenated SNPs in 259 strains. Outgroups O1 and O2 are

indicated.

(PDF)

Figures S2 Distribution of RD131 in the phylogenetic
tree. Strains with background colors were assayed for the absence

or presence of the RD. No background color: strain not assayed.

Red: RD is present (deletion was identified). Yellow: RD is absent

(no deletion has occurred). Green: product of other size than the

expected product. For corresponding RDs see Table 2.

(PDF)

Figure S3 Distribution of RD207 in the phylogenetic
tree.

(PDF)

Figure S4 Distribution of RD197 in the phylogenetic
tree.

(PDF)

Figure S5 Distribution of RD185 in the phylogenetic
tree.

(PDF)

Figure S6 Distribution of RD112, RD148 and RD174 in
the phylogenetic tree.

(PDF)

Figure S7 Distribution of RD163 in the phylogenetic
tree.

(PDF)
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Figure S8 Scheme of workflow applied in this study.
(PDF)

Table S1 SNP matrix of 275 SNPs in 178 M. tuberculosis complex

strains. 1: derived from 454 sequencing. 2: derived from high-

throughput mass-spectrometry typing.?: no or ambigous base

determined. The Supporting Tables contain tab-delimited file that

can be copied into spreadsheets.

(TXT)

Table S2 61 Single nucleotide polymorphisms and RD 131

(number 36) used in this study.

(TXT)

Table S3 SNP matrix of 61 SNPs in 259 M. tuberculosis complex

strains.

(TXT)

Table S4 Country of origin of the isolates used in this study.

(TXT)

Table S5 Primer sequences and PCR conditions used to

determine regions of difference (RDs). RD 207 was determined

by spoligotyping and is therefore not present.

(TXT)
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